Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mitochondrial and metabolic dysfunction in ageing and age-related diseases

Abstract

Organismal ageing is accompanied by progressive loss of cellular function and systemic deterioration of multiple tissues, leading to impaired function and increased vulnerability to death. Mitochondria have become recognized not merely as being energy suppliers but also as having an essential role in the development of diseases associated with ageing, such as neurodegenerative and cardiovascular diseases. A growing body of evidence suggests that ageing and age-related diseases are tightly related to an energy supply and demand imbalance, which might be alleviated by a variety of interventions, including physical activity and calorie restriction, as well as naturally occurring molecules targeting conserved longevity pathways. Here, we review key historical advances and progress from the past few years in our understanding of the role of mitochondria in ageing and age-related metabolic diseases. We also highlight emerging scientific innovations using mitochondria-targeted therapeutic approaches.

Key points

  • The rate of ageing is coordinated, at least in part, by conserved genetic and biochemical pathways.

  • A complex network of interactions between longevity pathways reveals an intricate regulation of mitochondrial physiology during ageing.

  • Cellular metabolism interconnects the nine hallmarks of ageing, and deregulation of energy metabolism by environmental variations is an essential process leading to mitochondrial dysfunction during ageing.

  • A better understanding of mitochondrial dysfunction during ageing and age-related metabolic diseases will provide fundamental knowledge to develop therapies to combat late-life morbidities.

  • Human longitudinal studies will be essential to understand individuals’ risk of diseases much earlier in life, and will inform health choices and medical care options.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Longevity signalling pathways control mitochondrial health.
Fig. 2: Mitochondrial dysfunction in age-related metabolic diseases.

Similar content being viewed by others

References

  1. Zenin, A. et al. Identification of 12 genetic loci associated with human healthspan. Commun. Biol. 2, 41 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Kennedy, B. K. et al. Geroscience: linking aging to chronic disease. Cell 159, 709–713 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Burger, O., Baudisch, A. & Vaupel, J. W. Human mortality improvement in evolutionary context. Proc. Natl Acad. Sci. USA 109, 18210–18214 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Poulain, M., Herm, A. & Pes, G. The Blue Zones: areas of exceptional longevity around the world. Vienna Yearb. Popul. Res. 11, 87–108 (2013).

    Article  Google Scholar 

  6. Cooper, R., Strand, B. H., Hardy, R., V Patel, K. & Kuh, D. Physical capability in mid-life and survival over 13 years of follow-up: British Birth Cohort Study. BMJ 348, g2219 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fogel, R. W. & Costa, D. L. A theory of technophysio evolution, with some implications for forecasting population, health care costs, and pension costs. Demography 34, 49–66 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Crimmins, E. M. Lifespan and healthspan: past, present, and promise. Gerontologist 55, 901–911 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chinnery, P. F. Mitochondrial disease in adults: what’s old and what’s new? EMBO Mol. Med. 7, 1503–1512 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gonzalez-Freire, M. et al. The road ahead for health and lifespan interventions. Ageing Res. Rev. 59, 101037 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lin, S. et al. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418, 344–348 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Schulz, T. J. et al. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab. 6, 280–293 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Nisoli, E. et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310, 314–317 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Wallace, D. C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359–407 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. López-Lluch, G. & Navas, P. Calorie restriction as an intervention in ageing. J. Physiol. 594, 2043–2060 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Fontana, L., Partridge, L. & Longo, V. Extending healthy life span–from yeast to humans. Science 328, 321–326 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Senchuk, M. M. et al. Activation of DAF-16/FOXO by reactive oxygen species contributes to longevity in long-lived mitochondrial mutants in Caenorhabditis elegans. PLoS Genet. 14, e1007268 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Dhondt, I. et al. FOXO/DAF-16 activation slows down turnover of the majority of proteins in C. elegans. Cell Rep. 16, 3028–3040 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brys, K., Castelein, N., Matthijssens, F., Vanfleteren, J. R. & Braeckman, B. P. Disruption of insulin signalling preserves bioenergetic competence of mitochondria in ageing Caenorhabditis elegans. BMC Biol. 8, 91 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zarse, K. et al. Impaired insulin/IGF1 signaling extends life span by promoting mitochondrial L-proline catabolism to induce a transient ROS signal. Cell Metab. 15, 451–465 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Morsci, N. S., Hall, D. H., Driscoll, M. & Sheng, Z. H. Age-related phasic patterns of mitochondrial maintenance in adult Caenorhabditis elegans neurons. J. Neurosci. 36, 1373–1385 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Palikaras, K., Lionaki, E. & Tavernarakis, N. Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature 521, 525–528 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Fang, E. F. et al. Tomatidine enhances lifespan and healthspan in C. elegans through mitophagy induction via the SKN-1/Nrf2 pathway. Sci. Rep. 7, 46208 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ryu, D. et al. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat. Med. 22, 879–888 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Westbrook, R., Bonkowski, M. S., Strader, A. D., & Bartke, A. Alterations in oxygen consumption respiratory quotient and heat production in long-lived GHRKO and Ames dwarf mice and short-lived bGH transgenic mice. J. Gerontol. A. Biol. Sci. Med. Sci. 64, 443–451 (2009).

    Article  PubMed  CAS  Google Scholar 

  26. Brown-Borg, H. M., Johnson, W. T. & Rakoczy, S. G. Expression of oxidative phosphorylation components in mitochondria of long-living Ames dwarf mice. Age 34, 43–57 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Blüher, M., Kahn, B. & Kahn, C. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299, 572–574 (2003).

    Article  PubMed  CAS  Google Scholar 

  28. Katic, M. et al. Mitochondrial gene expression and increased oxidative metabolism: role in increased lifespan of fat-specific insulin receptor knock-out mice. Aging Cell 6, 827–839 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Merry, T. L. et al. Impairment of insulin signalling in peripheral tissue fails to extend murine lifespan. Aging Cell 16, 761–772 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Saxton, R. A. & Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell 168, 960–976 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Loewith, R. et al. Two TOR complexes only one of which is rapamycin sensitive have distinct roles in cell growth control. Mol. Cell 10, 457–468 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Bai, X. et al. Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38. Science 318, 977–980 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Hosokawa, N. et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 20, 1981–1991 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guo C., Kroemer, G. & Kepp, O. Mitophagy: an emerging role in aging and age-associated diseases. Front. Cell Dev. Biol. 8, 200 (2020).

    Article  Google Scholar 

  35. Cunningham, J. T. et al. mTOR controls mitochondrial oxidative function through a YY1-PGC-1α transcriptional complex. Nature 450, 736–740 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Bentzinger, C. F. et al. Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab. 8, 411–424 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Johnson, S. et al. mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science 342, 1524–1529 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Siegmund, S. E. et al. Low-dose rapamycin extends lifespan in a mouse model of mtDNA depletion syndrome. Hum. Mol. Genet. 26, 4588–4605 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Herzig, S. & Shaw, R. J. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 19, 121–135 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Zong, H. et al. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc. Natl Acad. Sci. USA 99, 15983–15987 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jäger, S., Handschin, C., St-Pierre, J. & Spiegelman, B. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc. Natl Acad. Sci. USA 104, 12017–12022 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Egan, D. F. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456–461 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Toyama, E. et al. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351, 275–281 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Weir, H. J. et al. Dietary restriction and AMPK increase lifespan via mitochondrial network and peroxisome remodeling. Cell Metab. 26, 884–896.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Reznick, R. M. et al. Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab. 5, 151–156 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Anderson, R. M., Bitterman, K. J., Wood, J. G., Medvedik, O. & Sinclair, D. A. Nicotinamide and Pnc1 govern lifespan extension by calorie restriction and stress. Nature 423, 181–185 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sinclair, D. A. & Guarente, L. Extrachromosomal rDNA circles–a cause of aging in yeast. Cell 91, 1033–1042 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Gomes, A. et al. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155, 1624–1638 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brunet, A. et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011–2015 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Rodgers, J. T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434, 113–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Verdin, E., Hirschey, M. D., Finley, L. W. S. & Haigis, M. C. Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem. Sci. 35, 669–675 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ahn, B. H. et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl Acad. Sci. USA 105, 14447–14452 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Palacios, O. M. et al. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1α in skeletal muscle. Aging 1, 771–783 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ahuja, N. et al. Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase. J. Biol. Chem. 282, 33583–33592 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Someya, S. et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143, 802–812 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Harman, D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11, 298–300 (1956).

    Article  CAS  PubMed  Google Scholar 

  57. Melov, S. et al. Lifespan extension and rescue of spongiform encephalopathy in superoxide dismutase 2 nullizygous mice treated with superoxide dismutase-catalase mimetics. J. Neurosci. 21, 8348–8353 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kirby, K., Hu, J., Hilliker, A. J. & Phillips, J. P. RNA interference-mediated silencing of Sod2 in Drosophila leads to early adult-onset mortality and elevated endogenous oxidative stress. Proc. Natl Acad. Sci. USA 99, 16162–16167 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Van Raamsdonk, J. M. & Hekimi, S. Superoxide dismutase is dispensable for normal animal lifespan. Proc. Natl Acad. Sci. USA 109, 5785–5790 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kauppila, T. E. S., Kauppila, J. H. K. & Larsson, N. G. Mammalian mitochondria and aging: an update. Cell Metab. 25, 57–71 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Harman, D. The biologic clock: the mitochondria? J. Am. Geriatr. Soc. 20, 145–147 (1972).

    Article  CAS  PubMed  Google Scholar 

  62. Wallace, D. C. The human mitochondrion and pathophysiology of aging and age-related diseases. in Molecular Biology of Aging 1st edn (eds. Guarente, L., Partridge, L. & Wallace, D. C.) 1–38 (Cold Spring Harbor Laboratory Press, 2008).

  63. Cortopassi, G. A. & Arnheim, N. Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Res. 18, 6927–6933 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Linnane, A. W., Ozawa, T., Marzuki, S. & Tanaka, M. Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet 1, 642–645 (1989).

    Article  CAS  PubMed  Google Scholar 

  65. Khrapko, K. & Vijg, J. Mitochondrial DNA mutations and aging: devils in the details? Trends Genet. 25, 91–98 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Trifunovic, A. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Niu, X., Trifunovic, A., Larsson, N. G. & Canlon, B. Somatic mtDNA mutations cause progressive hearing loss in the mouse. Exp. Cell Res. 313, 3924–3934 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Ross, J. M. et al. High brain lactate is a hallmark of aging and caused by a shift in the lactate dehydrogenase A/B ratio. Proc. Natl Acad. Sci. USA 107, 20087–20092 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ross, J. M. et al. Germline mitochondrial DNA mutations aggravate ageing and can impair brain development. Nature 501, 412–415 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ross, J. M., Coppotelli, G., Hoffer, B. J. & Olson, L. Maternally transmitted mitochondrial DNA mutations can reduce lifespan. Sci. Rep. 4, 6569 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Vermulst, M. et al. Mitochondrial point mutations do not limit the natural lifespan of mice. Nat. Genet. 39, 540–543 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Desquilbet, L. et al. HIV-1 infection is associated with an earlier occurrence of a phenotype related to frailty. J. Gerontol. A Biol. Sci. Med. Sci. 62, 1279–1286 (2007).

    Article  PubMed  Google Scholar 

  73. Guaraldi, G. et al. Coronary aging in HIV-infected patients. Clin. Infect. Dis. 49, 1756–1762 (2009).

    Article  PubMed  Google Scholar 

  74. Payne, B. A. I. et al. Mitochondrial aging is accelerated by anti-retroviral therapy through the clonal expansion of mtDNA mutations. Nat. Genet. 43, 806–810 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sohl, C. D. et al. Probing the structural and molecular basis of nucleotide selectivity by human mitochondrial DNA polymerase γ. Proc. Natl Acad. Sci. USA 112, 8596–8601 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fang, E. F. et al. Nuclear DNA damage signalling to mitochondria in ageing. Nat. Rev. Mol. Cell Biol. 17, 308–321 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Scheibye-Knudsen, M., Fang, E. F., Croteau, D. L. & Bohr, V. A. Contribution of defective mitophagy to the neurodegeneration in DNA repair-deficient disorders. Autophagy 10, 1468–1469 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wilkins, H. M. et al. in The Molecular and Cellular Basis of Neurodegenerative Diseases: Underlying Mechanisms 369–414 (Elsevier, 2018).

  79. Hoeijmakers, J. H. J. DNA damage, aging, and cancer. N. Engl. J. Med. 361, 1475–1485 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Chaudhuri, A. R. & Nussenzweig, A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat. Rev. Mol. Cell Biol. 18, 610–621 (2017).

    Article  CAS  Google Scholar 

  81. Chambon, P., Weill, J. D. & Mandel, P. Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem. Biophys. Res. Commun. 11, 39–43 (1963).

    Article  CAS  PubMed  Google Scholar 

  82. Gibson, B. A. & Kraus, W. L. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat. Rev. Mol. Cell Biol. 13, 411–424 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Bai, P. et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 13, 461–468 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mouchiroud, L. et al. The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154, 430–441 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fang, E. F. et al. Defective mitophagy in XPA via PARP-1 hyperactivation and NAD+/SIRT1 reduction. Cell 157, 882–896 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Scheibye-Knudsen, M. et al. A high-fat diet and NAD+ activate sirt1 to rescue premature aging in Cockayne syndrome. Cell Metab. 20, 840–855 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Valentin-vega, Y. A. et al. Mitochondrial dysfunction in ataxia-telangiectasia. Blood 119, 1490–1500 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fang, E. F. et al. NAD+ replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair. Cell Metab. 24, 566–581 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tchkonia, T., Zhu, Y., Deursen, J. V., Campisi, J. & Kirkland, J. L. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J. Clin. Invest. 123, 966–972 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Campisi, J. & D’Adda Di Fagagna, F. Cellular senescence: when bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 8, 729–740 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Yoon, Y. S., Byun, H. O., Cho, H., Kim, B. K. & Yoon, G. Complex II defect via down-regulation of iron-sulfur subunit induces mitochondrial dysfunction and cell cycle delay in iron chelation-induced senescence-associated growth arrest. J. Biol. Chem. 278, 51577–51586 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Byun, H. O. et al. GSK3 inactivation is involved in mitochondrial complex IV defect in transforming growth factor (TGF) β1-induced senescence. Exp. Cell Res. 318, 1808–1819 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Lafargue, A. et al. Ionizing radiation induces long-term senescence in endothelial cells through mitochondrial respiratory complex II dysfunction and superoxide generation. Free. Radic. Biol. Med. 108, 750–759 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Passos, J. F. et al. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol. 5, e110 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Passos, J. F. et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol. Syst. Biol. 6, 347 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Correia-Melo, C. & Passos, J. F. Mitochondria: are they causal players in cellular senescence? Biochim. Biophys. Acta 1847, 1373–1379 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Ogrodnik, M. et al. Cellular senescence drives age-dependent hepatic steatosis. Nat. Commun. 8, 15691 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mai, S., Klinkenberg, M., Auburger, G., Bereiter-Hahn, J. & Jendrach, M. Decreased expression of Drp1 and Fis1 mediates mitochondrial elongation in senescent cells and enhances resistance to oxidative stress through PINK1. J. Cell Sci. 123, 917–926 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Kwon, S. M., Hong, S. M., Lee, Y. & Min, S. Metabolic features and regulation in cell senescence. BMB Rep. 52, 5–12 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Shock, L. S., Thakkar, P. V., Peterson, E. J., Moran, R. G. & Taylor, S. M. DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc. Natl Acad. Sci. USA 108, 3630–3635 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chestnut, B. A. et al. Epigenetic regulation of motor neuron cell death through DNA methylation. J. Neurosci. 31, 16619–16636 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bellizzi, D. et al. The control region of mitochondrial DNA shows an unusual CpG and non-CpG methylation pattern. DNA Res. 20, 537–547 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wong, M. et al. Mitochondrial DNMT3A and DNA methylation in skeletal muscle and CNS of transgenic mouse models of ALS. Front. Cell Neurosci. 7, 279 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Lodeiro, M. F. et al. Transcription from the second heavy-strand promoter of human mtDNA is repressed by transcription factor A in vitro. Proc. Natl Acad. Sci. USA 109, 6513–6518 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Janssen, B. G. et al. Placental mitochondrial methylation and exposure to airborne particulate matter in the early life environment: an ENVIRONAGE birth cohort study. Epigenetics 10, 536–544 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Armstrong, D. A. et al. Maternal smoking during pregnancy is associated with mitochondrial DNA methylation. Environ. Epigenetics 2, dvw020 (2016).

    Article  Google Scholar 

  107. Mishra, M. & Kowluru, R. A. Epigenetic modification of mitochondrial DNA in the development of diabetic retinopathy. Investig. Ophthalmol. Vis. Sci. 56, 5133–5142 (2015).

    Article  CAS  Google Scholar 

  108. Yu, D. et al. Mitochondrial DNA hypomethylation is a biomarker associated with induced senescence in human fetal heart mesenchymal stem cells. Stem Cell Int. 2017, 14–16 (2017).

    Google Scholar 

  109. Mawlood, S. K., Dennany, L., Watson, N., Dempster, J. & Pickard, B. S. Quantification of global mitochondrial DNA methylation levels and inverse correlation with age at two CpG sites. Aging 8, 636–641 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Baccarelli, A. A. & Byun, H. Platelet mitochondrial DNA methylation: a potential new marker of cardiovascular disease. Clin. Epigenetics 7, 44 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Feng, S. H. I., Xiong, L., Ji, Z., Cheng, W. E. I. & Yang, H. Correlation between increased ND2 expression and demethylated displacement loop of mtDNA in colorectal cancer. Mol. Med. Rep. 6, 125–130 (2012).

    CAS  PubMed  Google Scholar 

  112. Pirola, C. et al. Epigenetic modification of liver mitochondrial DNA is associated with histological severity of nonalcoholic fatty liver disease. Gut 62, 1356–1263 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Zheng, L. D. et al. Insulin resistance is associated with epigenetic and genetic regulation of mitochondrial DNA in obese humans. Clin. Epigenetics 7, 60 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Infantino, V. et al. Impairment of methyl cycle affects mitochondrial methyl availability and glutathione level in Down’s syndrome. Mol. Genet. Metab. 102, 378–382 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Stoccoro, A. et al. Mitochondrial DNA copy number and D-loop region methylation in carriers of amyotrophic lateral sclerosis gene mutations. Epigenomics 10, 1431–1443 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. Blanch, M., Mosquera, J. L., Ansoleaga, B., Ferrer, I. & Barrachina, M. Altered mitochondrial DNA methylation pattern in Alzheimer disease-related pathology and in Parkinson disease. Am. J. Pathol. 186, 385–397 (2016).

    Article  CAS  PubMed  Google Scholar 

  117. Haslam, D. W. & James, W. P. T. Obesity. Lancet 366, 1197–1209 (2005).

    Article  PubMed  Google Scholar 

  118. Bhatti, G. K., Bhadada, S. K., Vijayvergiya, R., Mastana, S. S. & Bhatti, J. S. Metabolic syndrome and risk of major coronary events among the urban diabetic patients: North Indian Diabetes and Cardiovascular Disease Study–NIDCVD-2. J. Diabetes Complicat. 30, 72–78 (2016).

    Article  Google Scholar 

  119. Matsumoto, A. M. Andropause: clinical implications of the decline in serum testosterone levels with aging in men. J. Gerontol. A. Biol. Sci. Med. Sci. 57, M76–M99 (2002).

    Article  PubMed  Google Scholar 

  120. Griffin, T. M., Humphries, K. M., Kinter, M., Lim, H. Y. & Szweda, L. I. Nutrient sensing and utilization: getting to the heart of metabolic flexibility. Biochimie 124, 74–83 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Storlien, L., Oakes, N. D. & Kelley, D. E. Metabolic flexibility. Proc. Nutr. Soc. 63, 363–368 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Kopprasch, S. et al. In vivo evidence for increased oxidation of circulating LDL in impaired glucose tolerance. Diabetes 51, 3102–3106 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Petersen, K. F. et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300, 1140–1142 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Litvinova, L. S., Kirienkova, E. V., Mazunin, I. O., Vasilenko, M. A. & Fattakhov, N. S. Pathogenesis of insulin resistance in metabolic obesity. Biochem. Suppl. B Biomed. Chem. 8, 192–202 (2014).

    Google Scholar 

  125. Pagel-Langenickel, I., Bao, J., Pang, L. & Sack, M. N. The role of mitochondria in the pathophysiology of skeletal muscle insulin resistance. Endocr. Rev. 31, 25–51 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Poulton, J. et al. The presence of a common mitochondrial DNA variant is associated with fasting insulin levels in Europeans in Auckland. Diabet. Med. 19, 969–971 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Kim, J. H. et al. The prevalence of the mitochondrial DNA 16189 variant in non-diabetic Korean adults and its association with higher fasting glucose and body mass index. Diabet. Med. 19, 681–684 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Tanaka, M. et al. Women with mitochondrial haplogroup N9a are protected against metabolic syndrome. Diabetes 56, 518–521 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Fuku, N. et al. Mitochondrial haplogroup N9a confers resistance against type 2 diabetes in Asians. Am. J. Hum. Genet. 80, 407–415 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Palmieri, V. O. et al. T16189C mitochondrial DNA variant is associated with metabolic syndrome in Caucasian subjects. Nutrition 27, 773–777 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Ye, W., Chen, S., Jin, S. & Lu, J. A novel heteroplasmic mitochondrial DNA mutation, A8890G, in a patient with juvenile-onset metabolic syndrome: a case report. Mol. Med. Rep. 8, 1060–1066 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Mozhey, O. I. et al. Evaluating the number of mitochondrial DNA copies in leukocytes and adipocytes from metabolic syndrome patients: pilot study. Mol. Biol. 48, 590–593 (2014).

    Article  CAS  Google Scholar 

  133. Lee, H. K. et al. Decreased mitochondrial DNA content in peripheral blood precedes the development of non-insulin-dependent diabetes mellitus. Diabetes Res. Clin. Pract. 42, 161–167 (1998).

    Article  CAS  PubMed  Google Scholar 

  134. Kytövuori, L. et al. A novel mutation m.8561C>G in MT-ATP6/8 causing a mitochondrial syndrome with ataxia, peripheral neuropathy, diabetes mellitus, and hypergonadotropic hypogonadism. J. Neurol. 263, 2188–2195 (2016).

    Article  PubMed  CAS  Google Scholar 

  135. Bhansali, S., Bhansali, A., Walia, R., Saikia, U. N. & Dhawan, V. Alterations in mitochondrial oxidative stress and mitophagy in subjects with prediabetes and type 2 diabetes mellitus. Front. Endocrinol. 8, 347 (2017).

    Article  Google Scholar 

  136. Kelley, D. E., He, J., Menshikova, E. V. & Ritov, V. B. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51, 2944–2950 (2002).

    Article  CAS  PubMed  Google Scholar 

  137. Schrauwen, P., Schrauwen-Hinderling, V., Hoeks, J. & Hesselink, M. K. C. Mitochondrial dysfunction and lipotoxicity. Biochim. Biophys. Acta Biophys. Acta 1801, 266–271 (2010).

    Article  CAS  Google Scholar 

  138. Fabbri, E. et al. Insulin resistance is associated with reduced mitochondrial oxidative capacity measured by 31P-magnetic resonance spectroscopy in participants without diabetes from the Baltimore Longitudinal Study of Aging. Diabetes 66, 170–176 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Phielix, E. et al. Lower intrinsic ADP-stimulated mitochondrial respiration underlies in vivo mitochondrial dysfunction in muscle of male type 2 diabetic patients. Diabetes 57, 2943–2949 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).

    Article  CAS  PubMed  Google Scholar 

  141. Robertson, R., Harmon, J., Tran, P., Tanaka, Y. & Takahashi, H. Glucose toxicity in β-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes 52, 581–587 (2003).

    Article  CAS  PubMed  Google Scholar 

  142. DeFronzo, R. A. & Abdul-Ghani, M. A. Preservation of β-cell function: the key to diabetes prevention. J. Clin. Endocrinol. Metab. 96, 2354–2366 (2011).

    Article  CAS  PubMed  Google Scholar 

  143. Anello, M. et al. Functional and morphological alterations of mitochondria in pancreatic beta cells from type 2 diabetic patients. Diabetologia 48, 282–289 (2005).

    Article  CAS  PubMed  Google Scholar 

  144. Brereton, M. F. et al. Hyperglycaemia induces metabolic dysfunction and glycogen accumulation in pancreatic β-cells. Nat. Commun. 7, 13496 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ling, C. et al. Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia 51, 615–622 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Koeck, T. et al. A common variant in TFB1M is associated with reduced insulin secretion and increased future risk of type 2 diabetes. Cell Metab. 13, 80–91 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Goehring, I. et al. Plasma membrane potential oscillations in insulin secreting Ins-1 832/13 cells do not require glycolysis and are not initiated by fluctuations in mitochondrial bioenergetics. J. Biol. Chem. 287, 15706–15717 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. MacDonald, M. J. et al. Decreased levels of metabolic enzymes in pancreatic islets of patients with type 2 diabetes. Diabetologia 52, 1087–1091 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Butler, A. et al. β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes 102, 1295–1297 (2003).

    Google Scholar 

  150. Abd El-Kader, S. M. & El-Den Ashmawy, E. M. S. Non-alcoholic fatty liver disease: the diagnosis and management. World J. Hepatol. 7, 846–858 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Valenti, L., Bugianesi, E., Pajvani, U. & Targher, G. Nonalcoholic fatty liver disease: cause or consequence of type 2 diabetes? Liver Int. 36, 1563–1579 (2016).

    Article  CAS  PubMed  Google Scholar 

  152. Paschos, P. & Paletas, K. Non-alcoholic fatty liver disease and the metabolic syndrome. Hippokratia 13, 9–19 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Koliaki, C. et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metab. 21, 739–746 (2015).

    Article  CAS  PubMed  Google Scholar 

  154. Pérez-Carreras, M. et al. Defective hepatic mitochondrial respiratory chain in patients with nonalcoholic steatohepatitis. Hepatology 38, 999–1007 (2003).

    Article  PubMed  Google Scholar 

  155. Kendrick, A. A. et al. Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation. Biochem. J. 433, 505–514 (2011).

    Article  CAS  PubMed  Google Scholar 

  156. Rossmeisl, M. et al. Decreased fatty acid synthesis due to mitochondrial uncoupling in adipose tissue. FASEB J. 14, 1793–1800 (2000).

    Article  CAS  PubMed  Google Scholar 

  157. Serra, D., Mera, P., Malandrino, M. I., Mir, J. F. & Herrero, L. Mitochondrial fatty acid oxidation in obesity. Antioxid. Redox Signal. 19, 269–284 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kotronen, A., Seppälä-Lindroos, A., Bergholm, R. & Yki-Järvinen, H. Tissue specificity of insulin resistance in humans: fat in the liver rather than muscle is associated with features of the metabolic syndrome. Diabetologia 51, 130–138 (2008).

    Article  CAS  PubMed  Google Scholar 

  159. Pessayre, D. & Fromenty, B. NASH: a mitochondrial disease. J. Hepatol. 42, 928–940 (2005).

    Article  CAS  PubMed  Google Scholar 

  160. Rector, R. S. et al. Mitochondrial dysfunction precedes insulin resistance and hepatic steatosis and contributes to the natural history of non-alcoholic fatty liver disease in an obese rodent model. J. Hepatol. 52, 727–736 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Cortez-Pinto, H. et al. Alterations in liver ATP homeostasis in human nonalcoholic steatohepatitis: a pilot study. JAMA 282, 1659–1664 (1999).

    Article  CAS  PubMed  Google Scholar 

  162. Teodoro, J., Rolo, A. P., Oliveira, P. J. & Palmeira, C. M. Decreased ANT content in Zucker fatty rats: relevance for altered hepatic mitochondrial bioenergetics in steatosis. FEBS Lett. 580, 2153–2157 (2006).

    Article  CAS  PubMed  Google Scholar 

  163. Teodoro, J. S., Rolo, A. P., Duarte, F. V., Simões, A. M. & Palmeira, C. M. Differential alterations in mitochondrial function induced by a choline-deficient diet: understanding fatty liver disease progression. Mitochondrion 8, 367–376 (2008).

    Article  CAS  PubMed  Google Scholar 

  164. Shami, G. J. et al. Three-dimensional ultrastructure of giant mitochondria in human non-alcoholic fatty liver disease. Sci. Rep. 11, 3319 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Sunny, N. E., Parks, E. J., Browning, J. D. & Burgess, S. C. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab. 14, 804–810 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Patterson, R. E. et al. Lipotoxicity in steatohepatitis occurs despite an increase in tricarboxylic acid cycle activity. Am. J. Physiol. Endocrinol. Metab. 310, E484–E494 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Satapati, S. et al. Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver. J. Lipid Res. 53, 1080–1092 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. El Assar, M., Angulo, J. & Rodríguez-Mañas, L. Oxidative stress and vascular inflammation in aging. Free Radic. Biol. Med. 65, 380–401 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. Jani, B. & Rajkumar, C. Ageing and vascular ageing. Postgrad. Med. J. 82, 357–362 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ding, Y. N., Tang, X., Chen, H. Z. & Liu, D. P. Epigenetic regulation of vascular aging and age-related vascular diseases. Adv. Exp. Med. Biol. 1086, 55–75 (2018).

    Article  CAS  PubMed  Google Scholar 

  171. Thomas, S. R., Witting, P. K. & Drummond, G. R. Redox control of endothelial function and dysfunction: molecular mechanisms and therapeutic opportunities. Antioxid. Redox Signal. 10, 1713–1765 (2008).

    Article  CAS  PubMed  Google Scholar 

  172. Abe, J. & Berk, B. C. Reactive oxygen species as mediators of signal transduction in cardiovascular disease. Trends Cardiovasc. Med. 8, 59–64 (1998).

    Article  CAS  PubMed  Google Scholar 

  173. Grootaert, M. O. J., Roth, L., Schrijvers, D. M., De Meyer, G. R. Y. & Martinet, W. Defective autophagy in atherosclerosis: to die or to senesce? Oxid. Med. Cell. Longev. 2018, 7687083 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Sobenin, I. A., Sazonova, M. A., Postnov, A. Y., Bobryshev, Y. V. & Orekhov, A. N. Changes of mitochondria in atherosclerosis: possible determinant in the pathogenesis of the disease. Atherosclerosis 227, 283–288 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Nomiyama, T. et al. Accumulation of somatic mutation in mitochondrial DNA and atherosclerosis in diabetic patients. Ann. N. Y. Acad. Sci. 1011, 193–204 (2004).

    Article  CAS  PubMed  Google Scholar 

  176. Bhopal, R. S. & Rafnsson, S. B. Could mitochondrial efficiency explain the susceptibility to adiposity, metabolic syndrome, diabetes and cardiovascular diseases in South Asian populations? Int. J. Epidemiol. 38, 1072–1081 (2009).

    Article  PubMed  Google Scholar 

  177. Corral-Debrinski, M. et al. Hypoxemia is associated with mitochondrial DNA damage and gene induction: implications for cardiac disease. JAMA 266, 1812–1816 (1991).

    Article  CAS  PubMed  Google Scholar 

  178. Ding, Y., Xia, B., Yu, J., Leng, J. & Huang, J. Mitochondrial DNA mutations and essential hypertension (review). Int. J. Mol. Med. 32, 768–774 (2013).

    Article  CAS  PubMed  Google Scholar 

  179. Liu, C. S. et al. Alteration of the copy number of mitochondrial DNA in leukocytes of patients with hyperlipidemia. Ann. N. Y. Acad. Sci. 1042, 70–75 (2005).

    Article  CAS  PubMed  Google Scholar 

  180. Naik, E. & Dixit, V. M. Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J. Exp. Med. 208, 417–420 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Davies, J. M. S. et al. The Oxygen Paradox, the French Paradox, and age-related diseases. GeroScience 39, 499–550 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Wenzel, P. et al. Manganese superoxide dismutase and aldehyde dehydrogenase deficiency increase mitochondrial oxidative stress and aggravate age-dependent vascular dysfunction. Cardiovasc. Res. 80, 280–289 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Oelze, M. et al. Glutathione peroxidase-1 deficiency potentiates dysregulatory modifications of endothelial nitric oxide synthase and vascular dysfunction in aging. Hypertension 63, 390–396 (2014).

    Article  CAS  PubMed  Google Scholar 

  184. Giorgio, M. et al. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 122, 221–233 (2005).

    Article  CAS  PubMed  Google Scholar 

  185. Migliaccio, E. et al. The p66Shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402, 309–313 (1999).

    Article  CAS  PubMed  Google Scholar 

  186. Francia, P. et al. Deletion of p66Shc gene protects against age-related endothelial dysfunction. Circulation 110, 2889–2895 (2004).

    Article  CAS  PubMed  Google Scholar 

  187. Camici, G. G. et al. Genetic deletion of p66Shc adaptor protein prevents hyperglycemia-induced endothelial dysfunction and oxidative stress. Proc. Natl Acad. Sci. USA 104, 5217–5222 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Berniakovich, I. et al. p66Shc-generated oxidative signal promotes fat accumulation. J. Biol. Chem. 283, 34283–34293 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Paneni, F., Costantino, S. & Cosentino, F. p66Shc-induced redox changes drive endothelial insulin resistance. Atherosclerosis 236, 426–429 (2014).

    Article  CAS  PubMed  Google Scholar 

  190. Pagnin, E. et al. Diabetes induces p66shc gene expression in human peripheral blood mononuclear cells: relationship to oxidative stress. J. Clin. Endocrinol. Metab. 90, 1130–1136 (2005).

    Article  CAS  PubMed  Google Scholar 

  191. Rota, M. et al. Diabetes promotes cardiac stem cell aging and heart failure, which are prevented by deletion of the p66shc gene. Circ. Res. 99, 42–52 (2006).

    Article  CAS  PubMed  Google Scholar 

  192. Ciciliot, S. et al. p66Shc deletion or deficiency protects from obesity but not metabolic dysfunction in mice and humans. Diabetologia 58, 2352–2360 (2015).

    Article  CAS  PubMed  Google Scholar 

  193. Dela Cruz, C. S. & Kang, M. J. Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases. Mitochondrion 41, 37–44 (2018).

    Article  CAS  Google Scholar 

  194. Chaplin, D. D. Overview of the immune response. J. Allergy Clin. Immunol. 125, S3–S23 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Sugimoto, M. A., Sousa, L. P., Pinho, V., Perretti, M. & Teixeira, M. M. Resolution of inflammation: what controls its onset? Front. Immunol. 7, 160 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  197. Jain, A. & Pasare, C. Innate control of adaptive immunity: beyond the three-signal paradigm. J. Immunol. 198, 3791–3800 (2017).

    Article  CAS  PubMed  Google Scholar 

  198. Brubaker, S. W., Bonham, K. S., Zanoni, I. & Kagan, J. C. Innate immune pattern recognition: a cell biological perspective. Annu. Rev. Immunol. 33, 257–290 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Gong, T., Liu, L., Jiang, W. & Zhou, R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol. 20, 95–112 (2020).

    Article  CAS  PubMed  Google Scholar 

  200. Roger, A. J., Muñoz-Gómez, S. A. & Kamikawa, R. The origin and diversification of mitochondria. Curr. Biol. 27, R1177–R1192 (2017).

    Article  CAS  PubMed  Google Scholar 

  201. West, A. P. & Shadel, G. S. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat. Rev. Immunol. 17, 363–375 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Garcia-Martinez, I. et al. Hepatocyte mitochondrial DNA drives nonalcoholic steatohepatitis by activation of TLR9. J. Clin. Invest. 126, 859–864 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Bufe, B. et al. Recognition of bacterial signal peptides by mammalian formyl peptide receptors: a new mechanism for sensing pathogens. J. Biol. Chem. 290, 7369–7387 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Oemer, G. et al. Molecular structural diversity of mitochondrial cardiolipins. Proc. Natl Acad. Sci. USA 115, 4158–4163 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Chandel, N. S. Evolution of mitochondria as signaling organelles. Cell Metab. 22, 204–206 (2015).

    Article  CAS  PubMed  Google Scholar 

  206. Elliott, M. R. et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461, 282–286 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Mills, E. & O’Neill, L. A. J. Succinate: a metabolic signal in inflammation. Trends Cell Biol. 24, 313–320 (2014).

    Article  CAS  PubMed  Google Scholar 

  208. Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Harris, H. E., Andersson, U. & Pisetsky, D. S. HMGB1: a multifunctional alarmin driving autoimmune and inflammatory disease. Nat. Rev. Rheumatol. 8, 195–202 (2012).

    Article  CAS  PubMed  Google Scholar 

  210. Wang, D., Malo, D. & Hekimi, S. Elevated mitochondrial reactive oxygen species generation affects the immune response via hypoxia-inducible factor-1α in long-lived Mclk1+/− mouse mutants. J. Immunol. 184, 582–590 (2010).

    Article  CAS  PubMed  Google Scholar 

  211. Mittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P. & Malik, A. B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 20, 1126–1167 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Chandel, N. S., Trzyna, W. C., McClintock, D. S. & Schumacker, P. T. Role of oxidants in NF-κB activation and TNF-α gene transcription induced by hypoxia and endotoxin. J. Immunol. 165, 1013–1021 (2000).

    Article  CAS  PubMed  Google Scholar 

  213. Knowler, W. C. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 346, 393–403 (2002).

    Article  CAS  PubMed  Google Scholar 

  214. Toledo, F. G. S. et al. Effects of physical activity and weight loss on skeletal muscle mitochondria and relationship with glucose control in type 2 diabetes. Diabetes 56, 2142–2147 (2007).

    Article  CAS  PubMed  Google Scholar 

  215. Phielix, E., Meex, R., Moonen-Kornips, E., Hesselink, M. K. C. & Schrauwen, P. Exercise training increases mitochondrial content and ex vivo mitochondrial function similarly in patients with type 2 diabetes and in control individuals. Diabetologia 53, 1714–1721 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Ross, J. M. et al. Voluntary exercise normalizes the proteomic landscape in muscle and brain and improves the phenotype of progeroid mice. Aging Cell 18, e13029 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Omodei, D. & Fontana, L. Calorie restriction and prevention of age-associated chronic disease. FEBS Lett. 585, 1537–1542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Civitarese, A. E. et al. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med. 4, e76 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Brand, M. D. Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp. Gerontol. 35, 811–820 (2000).

    Article  CAS  PubMed  Google Scholar 

  220. Barja, G. Endogenous oxidative stress: relationship to aging, longevity and caloric restriction. Ageing Res. Rev. 1, 397–411 (2002).

    Article  CAS  PubMed  Google Scholar 

  221. Kume, S. et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J. Clin. Invest. 120, 1043–1055 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Pardo, R. et al. Calorie restriction prevents diet-induced insulin resistance independently of PGC-1-driven mitochondrial biogenesis in white adipose tissue. FASEB J. 33, 2343–2358 (2019).

    Article  CAS  PubMed  Google Scholar 

  223. Davinelli, S., De Stefani, D., De Vivo, I. & Scapagnini, G. Polyphenols as caloric restriction mimetics regulating mitochondrial biogenesis and mitophagy. Trends Endocrinol. Metab. 31, 536–550 (2020).

    Article  CAS  PubMed  Google Scholar 

  224. Price, N. L. et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 15, 675–690 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Hubbard, B. P. et al. Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science 339, 1216–1219 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Baur, J. A. et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337–342 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Lagouge, M. et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127, 1109–1122 (2006).

    Article  CAS  PubMed  Google Scholar 

  228. Timmers, S. et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 14, 612–622 (2011).

    Article  CAS  PubMed  Google Scholar 

  229. Biala, A. et al. Resveratrol induces mitochondrial biogenesis and ameliorates Ang II-induced cardiac remodeling in transgenic rats harboring human renin and angiotensinogen genes. Blood Press. 19, 196–205 (2010).

    Article  CAS  PubMed  Google Scholar 

  230. Kuno, A. et al. Resveratrol ameliorates mitophagy disturbance and improves cardiac pathophysiology of dystrophin-deficient mdx mice. Sci. Rep. 8, 15555 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Milne, J. C. et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712–716 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Baksi, A. et al. A phase II, randomized, placebo-controlled, double-blind, multi-dose study of SRT2104, a SIRT1 activator, in subjects with type 2 diabetes. Br. J. Clin. Pharmacol. 78, 69–77 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Cao, K. et al. Punicalagin, an active component in pomegranate, ameliorates cardiac mitochondrial impairment in obese rats via AMPK activation. Sci. Rep. 5, 14014 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Taub, P. R. et al. Alterations in skeletal muscle indicators of mitochondrial structure and biogenesis in patients with type 2 diabetes and heart failure: effects of epicatechin rich cocoa. Clin. Transl. Sci. 5, 43–47 (2012).

    Article  PubMed  CAS  Google Scholar 

  235. Porcu, C. et al. Oleuropein induces AMPK-dependent autophagy in NAFLD mice, regardless of the gender. Int. J. Mol. Sci. 19, E3948 (2018).

    Article  PubMed  Google Scholar 

  236. Canto, C. & Auwerx, J. AMP-activated protein kinase and its downstream transcriptional pathways. Cell. Mol. Life Sci. 67, 3407–3423 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Viscomi, C. et al. In vivo correction of COX deficiency by activation of the AMPK/PGC-1α axis. Cell Metab. 14, 80–90 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Bharath, L. P. et al. Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell Metab. 32, 44–55 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Wang, Y. et al. Metformin improves mitochondrial respiratory activity through activation of AMPK. Cell Rep. 29, 1511–1523 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Detaille, D. et al. Imeglimin prevents human endothelial cell death by inhibiting mitochondrial permeability transition without inhibiting mitochondrial respiration. Cell Death Discov. 2, 15072 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Hallakou-Bozec, S. et al. Mechanism of action of imeglimin: a novel therapeutic agent for type 2 diabetes. Diabetes Obes. Metab. 23, 664–673 (2021).

    Article  CAS  PubMed  Google Scholar 

  242. Tavallaie, M. et al. Moderation of mitochondrial respiration mitigates metabolic syndrome of aging. Proc. Natl Acad. Sci. USA 117, 9840–9850 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Garay, R. P. Investigational drugs and nutrients for human longevity. Recent clinical trials registered in ClinicalTrials.gov and clinicaltrialsregister.eu. Expert Opin. Investig. Drugs 30, 749–758 (2021).

    Article  CAS  PubMed  Google Scholar 

  244. Polak, P. et al. Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration. Cell Metab. 8, 399–410 (2008).

    Article  CAS  PubMed  Google Scholar 

  245. Binsch, C. et al. Absence of the kinase S6k1 mimics the effect of chronic endurance exercise on glucose tolerance and muscle oxidative stress. Mol. Metab. 6, 1443–1453 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Deepaa, S. S. et al. Rapamycin modulates markers of mitochondrial biogenesis and fatty acid oxidation in the adipose tissue of db/db mice. J. Biochem. Pharmacol. Res. 1, 114–123 (2013).

    Google Scholar 

  247. Gran, P. & Cameron-Smith, D. The actions of exogenous leucine on mTOR signalling and amino acid transporters in human myotubes. BMC Physiol. 11, 10 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Li, H., Xu, M., Lee, J., He, C. & Xie, Z. Leucine supplementation increases SIRT1 expression and prevents mitochondrial dysfunction and metabolic disorders in high-fat diet-induced obese mice. Am. J. Physiol. Endocrinol. Metab. 303, E1234–E1244 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Leenders, M. et al. Prolonged leucine supplementation does not augment muscle mass or affect glycemic control in elderly type 2 diabetic men. J. Nutr. 141, 1070–1076 (2011).

    Article  CAS  PubMed  Google Scholar 

  250. Zemel, M. B. Modulation of energy sensing by leucine synergy with natural sirtuin activators: effects on health span. J. Med. Food 23, 1129–1135 (2020).

    Article  CAS  PubMed  Google Scholar 

  251. Rajman, L., Chwalek, K. & Sinclair, D. A. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 27, 529–547 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Yoshino, J., Mills, K. F., Yoon, M. J. & Imai, S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 14, 528–536 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Stromsdorfer, K. L. et al. NAMPT-mediated NAD+ biosynthesis in adipocytes regulates adipose tissue function and multi-organ insulin sensitivity in mice. Cell Rep. 16, 1851–1860 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Mills, K. et al. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab. 24, 795–806 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Canto, C. et al. The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 15, 838–847 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Hong, W., Mo, F., Zhang, Z., Huang, M. & Wei, X. Nicotinamide mononucleotide: a promising molecule for therapy of diverse diseases by targeting NAD+ metabolism. Front. Cell Dev. Biol. 8, 246 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Trammell, S. A. J. et al. Nicotinamide riboside opposes type 2 diabetes and neuropathy in mice. Sci. Rep. 6, 26933 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Gariani, K. et al. Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice. Hepatology 63, 1190–1204 (2016).

    Article  CAS  PubMed  Google Scholar 

  259. Dollerup, O. L. et al. A randomized placebo-controlled clinical trial of nicotinamide riboside in obese men: safety, insulin-sensitivity, and lipid-mobilizing effects. Am. J. Clin. Nutr. 108, 343–353 (2018).

    Article  PubMed  Google Scholar 

  260. Yang, S. J. et al. Nicotinamide improves glucose metabolism and affects the hepatic NAD–sirtuin pathway in a rodent model of obesity and type 2 diabetes. J. Nutr. Biochem. 25, 66–72 (2014).

    Article  CAS  PubMed  Google Scholar 

  261. Gariani, K. et al. Inhibiting poly ADP-ribosylation increases fatty acid oxidation and protects against fatty liver disease. J. Hepatol. 66, 132–141 (2017).

    Article  CAS  PubMed  Google Scholar 

  262. Weinbach, E. C. & Garbus, J. Mechanism of action of reagents that uncouple oxidative phosphorylation. Nature 221, 1016–1018 (1969).

    Article  CAS  PubMed  Google Scholar 

  263. Tainter, M. L., Stockton, A. B. & Cutting, W. C. Use of dinitrophenol in obesity and related conditions. J. Am. Med. Assoc. 101, 1472–1475 (1933).

    Article  Google Scholar 

  264. Caldeira Da Silva, C. C., Cerqueira, F. M., Barbosa, L. F., Medeiros, M. H. G. & Kowaltowski, A. J. Mild mitochondrial uncoupling in mice affects energy metabolism, redox balance and longevity. Aging Cell 7, 552–560 (2008).

    Article  CAS  PubMed  Google Scholar 

  265. Goldgof, M. et al. The chemical uncoupler 2,4-dinitrophenol (DNP) protects against diet-induced obesity and improves energy homeostasis in mice at thermoneutrality. J. Biol. Chem. 289, 19341–19350 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Perry, R. J., Zhang, D., Zhang, X. M., Boyer, J. L. & Shulman, G. I. Controlled-release mitochondrial protonophore reverses diabetes and protonophore reverses diabetes and steatohepatitis in rats. Science 347, 1253–1256 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Perry, R. J. et al. Reversal of hypertriglyceridemia, fatty liver disease, and insulin resistance by a liver-targeted mitochondrial uncoupler. Cell Metab. 18, 740–748 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Goedeke, L. et al. Controlled-release mitochondrial protonophore (CRMP) reverses dyslipidemia and hepatic steatosis in dysmetabolic nonhuman primates. Sci. Transl. Med. 11, eaay0284 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  269. Tao, H., Zhang, Y., Zeng, X., Shulman, G. I. & Jin, S. Niclosamide ethanolamine-induced mild mitochondrial uncoupling improves diabetic symptoms in mice. Nat. Med. 20, 1263–1269 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Figarola, J. L. et al. COH-SR4 reduces body weight, improves glycemic control and prevents hepatic steatosis in high fat diet-induced obese mice. PLoS ONE 8, e83801 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  271. Fu, Y. Y. et al. A novel chemical uncoupler ameliorates obesity and related phenotypes in mice with diet-induced obesity by modulating energy expenditure and food intake. Diabetologia 56, 2297–2307 (2013).

    Article  CAS  PubMed  Google Scholar 

  272. Kanemoto, N. et al. Antidiabetic and cardiovascular beneficial effects of a liver-localized mitochondrial uncoupler. Nat. Commun. 10, 2172 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  273. Alexopoulos, S. J. et al. Mitochondrial uncoupler BAM15 reverses diet-induced obesity and insulin resistance in mice. Nat. Commun. 11, 2397 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Childress, E. S. et al. [1,2,5]Oxadiazolo[3,4-b]pyrazine-5,6-diamine derivatives as mitochondrial uncouplers for the potential treatment of nonalcoholic steatohepatitis. J. Med. Chem. 63, 2511–2526 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Salamoun, J. M. et al. 6-Amino[1,2,5]oxadiazolo[3,4-b]pyrazin-5-ol derivatives as efficacious mitochondrial uncouplers in STAM mouse model of nonalcoholic steatohepatitis. J. Med. Chem. 63, 6203–6224 (2020).

    Article  CAS  PubMed  Google Scholar 

  276. Jiang, H. et al. Mitochondrial uncoupling coordinated with PDH activation safely ameliorates hyperglycemia via promoting glucose oxidation. Diabetes 68, 2197–2209 (2019).

    Article  CAS  PubMed  Google Scholar 

  277. Rivus Pharmaceuticals. Rivus Pharmaceuticals announces positive results from phase 1 trial of lead candidate HU6, demonstrating safety, efficacy in key targets for multiple cardio-metabolic diseases. https://www.rivuspharma.com. (2021).

  278. Silva, F. S., Simoes, R. F., Couto, R. & Oliveira, P. J. Targeting mitochondria in cardiovascular diseases. Curr. Pharm. Des. 22, 5698–5717 (2016).

    Article  CAS  PubMed  Google Scholar 

  279. Safarpour, P. et al. Vitamin D supplementation improves SIRT1, irisin, and glucose indices in overweight or obese type 2 diabetic patients: a double-blind randomized placebo-controlled clinical trial. BMC Fam. Pract. 21, 26 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Yi, X. & Maeda, N. α-Lipoic acid prevents the increase in atherosclerosis induced by diabetes in apolipoprotein E-deficient mice fed high-fat/low-cholesterol diet. Diabetes 55, 2238–2244 (2006).

    Article  CAS  PubMed  Google Scholar 

  281. Eskurza, I., Monahan, K. D., Robinson, J. A. & Seals, D. R. Effect of acute and chronic ascorbic acid on flow-mediated dilatation with sedentary and physically active human ageing. J. Physiol. 556, 315–324 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Mao, G. et al. A mitochondria-targeted vitamin E derivative decreases hepatic oxidative stress and inhibits fat deposition in mice. J. Nutr. 140, 1425–1431 (2010).

    Article  CAS  PubMed  Google Scholar 

  283. Jauslin, M. L., Meier, T., Smith, R. A. J. & Murphy, P. M. Mitochondria-targeted antioxidants protect Friedreich ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants. FASEB J. 17, 1972–1974 (2003).

    Article  CAS  PubMed  Google Scholar 

  284. James, A. M. et al. Interaction of the mitochondria-targeted antioxidant MitoQ with phospholipid bilayers and ubiquinone oxidoreductases. J. Biol. Chem. 282, 14708–14718 (2007).

    Article  CAS  PubMed  Google Scholar 

  285. Zhou, J. et al. Mitochondrial-targeted antioxidant MitoQ provides neuroprotection and reduces neuronal apoptosis in experimental traumatic brain injury possibly via the Nrf2-ARE pathway. Am. J. Transl. Res. 10, 1887–1899 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  286. Rossman, M. J. et al. Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults. Hypertension 71, 1056–1063 (2018).

    Article  CAS  PubMed  Google Scholar 

  287. Young, M. L. & Franklin, J. L. The mitochondria-targeted antioxidant MitoQ inhibits memory loss, neuropathology, and extends lifespan in aged 3xTg-AD mice. Mol. Cell. Neurosci. 101, 103409 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Bhatti, J. S. et al. Protective effects of a mitochondria-targeted small peptide SS31 against hyperglycemia-induced mitochondrial abnormalities in the liver tissues of diabetic mice, Tallyho/JngJ mice. Mitochondrion 58, 49–58 (2021).

    Article  CAS  PubMed  Google Scholar 

  289. Bhatti, J. S. et al. Mitochondria-targeted small peptide, SS31 ameliorates diabetes induced mitochondrial dynamics in male TallyHO/JngJ mice. Mol. Neurobiol. 58, 795–808 (2021).

    Article  CAS  PubMed  Google Scholar 

  290. Thomas, D. A. et al. Mitochondrial targeting with antioxidant peptide SS-31 prevents mitochondrial depolarization, reduces islet cell apoptosis, increases islet cell yield, and improves posttransplantation function. J. Am. Soc. Nephrol. 18, 213–222 (2007).

    Article  CAS  PubMed  Google Scholar 

  291. Escribano-Lopez, I. et al. The mitochondrial antioxidant SS-31 increases SIRT1 levels and ameliorates inflammation, oxidative stress and leukocyte-endothelium interactions in type 2 diabetes. Sci. Rep. 8, 15862 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  292. Zhang, M. et al. Chronic administration of mitochondrion-targeted peptide SS-31 prevents atherosclerotic development in ApoE knockout mice fed Western diet. PLoS ONE 12, e0185688 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  293. Roshanravan, B. et al. In vivo mitochondrial ATP production is improved in older adult skeletal muscle after a single dose of elamipretide in a randomized trial. PLoS ONE 16, e0253849 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Wahab, A. et al. Significance of resveratrol in clinical management of chronic diseases. Molecules 22, 1329 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  295. Si, H., Lai, C.-Q. & Liu, D. Dietary epicatechin, a novel anti-aging bioactive small molecule. Curr. Med. Chem. 28, 3–18 (2021).

    Article  CAS  PubMed  Google Scholar 

  296. Castejón, M. L., Montoya, T., Alarcón-de-la-lastra, C. & Sánchez-hidalgo, M. Potential protective role exerted by secoiridoids from Olea europaea L. in cancer, cardiovascular, neurodegenerative, aging-related, and immunoinflammatory diseases. Antioxidants 9, 149 (2020).

    Article  PubMed Central  CAS  Google Scholar 

  297. Lv, Z. & Guo, Y. Metformin and its benefits for various diseases. Front. Endocrinol. 11, 191 (2020).

    Article  Google Scholar 

  298. Custodero, C. et al. Nicotinamide riboside–a missing piece in the puzzle of exercise therapy for older adults? Exp. Gerontol. 137, 110972 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Fontana, L. & Partridge, L. Promoting health and longevity through diet: from model organisms to humans. Cell 161, 106–118 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Hipp, M. S., Kasturi, P. & Hartl, F. U. The proteostasis network and its decline in ageing. Nat. Rev. Mol. Cell Biol. 20, 421–435 (2019).

    Article  CAS  PubMed  Google Scholar 

  301. Sedlackova, L. & Korolchuk, V. I. Mitochondrial quality control as a key determinant of cell survival. Biochim. Biophys. Acta Mol. Cell. Res. 1866, 575–587 (2019).

    Article  CAS  PubMed  Google Scholar 

  302. Nagashima, S., Tokuyama, T., Yonashiro, R., Inatome, R. & Yanagi, S. Roles of mitochondrial ubiquitin ligase MITOL/MARCH5 in mitochondrial dynamics and diseases. J. Biochem. 155, 273–279 (2014).

    Article  CAS  PubMed  Google Scholar 

  303. Peng, J., Ren, K., Di, Yang, J. & Luo, X. J. Mitochondrial E3 ubiquitin ligase 1: a key enzyme in regulation of mitochondrial dynamics and functions. Mitochondrion 28, 49–53 (2016).

    Article  CAS  PubMed  Google Scholar 

  304. Voos, W. Chaperone-protease networks in mitochondrial protein homeostasis. Biochim. Biophys. Acta 1833, 388–399 (2013).

    Article  CAS  PubMed  Google Scholar 

  305. Hamon, M. P., Bulteau, A. L. & Friguet, B. Mitochondrial proteases and protein quality control in ageing and longevity. Ageing Res. Rev. 23, 56–66 (2015).

    Article  CAS  PubMed  Google Scholar 

  306. Yang, J. et al. Lon in maintaining mitochondrial and endoplasmic reticulum homeostasis. Arch. Toxicol. 92, 1913–1923 (2018).

    Article  CAS  PubMed  Google Scholar 

  307. Kang, S. G., Dimitrova, M. N., Ortega, J., Ginsburg, A. & Maurizi, M. R. Human mitochondrial ClpP is a stable heptamer that assembles into a tetradecamer in the presence of ClpX. J. Biol. Chem. 280, 35424–35432 (2005).

    Article  CAS  PubMed  Google Scholar 

  308. Gispert, S. et al. Loss of mitochondrial peptidase Clpp leads to infertility, hearing loss plus growth retardation via accumulation of CLPX, mtDNA and inflammatory factors. Hum. Mol. Genet. 22, 4871–4887 (2013).

    Article  CAS  PubMed  Google Scholar 

  309. Torres-Odio, S. et al. Loss of mitochondrial protease CLPP activates type I IFN responses through the mitochondrial DNA–cGAS–STING signaling axis. J. Immunol. 206, 1890–1900 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the European Regional Development Fund (ERDF), through the Centro 2020 Regional Operational Programme: project CENTRO-01-0145-FEDER-000012-HealthyAging2020, the Portugal 2020 – Operational Programme for Competitiveness and Internationalisation, and the Portuguese Foundation for Science and Technology, I.P.: project POCI-01-0145-FEDER-016770, by UID/NEU/04539/2013 (CNC.IBILI Consortium strategic project), as well as of a fellowship from the Portuguese Foundation for Science and Technology (PD/BD/114173/2016) to J.A.A., NIA/NIH grant R01DK100263 to G.C., NIA/NIH grant R00AG055683 to J.M.R., the Paul F. Glenn Foundation for Medical Research, and NIA/NIH grant R01DK100263 to D.A.S.

Author information

Authors and Affiliations

Authors

Contributions

J.A.A., G.C., A.P.R. and C.M.P. researched data for the article and wrote the manuscript. J.M.R. and D.A.S. reviewed and/or edited the manuscript. All authors made substantial contributions to discussion of the content.

Corresponding author

Correspondence to David A. Sinclair.

Ethics declarations

Competing interests

D.A.S. is a founder, equity owner, advisor to, director of, board member of, consultant to, investor in and/or inventor on patents licensed to Revere Biosensors, UpRNA, GlaxoSmithKline, Wellomics, DaVinci Logic, InsideTracker (Segterra), Caudalie, Animal Biosciences, Longwood Fund, Catalio Capital Management, Frontier Acquisition Corporation, AFAR (American Federation for Aging Research), Life Extension Advocacy Foundation (LEAF), Cohbar, Galilei, EMD Millipore, Zymo Research, Immetas, Bayer Crop Science, EdenRoc Sciences (and affiliates Arc-Bio, Dovetail Genomics, Claret Bioscience, MetroBiotech, Astrea, Liberty Biosecurity and Delavie), Life Biosciences, Alterity, ATAI Life Sciences, Levels Health, Tally (aka Longevity Sciences) and Bold Capital. D.A.S. is an inventor on a patent application filed by Mayo Clinic and Harvard Medical School that has been licensed to Elysium Health. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks P. Hemachandra Reddy, Christiaan Leeuwenburgh and Heinz Osiewacz for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Oxidative phosphorylation

(OXPHOS). A metabolic pathway in which nutrients are oxidized, releasing energy in the form of ATP resulting from electron transfer from NADH and FADH2 to O2.

Electron transport chain

(ETC). A series of electron transporters (complexes I–IV) embedded in the inner mitochondrial membrane that transport electrons from NADH and FADH2 to O2, in which O2 is reduced to water. In parallel, a proton efflux is driven from the mitochondrial matrix towards the intermembrane space via proton pumps in complexes I, III and IV. The movement of protons back into the matrix occurs through ATP synthase (also known as complex V or FoF1 ATPase).

Mitophagy

A process that selectively degrades damaged mitochondria following damage or stress.

β-Oxidation

A metabolic process involving multiple steps of fatty acid molecule breakdown to produce energy.

Respiratory quotient

The ratio used to measure basal metabolic rate by estimating the volume of carbon dioxide released in relation to the volume of oxygen produced during respiration.

TCA cycle

A series of chemical reactions taking place in the mitochondrial matrix that uses acetyl-CoA derived from carbohydrates, fat and proteins to provide electrons to the electron transport chain.

Mitochondrial biogenesis

A process in which the mitochondrial mass of cells is increased.

Antagonistic pleiotropy

A theory that describes opposing effects, both harmful and beneficial, on an organism, in which a given gene or process controls more than one trait, which are maintained in the population due to a decline in the force of natural selection. At least one of these traits is beneficial to the organism’s fitness early on in life, and at least one is detrimental to the organism’s fitness later in life.

CpG islands

Regions with a high frequency of CpG sites, which correspond to a cytosine nucleotide followed by a guanine nucleotide, in the 5′ to 3′ direction.

D-loop region

A non-coding region of 1,124 base pairs, containing essential transcription and replication elements, that acts as a promoter for both heavy and light strands in mtDNA.

Prediabetes

A condition characterized by moderately elevated fasting or postprandial blood levels of glucose.

Haplogroup

A genetic population comprising a group of people who share a common ancestor on the patriline or the matriline.

Proton leak

The dissipation of proton motive force (∆p), where protons migrate into the mitochondrial matrix without producing ATP.

Cytochrome c

A haem protein localized in the mitochondrial intermembrane space that functions as an electron transporter between complex III and complex IV of the electron transport chain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amorim, J.A., Coppotelli, G., Rolo, A.P. et al. Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat Rev Endocrinol 18, 243–258 (2022). https://doi.org/10.1038/s41574-021-00626-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-021-00626-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing