Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The manifold roles of protein S-nitrosylation in the life of insulin

Abstract

Insulin, which is released by pancreatic islet β-cells in response to elevated levels of glucose in the blood, is a critical regulator of metabolism. Insulin triggers the uptake of glucose and fatty acids into the liver, adipose tissue and muscle, and promotes the storage of these nutrients in the form of glycogen and lipids. Dysregulation of insulin synthesis, secretion, transport, degradation or signal transduction all cause failure to take up and store nutrients, resulting in type 1 diabetes mellitus, type 2 diabetes mellitus and metabolic dysfunction. In this Review, we make the case that insulin signalling is intimately coupled to protein S-nitrosylation, in which nitric oxide groups are conjugated to cysteine thiols to form S-nitrosothiols, within effectors of insulin action. We discuss the role of S-nitrosylation in the life cycle of insulin, from its synthesis and secretion in pancreatic β-cells, to its signalling and degradation in target tissues. Finally, we consider how aberrant S-nitrosylation contributes to metabolic diseases, including the roles of human genetic mutations and cellular events that alter S-nitrosylation of insulin-regulating proteins. Given the growing influence of S-nitrosylation in cellular metabolism, the field of metabolic signalling could benefit from renewed focus on S-nitrosylation in type 2 diabetes mellitus and insulin-related disorders.

Key points

  • Post-translational modification of insulin signalling proteins by S-nitrosylation is an under-appreciated, but widely used, control mechanism in health and disease.

  • S-nitrosylation of ion channels and exocytotic machinery regulates insulin secretion from pancreatic β-cells.

  • S-nitrosylation of the insulin receptor and its signalling partners modulates insulin sensitivity in normal health.

  • Obesity-driven insulin resistance is associated with increased S-nitrosylation of insulin signalling proteins.

  • Cellular stress-driven insulin resistance is associated with increased S-nitrosylation of stress response proteins.

  • Modulation of the S-nitrosylation state of many insulin-regulatory proteins might provide novel therapeutic opportunities in metabolic disorders and diabetes mellitus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Working model of protein S-nitrosylation and denitrosylation.
Fig. 2: Role of S-nitrosylation in insulin secretion from β-cells.
Fig. 3: The facilitatory role of S-nitrosylation in the AKT branch of insulin signal transduction.
Fig. 4: Mechanisms of inflammation-mediated insulin resistance.
Fig. 5: Mechanisms of insulin resistance mediated by aberrant S-nitrosylation of proteins in insulin signalling cascades.
Fig. 6: The role of aberrant protein S-nitrosylation in endoplasmic reticulum stress-mediated insulin resistance.

Similar content being viewed by others

References

  1. Sonksen, P. & Sonksen, J. Insulin: understanding its action in health and disease. Br. J. Anaesth. 85, 69–79 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Fu, Z., Gilbert, E. R. & Liu, D. Regulation of insulin synthesis and secretion and pancreatic beta-cell dysfunction in diabetes. Curr. Diabetes Rev. 9, 25–53 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Saklayen, M. G. The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep. 20, 12 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bahadoran, Z., Mirmiran, P. & Ghasemi, A. Role of nitric oxide in insulin secretion and glucose metabolism. Trends Endocrinol. Metab. 31, 118–130 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Knowles, R. G. & Moncada, S. Nitric oxide synthases in mammals. Biochem. J. 298, 249–258 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shankar, R. R., Wu, Y., Shen, H. Q., Zhu, J. S. & Baron, A. D. Mice with gene disruption of both endothelial and neuronal nitric oxide synthase exhibit insulin resistance. Diabetes 49, 684–687 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Kurohane Kaneko, Y. & Ishikawa, T. Dual role of nitric oxide in pancreatic β-cells. J. Pharmacol. Sci. 123, 295–300 (2013).

    Article  PubMed  Google Scholar 

  8. Perreault, M. & Marette, A. Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle. Nat. Med. 7, 1138–1143 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Denninger, J. W. & Marletta, M. A. Guanylate cyclase and the ·NO/cGMP signaling pathway. Biochim. Biophys. Acta 1411, 334–350 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Hess, D. T., Matsumoto, A., Kim, S. O., Marshall, H. E. & Stamler, J. S. Protein S-nitrosylation: purview and parameters. Nat. Rev. Mol. Cell Biol. 6, 150–166 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Sansbury, B. E. & Hill, B. G. Regulation of obesity and insulin resistance by nitric oxide. Free Radic. Biol. Med. 73, 383–399 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Li, S. et al. pCysMod: prediction of multiple cysteine modifications based on deep learning framework. Front. Cell Dev. Biol. 9, 617366 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Abunimer, A. et al. Single-nucleotide variations in cardiac arrhythmias: prospects for genomics and proteomics based biomarker discovery and diagnostics. Genes (Basel) 5, 254–269 (2014).

    Article  Google Scholar 

  14. Seth, D. et al. A multiplex enzymatic machinery for cellular protein S-nitrosylation. Mol. Cell 69, e6 (2018).

    Article  Google Scholar 

  15. Stomberski, C. T., Hess, D. T. & Stamler, J. S. Protein S-nitrosylation: determinants of specificity and enzymatic regulation of S-nitrosothiol-based signaling. Antioxid. Redox Signal. 30, 1331–1351 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou, H. L. et al. Metabolic reprogramming by the S-nitroso-CoA reductase system protects against kidney injury. Nature 565, 96–100 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Stomberski, C. T., Zhou, H. L., Wang, L., van den Akker, F. & Stamler, J. S. Molecular recognition of S-nitrosothiol substrate by its cognate protein denitrosylase. J. Biol. Chem. 294, 1568–1578 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Weiss, M., Steiner, D. F. & Philipson, L. H. Insulin biosynthesis, secretion, structure, and structure-activity relationships (Endotext [Internet]. MDText.com, Inc., 2014).

  19. Komatsu, M., Takei, M., Ishii, H. & Sato, Y. Glucose-stimulated insulin secretion: a newer perspective. J. Diabetes Investig. 4, 511–516 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gaisano, H. Y. Recent new insights into the role of SNARE and associated proteins in insulin granule exocytosis. Diabetes Obes. Metab. 19, 115–123 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Byrne, M. M. et al. Insulin secretory abnormalities in subjects with hyperglycemia due to glucokinase mutations. J. Clin. Invest. 93, 1120–1130 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cherrington, A. D., Sindelar, D., Edgerton, D., Steiner, K. & McGuinness, O. P. Physiological consequences of phasic insulin release in the normal animal. Diabetes 51, S103–S108 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Smukler, S. R., Tang, L., Wheeler, M. B. & Salapatek, A. M. Exogenous nitric oxide and endogenous glucose-stimulated β-cell nitric oxide augment insulin release. Diabetes 51, 3450–3460 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Rizzo, M. A. & Piston, D. W. Regulation of β cell glucokinase by S-nitrosylation and association with nitric oxide synthase. J. Cell Biol. 161, 243–248 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gonzalez, D. R., Beigi, F., Treuer, A. V. & Hare, J. M. Deficient ryanodine receptor S-nitrosylation increases sarcoplasmic reticulum calcium leak and arrhythmogenesis in cardiomyocytes. Proc. Natl Acad. Sci. USA 104, 20612–20617 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kawano, T. et al. Nitric oxide activates ATP-sensitive potassium channels in mammalian sensory neurons: action by direct S-nitrosylation. Mol. Pain. 5, 12 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Palmer, Z. J. et al. S-nitrosylation of syntaxin 1 at Cys(145) is a regulatory switch controlling Munc18-1 binding. Biochem. J. 413, 479–491 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Wiseman, D. A., Kalwat, M. A. & Thurmond, D. C. Stimulus-induced S-nitrosylation of syntaxin 4 impacts insulin granule exocytosis. J. Biol. Chem. 286, 16344–16354 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Matsushita, K. et al. Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor. Cell 115, 139–150 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ferre, T., Riu, E., Bosch, F. & Valera, A. Evidence from transgenic mice that glucokinase is rate limiting for glucose utilization in the liver. FASEB J. 10, 1213–1218 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Tarasov, A., Dusonchet, J. & Ashcroft, F. Metabolic regulation of the pancreatic beta-cell ATP-sensitive K+ channel: a pas de deux. Diabetes 53, S113–S122 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Roder, P. V., Wu, B., Liu, Y. & Han, W. Pancreatic regulation of glucose homeostasis. Exp. Mol. Med. 48, e219 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Postic, C. et al. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic β cell-specific gene knock-outs using Cre recombinase. J. Biol. Chem. 274, 305–315 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Matschinsky, F. M. Regulation of pancreatic β-cell glucokinase: from basics to therapeutics. Diabetes 51, S394–S404 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Rizzo, M. A., Magnuson, M. A., Drain, P. F. & Piston, D. W. A functional link between glucokinase binding to insulin granules and conformational alterations in response to glucose and insulin. J. Biol. Chem. 277, 34168–34175 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Stubbs, M., Aiston, S. & Agius, L. Subcellular localization, mobility, and kinetic activity of glucokinase in glucose-responsive insulin-secreting cells. Diabetes 49, 2048–2055 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Ding, S. Y. et al. Naturally occurring glucokinase mutations are associated with defects in posttranslational S-nitrosylation. Mol. Endocrinol. 24, 171–177 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Markwardt, M. L., Nkobena, A., Ding, S. Y. & Rizzo, M. A. Association with nitric oxide synthase on insulin secretory granules regulates glucokinase protein levels. Mol. Endocrinol. 26, 1617–1629 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Miller, S. P. et al. Characterization of glucokinase mutations associated with maturity-onset diabetes of the young type 2 (MODY-2): different glucokinase defects lead to a common phenotype. Diabetes 48, 1645–1651 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Holst, J. J. & Gromada, J. Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am. J. Physiol. Endocrinol. Metab. 287, E199–E206 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Müller, T. D. et al. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 30, 72–130 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ding, S. Y., Nkobena, A., Kraft, C. A., Markwardt, M. L. & Rizzo, M. A. Glucagon-like peptide 1 stimulates post-translational activation of glucokinase in pancreatic β cells. J. Biol. Chem. 286, 16768–16774 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bjorkhaug, L., Molnes, J., Sovik, O., Njolstad, P. R. & Flatmark, T. Allosteric activation of human glucokinase by free polyubiquitin chains and its ubiquitin-dependent cotranslational proteasomal degradation. J. Biol. Chem. 282, 22757–22764 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Tiedge, M., Richter, T. & Lenzen, S. Importance of cysteine residues for the stability and catalytic activity of human pancreatic beta cell glucokinase. Arch. Biochem. Biophys. 375, 251–260 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Graves, T. K. & Hinkle, P. M. Ca(2+)-induced Ca(2+) release in the pancreatic β-cell: direct evidence of endoplasmic reticulum Ca(2+) release. Endocrinology 144, 3565–3574 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Johnson, J. D., Kuang, S., Misler, S. & Polonsky, K. S. Ryanodine receptors in human pancreatic β cells: localization and effects on insulin secretion. FASEB J. 18, 878–880 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Dixit, S. S. et al. Effects of CaMKII-mediated phosphorylation of ryanodine receptor type 2 on islet calcium handling, insulin secretion, and glucose tolerance. PLoS ONE 8, e58655 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Santulli, G. et al. Calcium release channel RyR2 regulates insulin release and glucose homeostasis. J. Clin. Invest. 125, 4316 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Llanos, P. et al. Glucose-dependent insulin secretion in pancreatic β-cell islets from male rats requires Ca2+ release via ROS-stimulated ryanodine receptors. PLoS ONE 10, e0129238 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sun, J. et al. Regulation of the cardiac muscle ryanodine receptor by O(2) tension and S-nitrosoglutathione. Biochemistry 47, 13985–13990 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Pipatpolkai, T., Usher, S., Stansfeld, P. J. & Ashcroft, F. M. New insights into KATP channel gene mutations and neonatal diabetes mellitus. Nat. Rev. Endocrinol. 16, 378–393 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Li, N. et al. Structure of a pancreatic ATP-sensitive potassium channel. Cell 168, 101–110.e10 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Aittoniemi, J. et al. Review. SUR1: a unique ATP-binding cassette protein that functions as an ion channel regulator. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 257–267 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Aquilante, C. L. Sulfonylurea pharmacogenomics in type 2 diabetes: the influence of drug target and diabetes risk polymorphisms. Expert Rev. Cardiovasc. Ther. 8, 359–372 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nichols, C. G. KATP channels as molecular sensors of cellular metabolism. Nature 440, 470–476 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Jewell, J. L., Oh, E. & Thurmond, D. C. Exocytosis mechanisms underlying insulin release and glucose uptake: conserved roles for Munc18c and syntaxin 4. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R517–R531 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hou, J. C., Min, L. & Pessin, J. E. Insulin granule biogenesis, trafficking and exocytosis. Vitam. Horm. 80, 473–506 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kasai, H., Takahashi, N. & Tokumaru, H. Distinct initial SNARE configurations underlying the diversity of exocytosis. Physiol. Rev. 92, 1915–1964 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Yang, B., Steegmaier, M., Gonzalez, L. C. Jr & Scheller, R. H. nSec1 binds a closed conformation of syntaxin1A. J. Cell Biol. 148, 247–252 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hardy, O. T., Czech, M. P. & Corvera, S. What causes the insulin resistance underlying obesity? Curr. Opin. Endocrinol. Diabetes Obes. 19, 81–87 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Henningsson, R., Salehi, A. & Lundquist, I. Role of nitric oxide synthase isoforms in glucose-stimulated insulin release. Am. J. Physiol. Cell Physiol. 283, C296–C304 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Muhammed, S. J., Lundquist, I. & Salehi, A. Pancreatic β-cell dysfunction, expression of iNOS and the effect of phosphodiesterase inhibitors in human pancreatic islets of type 2 diabetes. Diabetes Obes. Metab. 14, 1010–1019 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Zhao, C., Smith, E. C. & Whiteheart, S. W. Requirements for the catalytic cycle of the N-ethylmaleimide-sensitive factor (NSF). Biochim. Biophys. Acta 1823, 159–171 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Morrell, C. N. et al. Regulation of platelet granule exocytosis by S-nitrosylation. Proc. Natl Acad. Sci. USA 102, 3782–3787 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ito, T., Yamakuchi, M. & Lowenstein, C. J. Thioredoxin increases exocytosis by denitrosylating N-ethylmaleimide-sensitive factor. J. Biol. Chem. 286, 11179–11184 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yazdani, S., Jaldin-Fincati, J. R., Pereira, R. V. S. & Klip, A. Endothelial cell barriers: transport of molecules between blood and tissues. Traffic 20, 390–403 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Barrett, E. J., Wang, H., Upchurch, C. T. & Liu, Z. Insulin regulates its own delivery to skeletal muscle by feed-forward actions on the vasculature. Am. J. Physiol. Endocrinol. Metab. 301, E252–E263 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang, H., Wang, A. X., Aylor, K. & Barrett, E. J. Nitric oxide directly promotes vascular endothelial insulin transport. Diabetes 62, 4030–4042 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang, H., Wang, A. X., Liu, Z. & Barrett, E. J. Insulin signaling stimulates insulin transport by bovine aortic endothelial cells. Diabetes 57, 540–547 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Wang, H., Wang, A. X. & Barrett, E. J. Caveolin-1 is required for vascular endothelial insulin uptake. Am. J. Physiol. Endocrinol. Metab. 300, E134–E144 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Haddad, D., Al Madhoun, A., Nizam, R. & Al-Mulla, F. Role of caveolin-1 in diabetes and its complications. Oxid. Med. Cell Longev. 2020, 9761539 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Cohen, A. W. et al. Caveolin-1-deficient mice show insulin resistance and defective insulin receptor protein expression in adipose tissue. Am. J. Physiol. Cell Physiol. 285, C222–C235 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Chen, Z. et al. Reciprocal regulation of eNOS and caveolin-1 functions in endothelial cells. Mol. Biol. Cell 29, 1190–1202 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Song, H. et al. Release of matrix metalloproteinases-2 and 9 by S-nitrosylated caveolin-1 contributes to degradation of extracellular matrix in tPA-treated hypoxic endothelial cells. PLoS ONE 11, e0149269 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bakhshi, F. R. et al. Nitrosation-dependent caveolin 1 phosphorylation, ubiquitination, and degradation and its association with idiopathic pulmonary arterial hypertension. Pulm. Circ. 3, 816–830 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Tang, W. J. Targeting insulin-degrading enzyme to treat type 2 diabetes mellitus. Trends Endocrinol. Metab. 27, 24–34 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Pivovarova, O., Hohn, A., Grune, T., Pfeiffer, A. F. & Rudovich, N. Insulin-degrading enzyme: new therapeutic target for diabetes and Alzheimer’s disease? Ann. Med. 48, 614–624 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Farris, W. et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo. Proc. Natl Acad. Sci. USA 100, 4162–4167 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wroblewski, V. J., Masnyk, M., Khambatta, S. S. & Becker, G. W. Mechanisms involved in degradation of human insulin by cytosolic fractions of human, monkey, and rat liver. Diabetes 41, 539–547 (1992).

    Article  CAS  PubMed  Google Scholar 

  80. Fakhrai-Rad, H. et al. Insulin-degrading enzyme identified as a candidate diabetes susceptibility gene in GK rats. Hum. Mol. Genet. 9, 2149–2158 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Ralat, L. A., Ren, M., Schilling, A. B. & Tang, W. J. Protective role of Cys-178 against the inactivation and oligomerization of human insulin-degrading enzyme by oxidation and nitrosylation. J. Biol. Chem. 284, 34005–34018 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cordes, C. M., Bennett, R. G., Siford, G. L. & Hamel, F. G. Nitric oxide inhibits insulin-degrading enzyme activity and function through S-nitrosylation. Biochem. Pharmacol. 77, 1064–1073 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Akhtar, M. W. et al. Elevated glucose and oligomeric β-amyloid disrupt synapses via a common pathway of aberrant protein S-nitrosylation. Nat. Commun. 7, 10242 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ward, C. W. & Lawrence, M. C. Ligand-induced activation of the insulin receptor: a multi-step process involving structural changes in both the ligand and the receptor. Bioessays 31, 422–434 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Kadowaki, T., Ueki, K., Yamauchi, T. & Kubota, N. SnapShot: insulin signaling pathways. Cell 148, 624.e1 (2012).

    Google Scholar 

  86. Kadowaki, T., Kubota, N., Ueki, K. & Yamauchi, T. SnapShot: physiology of insulin signaling. Cell 148, 834–834.e1 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Duplain, H. et al. Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase. Circulation 104, 342–345 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Vecoli, C. et al. Partial deletion of eNOS gene causes hyperinsulinemic state, unbalance of cardiac insulin signaling pathways and coronary dysfunction independently of high fat diet. PLoS One 9, e104156 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Nakagawa, T. et al. Diabetic endothelial nitric oxide synthase knockout mice develop advanced diabetic nephropathy. J. Am. Soc. Nephrol. 18, 539–550 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Kashyap, S. R. et al. Insulin resistance is associated with impaired nitric oxide synthase activity in skeletal muscle of type 2 diabetic subjects. J. Clin. Endocrinol. Metab. 90, 1100–1105 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Hsu, M. F. & Meng, T. C. Enhancement of insulin responsiveness by nitric oxide-mediated inactivation of protein-tyrosine phosphatases. J. Biol. Chem. 285, 7919–7928 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Barrett, D. M. et al. Inhibition of protein-tyrosine phosphatases by mild oxidative stresses is dependent on S-nitrosylation. J. Biol. Chem. 280, 14453–14461 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Numajiri, N. et al. On-off system for PI3-kinase-Akt signaling through S-nitrosylation of phosphatase with sequence homology to tensin (PTEN). Proc. Natl Acad. Sci. USA 108, 10349–10354 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Elchebly, M. et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283, 1544–1548 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Chen, Y. Y. et al. Cysteine S-nitrosylation protects protein-tyrosine phosphatase 1B against oxidation-induced permanent inactivation. J. Biol. Chem. 283, 35265–35272 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chen, C. Y., Chen, J., He, L. & Stiles, B. L. PTEN: tumor suppressor and metabolic regulator. Front. Endocrinol. 9, 338 (2018).

    Article  Google Scholar 

  97. Kurlawalla-Martinez, C. et al. Insulin hypersensitivity and resistance to streptozotocin-induced diabetes in mice lacking PTEN in adipose tissue. Mol. Cell Biol. 25, 2498–2510 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pei, D. S., Sun, Y. F. & Song, Y. J. S-nitrosylation of PTEN invovled in ischemic brain injury in rat hippocampal CA1 region. Neurochem. Res. 34, 1507–1512 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Zhu, L. et al. NOS1 S-nitrosylates PTEN and inhibits autophagy in nasopharyngeal carcinoma cells. Cell Death Discov. 3, 17011 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Kwak, Y. D. et al. NO signaling and S-nitrosylation regulate PTEN inhibition in neurodegeneration. Mol. Neurodegener. 5, 49 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Choi, M. S. et al. Transnitrosylation from DJ-1 to PTEN attenuates neuronal cell death in Parkinson’s disease models. J. Neurosci. 34, 15123–15131 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Bonifati, V. et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299, 256–259 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Clement, S. et al. The lipid phosphatase SHIP2 controls insulin sensitivity. Nature 409, 92–97 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Montagnani, M., Chen, H., Barr, V. A. & Quon, M. J. Insulin-stimulated activation of eNOS is independent of Ca2+ but requires phosphorylation by Akt at Ser(1179). J. Biol. Chem. 276, 30392–30398 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Muoio, D. M. & Newgard, C. B. Molecular and metabolic mechanisms of insulin resistance and β-cell failure in type 2 diabetes. Nat. Rev. Mol. Cell Biol. 9, 193–205 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Cerf, M. E. Beta cell dysfunction and insulin resistance. Front. Endocrinol. 4, 37 (2013).

    Article  Google Scholar 

  107. Lackey, D. E. & Olefsky, J. M. Regulation of metabolism by the innate immune system. Nat. Rev. Endocrinol. 12, 15–28 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Kahn, S. E., Hull, R. L. & Utzschneider, K. M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444, 840–846 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Kim, J. H., Bachmann, R. A. & Chen, J. Interleukin-6 and insulin resistance. Vitam. Horm. 80, 613–633 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Salvado, L., Palomer, X., Barroso, E. & Vazquez-Carrera, M. Targeting endoplasmic reticulum stress in insulin resistance. Trends Endocrinol. Metab. 26, 438–448 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Boucher, J., Kleinridders, A. & Kahn, C. R. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb. Perspect. Biol. 6, a009191 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Copps, K. D. & White, M. F. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 55, 2565–2582 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Schiattarella, G. G. et al. Nitrosative stress drives heart failure with preserved ejection fraction. Nature 568, 351–356 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yang, L. et al. S-Nitrosylation links obesity-associated inflammation to endoplasmic reticulum dysfunction. Science 349, 500–506 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Katashima, C. K., Silva, V. R. R., Lenhare, L., Marin, R. M. & Carvalheira, J. B. C. iNOS promotes hypothalamic insulin resistance associated with deregulation of energy balance and obesity in rodents. Sci. Rep. 7, 9265 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Shinozaki, S. et al. Liver-specific inducible nitric-oxide synthase expression is sufficient to cause hepatic insulin resistance and mild hyperglycemia in mice. J. Biol. Chem. 286, 34959–34975 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Carvalho-Filho, M. A. et al. S-nitrosation of the insulin receptor, insulin receptor substrate 1, and protein kinase B/Akt: a novel mechanism of insulin resistance. Diabetes 54, 959–967 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Kaneki, M., Shimizu, N., Yamada, D. & Chang, K. Nitrosative stress and pathogenesis of insulin resistance. Antioxid. Redox Signal. 9, 319–329 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Yasukawa, T. et al. S-nitrosylation-dependent inactivation of Akt/protein kinase B in insulin resistance. J. Biol. Chem. 280, 7511–7518 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Carvalho-Filho, M. A., Ueno, M., Carvalheira, J. B., Velloso, L. A. & Saad, M. J. Targeted disruption of iNOS prevents LPS-induced S-nitrosation of IRβ/IRS-1 and Akt and insulin resistance in muscle of mice. Am. J. Physiol. Endocrinol. Metab. 291, E476–E482 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Ropelle, E. R. et al. Targeted disruption of inducible nitric oxide synthase protects against aging, S-nitrosation, and insulin resistance in muscle of male mice. Diabetes 62, 466–470 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Crunfli, F. et al. NO-dependent Akt Inactivation by S-nitrosylation as a possible mechanism of STZ-induced neuronal insulin resistance. J. Alzheimers Dis. 65, 1427–1443 (2018).

    Article  CAS  PubMed  Google Scholar 

  123. Wu, M. et al. Aging-associated dysfunction of Akt/protein kinase B: S-nitrosylation and acetaminophen intervention. PLoS ONE 4, e6430 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Lee, Y. S. et al. Increased adipocyte O2 consumption triggers HIF-1α, causing inflammation and insulin resistance in obesity. Cell 157, 1339–1352 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Carvalho-Filho, M. A. et al. Aspirin attenuates insulin resistance in muscle of diet-induced obese rats by inhibiting inducible nitric oxide synthase production and S-nitrosylation of IRβ/IRS-1 and Akt. Diabetologia 52, 2425–2434 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Tsuzuki, T. et al. Voluntary exercise can ameliorate insulin resistance by reducing iNOS-mediated S-nitrosylation of Akt in the liver in obese rats. PLoS ONE 10, e0132029 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Pauli, J. R. et al. Acute physical exercise reverses S-nitrosation of the insulin receptor, insulin receptor substrate 1 and protein kinase B/Akt in diet-induced obese Wistar rats. J. Physiol. 586, 659–671 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Muniyappa, R. & Sowers, J. R. Role of insulin resistance in endothelial dysfunction. Rev. Endocr. Metab. Disord. 14, 5–12 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Potenza, M. A. et al. Insulin resistance in spontaneously hypertensive rats is associated with endothelial dysfunction characterized by imbalance between NO and ET-1 production. Am. J. Physiol. Heart Circ. Physiol. 289, H813–H822 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Montagnani, M. et al. Inhibition of phosphatidylinositol 3-kinase enhances mitogenic actions of insulin in endothelial cells. J. Biol. Chem. 277, 1794–1799 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Mukai, Y., Wang, C. Y., Rikitake, Y. & Liao, J. K. Phosphatidylinositol 3-kinase/protein kinase Akt negatively regulates plasminogen activator inhibitor type 1 expression in vascular endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 292, H1937–H1942 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Patel, P. & Woodgett, J. R. Glycogen synthase kinase 3: a kinase for all pathways? Curr. Top. Dev. Biol. 123, 277–302 (2017).

    Article  CAS  PubMed  Google Scholar 

  133. Dibble, C. C. & Cantley, L. C. Regulation of mTORC1 by PI3K signaling. Trends Cell Biol. 25, 545–555 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wang, S. B. et al. Protein S-nitrosylation controls glycogen synthase kinase 3β function independent of its phosphorylation state. Circ. Res. 122, 1517–1531 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lopez-Rivera, E. et al. Inducible nitric oxide synthase drives mTOR pathway activation and proliferation of human melanoma by reversible nitrosylation of TSC2. Cancer Res. 74, 1067–1078 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lee, S. & Dong, H. H. FoxO integration of insulin signaling with glucose and lipid metabolism. J. Endocrinol. 233, R67–R79 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. DiPilato, L. M. et al. The role of PDE3B phosphorylation in the inhibition of lipolysis by insulin. Mol. Cell Biol. 35, 2752–2760 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Scherer, P. E. The multifaceted roles of adipose tissue–therapeutic targets for diabetes and beyond: the 2015 Banting Lecture. Diabetes 65, 1452–1461 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Tontonoz, P., Hu, E. & Spiegelman, B. M. Stimulation of adipogenesis in fibroblasts by PPARɣ2, a lipid-activated transcription factor. Cell 79, 1147–1156 (1994).

    Article  CAS  PubMed  Google Scholar 

  140. Tontonoz, P. & Spiegelman, B. M. Fat and beyond: the diverse biology of PPARɣ. Annu. Rev. Biochem. 77, 289–312 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Yin, R. et al. Pro-inflammatory macrophages suppress PPARɣ activity in adipocytes via S-nitrosylation. Free Radic. Biol. Med. 89, 895–905 (2015).

    Article  CAS  PubMed  Google Scholar 

  142. Guilherme, A., Virbasius, J. V., Puri, V. & Czech, M. P. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol. 9, 367–377 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ovadia, H. et al. Increased adipocyte S-nitrosylation targets anti-lipolytic action of insulin: relevance to adipose tissue dysfunction in obesity. J. Biol. Chem. 286, 30433–30443 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Choi, Y. H. et al. Alterations in regulation of energy homeostasis in cyclic nucleotide phosphodiesterase 3B-null mice. J. Clin. Invest. 116, 3240–3251 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yeung, F. et al. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 23, 2369–2380 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Gauglitz, G. G. et al. Post-burn hepatic insulin resistance is associated with endoplasmic reticulum (ER) stress. Shock 33, 299–305 (2010).

    Article  CAS  PubMed  Google Scholar 

  147. Nakazawa, H. et al. iNOS as a driver of inflammation and apoptosis in mouse skeletal muscle after burn injury: possible involvement of Sirt1 S-nitrosylation-mediated acetylation of p65 NF-κB and p53. PLoS ONE 12, e0170391 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Shinozaki, S. et al. Inflammatory stimuli induce inhibitory S-nitrosylation of the deacetylase SIRT1 to increase acetylation and activation of p53 and p65. Sci. Signal. 7, ra106 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Gillum, M. P. et al. SirT1 regulates adipose tissue inflammation. Diabetes 60, 3235–3245 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wang, R. H. et al. Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance. J. Clin. Invest. 121, 4477–4490 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Poitout, V. et al. Glucolipotoxicity of the pancreatic beta cell. Biochim. Biophys. Acta 1801, 289–298 (2010).

    Article  CAS  PubMed  Google Scholar 

  152. Ye, R., Onodera, T. & Scherer, P. E. Lipotoxicity and β cell maintenance in obesity and type 2 diabetes. J. Endocr. Soc. 3, 617–631 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Heimann, E. et al. Expression and regulation of cyclic nucleotide phosphodiesterases in human and rat pancreatic islets. PLoS ONE 5, e14191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Dubois, M. et al. Expression of peroxisome proliferator-activated receptor ɣ (PPARɣ) in normal human pancreatic islet cells. Diabetologia 43, 1165–1169 (2000).

    Article  CAS  PubMed  Google Scholar 

  155. Bordone, L. et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic β cells. PLoS Biol. 4, e31 (2006).

    Article  PubMed  Google Scholar 

  156. Lin, J. H., Walter, P. & Yen, T. S. Endoplasmic reticulum stress in disease pathogenesis. Annu. Rev. Pathol. 3, 399–425 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. Higuchi-Sanabria, R., Frankino, P. A., Paul, J. W. 3rd, Tronnes, S. U. & Dillin, A. A futile battle? Protein quality control and the stress of aging. Dev. Cell 44, 139–163 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Volpi, V. G., Touvier, T. & D’Antonio, M. Endoplasmic reticulum protein quality control failure in myelin disorders. Front. Mol. Neurosci. 9, 162 (2016).

    CAS  PubMed  Google Scholar 

  160. Hetz, C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 13, 89–102 (2012).

    Article  CAS  PubMed  Google Scholar 

  161. Anholt, R. R. & Carbone, M. A. A molecular mechanism for glaucoma: endoplasmic reticulum stress and the unfolded protein response. Trends Mol. Med. 19, 586–593 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ghosh, R., Colon-Negron, K. & Papa, F. R. Endoplasmic reticulum stress, degeneration of pancreatic islet β-cells, and therapeutic modulation of the unfolded protein response in diabetes. Mol. Metab. 27S, S60–S68 (2019).

    Article  PubMed  Google Scholar 

  163. Zhang, K. & Kaufman, R. J. From endoplasmic-reticulum stress to the inflammatory response. Nature 454, 455–462 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Matus, S., Glimcher, L. H. & Hetz, C. Protein folding stress in neurodegenerative diseases: a glimpse into the ER. Curr. Opin. Cell Biol. 23, 239–252 (2011).

    Article  CAS  PubMed  Google Scholar 

  165. Ren, J., Bi, Y., Sowers, J. R., Hetz, C. & Zhang, Y. Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat. Rev. Cardiol. 18, 499–521 (2021).

    Article  PubMed  Google Scholar 

  166. Nakato, R. et al. Regulation of the unfolded protein response via S-nitrosylation of sensors of endoplasmic reticulum stress. Sci. Rep. 5, 14812 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Fonseca, S. G., Burcin, M., Gromada, J. & Urano, F. Endoplasmic reticulum stress in β-cells and development of diabetes. Curr. Opin. Pharmacol. 9, 763–770 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Huang, C. J. et al. High expression rates of human islet amyloid polypeptide induce endoplasmic reticulum stress mediated β-cell apoptosis, a characteristic of humans with type 2 but not type 1 diabetes. Diabetes 56, 2016–2027 (2007).

    Article  CAS  PubMed  Google Scholar 

  169. Zhang, L., Lai, E., Teodoro, T. & Volchuk, A. GRP78, but not protein-disulfide isomerase, partially reverses hyperglycemia-induced inhibition of insulin synthesis and secretion in pancreatic β-cells. J. Biol. Chem. 284, 5289–5298 (2009).

    Article  CAS  PubMed  Google Scholar 

  170. Jang, I. et al. PDIA1/P4HB is required for efficient proinsulin maturation and β cell health in response to diet induced obesity. eLife 8, e44528 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Wilkinson, B. & Gilbert, H. F. Protein disulfide isomerase. Biochim. Biophys. Acta 1699, 35–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  172. Wadham, C., Parker, A., Wang, L. & Xia, P. High glucose attenuates protein S-nitrosylation in endothelial cells: role of oxidative stress. Diabetes 56, 2715–2721 (2007).

    Article  CAS  PubMed  Google Scholar 

  173. Uehara, T. et al. S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 441, 513–517 (2006).

    Article  CAS  PubMed  Google Scholar 

  174. Hu, Y. et al. Endoplasmic reticulum-associated degradation (ERAD) has a critical role in supporting glucose-stimulated insulin secretion in pancreatic β-cells. Diabetes 68, 733–746 (2019).

    Article  CAS  PubMed  Google Scholar 

  175. Lopata, A., Kniss, A., Lohr, F., Rogov, V. V. & Dotsch, V. Ubiquitination in the ERAD process. Int. J. Mol. Sci. 21, 5369 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  176. Azzam, S. K. et al. Genetic associations with diabetic retinopathy and coronary artery disease in Emirati patients with type-2 diabetes mellitus. Front. Endocrinol. 10, 283 (2019).

    Article  Google Scholar 

  177. Fujikawa, K. et al. S-Nitrosylation at the active site decreases the ubiquitin-conjugating activity of ubiquitin-conjugating enzyme E2 D1 (UBE2D1), an ERAD-associated protein. Biochem. Biophys. Res. Commun. 524, 910–915 (2020).

    Article  CAS  PubMed  Google Scholar 

  178. Choi, A. M., Ryter, S. W. & Levine, B. Autophagy in human health and disease. N. Engl. J. Med. 368, 1845–1846 (2013).

    Article  CAS  PubMed  Google Scholar 

  179. Watada, H. & Fujitani, Y. Minireview: Autophagy in pancreatic β-cells and its implication in diabetes. Mol. Endocrinol. 29, 338–348 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Yang, L., Li, P., Fu, S., Calay, E. S. & Hotamisligil, G. S. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11, 467–478 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Arai, C. et al. Trehalose prevents adipocyte hypertrophy and mitigates insulin resistance in mice with established obesity. J. Nutr. Sci. Vitaminol. 59, 393–401 (2013).

    Article  CAS  PubMed  Google Scholar 

  182. Singh, R. et al. Autophagy regulates lipid metabolism. Nature 458, 1131–1135 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Qian, Q. et al. S-Nitrosoglutathione reductase dysfunction contributes to obesity-associated hepatic insulin resistance via regulating autophagy. Diabetes 67, 193–207 (2018).

    Article  CAS  PubMed  Google Scholar 

  184. Liu, L. et al. Essential roles of S-nitrosothiols in vascular homeostasis and endotoxic shock. Cell 116, 617–628 (2004).

    Article  CAS  PubMed  Google Scholar 

  185. Kroemer, G., Marino, G. & Levine, B. Autophagy and the integrated stress response. Mol. Cell 40, 280–293 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ebato, C. et al. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab. 8, 325–332 (2008).

    Article  CAS  PubMed  Google Scholar 

  187. Masini, M. et al. Autophagy in human type 2 diabetes pancreatic beta cells. Diabetologia 52, 1083–1086 (2009).

    Article  CAS  PubMed  Google Scholar 

  188. Wright, C., Iyer, A. K., Kulkarni, Y. & Azad, N. S-Nitrosylation of Bcl-2 negatively affects autophagy in lung epithelial cells. J. Cell Biochem. 117, 521–532 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Montagna, C. et al. To eat, or NOt to eat: S-nitrosylation signaling in autophagy. FEBS J. 283, 3857–3869 (2016).

    Article  CAS  PubMed  Google Scholar 

  190. Luchsinger, J. A., Tang, M. X., Shea, S. & Mayeux, R. Hyperinsulinemia and risk of Alzheimer disease. Neurology 63, 1187–1192 (2004).

    Article  PubMed  Google Scholar 

  191. Sergi, D., Renaud, J., Simola, N. & Martinoli, M. G. Diabetes, a contemporary risk for Parkinson’s disease: epidemiological and cellular evidences. Front. Aging Neurosci. 11, 302 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Lee, S., Tong, M., Hang, S., Deochand, C. & de la Monte, S. CSF and brain indices of insulin resistance, oxidative stress and neuro-inflammation in early versus late Alzheimer’s disease. J. Alzheimers Dis. Parkinsonism 3, 128 (2013).

    PubMed  PubMed Central  Google Scholar 

  193. de la Monte, S. M. & Wands, J. R. Alzheimer’s disease is type 3 diabetes–evidence reviewed. J. Diabetes Sci. Technol. 2, 1101–1113 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of National Institutes of Health grants DK119506, HL158507, DK128347 and HL157151.

Author information

Authors and Affiliations

Authors

Contributions

J.S.S., H.-L.Z. and R.T.P. contributed substantially to the discussion of the content and reviewed and/or edited the article before submission. H.-L.Z. researched data for the article and wrote the article.

Corresponding author

Correspondence to Jonathan S. Stamler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Thiol

A sulfhydryl group (SH) in the amino acid cysteine. The thiol group in proteins is the site of post-translational modification by S-nitrosylation.

LMW SNOs

Low molecular weight S-nitrosothiols, which serve as cofactors in protein denitrosylases. Common examples include S-nitrosoglutathione (GSNO) and S-nitroso-co-enzyme A (SNO-CoA), which serve as substrates in GSNO reductases and SNO-CoA reductases, respectively.

Quantal size

The elementary unit of synaptic transmission elicited by the release of neurotransmitters from a single vesicle. Changes in quantal size might be regulated by postsynaptic modification of receptor sensitivity and/or alterations in vesicle filling.

Weibel–Palade bodies

Storage granules in endothelial cells containing and releasing von Willebrand factor and P-selectin to regulate haemostasis and inflammation.

Nitrosative stress

A state of cellular stress characterized by excessive S-nitrosylation of proteins. Nitrosative stress is usually caused by either increased production of nitric oxide or decreased metabolism of S-nitrosothiols.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, HL., Premont, R.T. & Stamler, J.S. The manifold roles of protein S-nitrosylation in the life of insulin. Nat Rev Endocrinol 18, 111–128 (2022). https://doi.org/10.1038/s41574-021-00583-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-021-00583-1

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research