Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The physiological role of β-cell heterogeneity in pancreatic islet function

Abstract

Endocrine cells within the pancreatic islets of Langerhans are heterogeneous in terms of transcriptional profile, protein expression and the regulation of hormone release. Even though this heterogeneity has long been appreciated, only within the past 5 years have detailed molecular analyses led to an improved understanding of its basis. Although we are beginning to recognize why some subpopulations of endocrine cells are phenotypically different to others, arguably the most important consideration is how this heterogeneity affects the regulation of hormone release to control the homeostasis of glucose and other energy-rich nutrients. The focus of this Review is the description of how endocrine cell heterogeneity (and principally that of insulin-secreting β-cells) affects the regulation of hormone secretion within the islets of Langerhans. This discussion includes an overview of the functional characteristics of the different islet cell subpopulations and describes how they can communicate to influence islet function under basal and glucose-stimulated conditions. We further discuss how changes to the specific islet cell subpopulations or their numbers might underlie islet dysfunction in type 2 diabetes mellitus. We conclude with a discussion of several key open questions regarding the physiological role of islet cell heterogeneity.

Key points

  • Pancreatic β-cells are heterogeneous in terms of function (the regulation of insulin secretion) and their transcriptional profile.

  • Functionally distinct subpopulations of β-cells can be identified by genetic and cell surface markers or based upon functional analyses by optogenetics and Ca2+ dynamics.

  • Cell–cell communication allows functional subpopulations of β-cells to influence the regulation of insulin secretion across the rest of the islet.

  • Under basal conditions, both excitable insulin secretory β-cells and suppressive inexcitable β-cells can be observed.

  • Under glucose-stimulated conditions, a number of highly functional subpopulations of β-cells can be observed that influence the coordinated dynamics of islet [Ca2+] and insulin secretion.

  • Changes in islet cell heterogeneity, loss of functional subpopulations or disruption to the communication between functional subpopulations may all underlie islet dysfunction in diabetes mellitus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Heterogeneity in insulin secretion by β-cells.
Fig. 2: β-Cell intrinsic and extrinsic mechanisms affecting glucose-stimulated insulin release.
Fig. 3: β-Cell subpopulations suppress electrical activity and basal insulin release in other β-cells across the islet.
Fig. 4: Dynamics underlying different β-cell subpopulations within the islet.

Similar content being viewed by others

References

  1. Evans, R. & Shaw, D. B. Pathological studies in sinoatrial disorder (sick sinus syndrome). Br. Heart J. 39, 778–786 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Pipeleers, D. G. Heterogeneity in pancreatic beta-cell population. Diabetes 41, 777–781 (1992). Seminal review article that discusses the potential role of β-cell functional heterogeneity within the islet, much of which is still not fully understood today.

    CAS  PubMed  Google Scholar 

  3. Liang, Y. et al. Concordant glucose induction of glucokinase, glucose usage, and glucose-stimulated insulin release in pancreatic islets maintained in organ culture. Diabetes 41, 792–806 (1992).

    CAS  PubMed  Google Scholar 

  4. Vanzela, E. C. et al. Pregnancy restores insulin secretion from pancreatic islets in cafeteria diet-induced obese rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R320–R328 (2010).

    CAS  PubMed  Google Scholar 

  5. Henquin, J.-C., Dufrane, D. & Nenquin, M. Nutrient control of insulin secretion in isolated normal human islets. Diabetes 55, 3470–3477 (2006).

    CAS  PubMed  Google Scholar 

  6. Pipeleers, D. The biosociology of pancreatic B cells. Diabetologia 30, 277–291 (1987).

    CAS  PubMed  Google Scholar 

  7. Kiekens, R. et al. Differences in glucose recognition by individual rat pancreatic B cells are associated with intercellular differences in glucose-induced biosynthetic activity. J. Clin. Invest. 89, 117–125 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wojtusciszyn, A., Armanet, M., Morel, P., Berney, T. & Bosco, D. Insulin secretion from human beta cells is heterogeneous and dependent on cell-to-cell contacts. Diabetologia 51, 1843 (2008). In-depth quantification of heterogeneity in insulin secretion between human β-cells.

    CAS  PubMed  Google Scholar 

  9. Salomon, D. & Meda, P. Heterogeneity and contact-dependent regulation of hormone secretion by individual B cells. Exp. Cell Res. 162, 507–520 (1986).

    CAS  PubMed  Google Scholar 

  10. Hiriart, M. & Ramirez-Meseles, M. C. Functional subpopulations of individual pancreatic B-cells in culture. Endocrinology 128, 3193–3198 (1991).

    CAS  PubMed  Google Scholar 

  11. Piston, D. W., Knobel, S. M., Postic, C., Shelton, K. D. & Magnuson, M. A. Adenovirus-mediated knockout of a conditional glucokinase gene in isolated pancreatic islets reveals an essential role for proximal metabolic coupling events in glucose-stimulated insulin secretion. J. Biol. Chem. 274, 1000–1004 (1999).

    CAS  PubMed  Google Scholar 

  12. Van De Winkel, M. & Pipeleers, D. Autofluorescence-activated cell sorting of pancreatic islet cells: purification of insulin-containing B-cells according to glucose-induced changes in cellular redox state. Biochem. Biophys. Res. Commun. 114, 835–842 (1983).

    Google Scholar 

  13. Schuit, F. C., In’t Veld, P. A. & Pipeleers, D. G. Glucose stimulates proinsulin biosynthesis by a dose-dependent recruitment of pancreatic beta cells. Proc. Natl Acad. Sci. USA 85, 3865–3869 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Misler, S., Falke, L. C., Gillis, K. & McDaniel, M. L. A metabolite-regulated potassium channel in rat pancreatic B cells. Proc. Natl Acad. Sci. USA 83, 7119–7123 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, M., Goforth, P., Bertram, R., Sherman, A. & Satin, L. The Ca2+ dynamics of isolated mouse β-cells and islets: implications for mathematical models. Biophys. J. 84, 2852–2870 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Herchuelz, A., Pochet, R., Pastiels, C. & Van Praet, A. Heterogeneous changes in [Ca2+]i induced by glucose, tolbutamide and K+ in single rat pancreatic B cells. Cell Calcium 12, 577–586 (1991).

    CAS  PubMed  Google Scholar 

  17. Hellman, B., Gylfe, E., Grapengiesser, E., Lund, P.-E. & Berts, A. Cytoplasmic Ca2+ oscillations in pancreatic β-cells. Biochim. Biophys. Acta 1113, 295–305 (1992).

    CAS  PubMed  Google Scholar 

  18. Jetton, T. L. & Magnuson, M. A. Heterogeneous expression of glucokinase among pancreatic beta cells. Proc. Natl Acad. Sci. USA 89, 2619–2623 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Segerstolpe, Å. et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab. 24, 593–607 (2016). One of the first scRNAseq studies of islet cells, highlighting transcriptional heterogeneity within the islet and identifying the RBP4+ β-cell subpopulation that was further identified in ref.37.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, Y. J. et al. Single-cell mass cytometry analysis of the human endocrine pancreas. Cell Metab. 24, 616–626 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gutierrez, G. D., Gromada, J. & Sussel, L. Heterogeneity of the pancreatic beta cell. Front. Genet. 8, 22 (2017).

    PubMed  PubMed Central  Google Scholar 

  22. Dominguez-Gutierrez, G., Xin, Y. & Gromada, J. Heterogeneity of human pancreatic β-cells. Mol. Metab. 27, S7–S14 (2019).

    CAS  PubMed Central  Google Scholar 

  23. Schravendijk, C. F. V., Kiekens, R. & Pipeleers, D. G. Pancreatic beta cell heterogeneity in glucose-induced insulin secretion. J. Biol. Chem. 267, 21344–21348 (1992).

    PubMed  Google Scholar 

  24. Rui, J. et al. β cells that resist immunological attack develop during progression of autoimmune diabetes in NOD Mice. Cell Metab. 25, 727–738 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Katsuta, H. et al. Subpopulations of GFP-marked mouse pancreatic β-cells differ in size, granularity, and insulin secretion. Endocrinology 153, 5180–5187 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Dorrell, C. et al. Human islets contain four distinct subtypes of β cells. Nat. Commun. 7, 11756 (2016). This study uses cell surface makers to separate four populations of human β-cells that show both transcriptional and functional differences, which was further validated in ref.20.

    PubMed  PubMed Central  Google Scholar 

  27. Bader, E. et al. Identification of proliferative and mature β-cells in the islets of Langerhans. Nature 535, 430–434 (2016).

    CAS  PubMed  Google Scholar 

  28. Benninger, R. K. P. & Hodson, D. J. New understanding of β-cell heterogeneity and in situ islet function. Diabetes 67, 537–547 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Meulen, T. V. D. et al. Virgin beta cells persist throughout life at a neogenic niche within pancreatic islets. Cell Metab. 25, 911–926.e6 (2017).

    PubMed  PubMed Central  Google Scholar 

  30. Aguayo-Mazzucato, C. et al. β cell aging markers have heterogeneous distribution and are induced by insulin resistance. Cell Metab. 25, 898–910.e5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Blum, B. et al. Functional β-cells maturation is marked by an increase in the glucose threshold for insulin secretion and by expression of urocortin3. Nat. Biotechnol. 30, 261–264 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. van der Meulen, T. et al. Urocortin3 mediates somatostatin-dependent negative feedback control of insulin secretion. Nat. Med. 21, 769–776 (2015).

    PubMed  PubMed Central  Google Scholar 

  33. Karaca, M. et al. Exploring functional β-cell heterogeneity in vivo using PSA-NCAM as a specific marker. PLoS One 4, e5555 (2009).

    PubMed  PubMed Central  Google Scholar 

  34. Bosco, D., Rouiller, D. G. & Halban, P. A. Differential expression of E-cadherin at the surface of rat β-cells as a marker of functional heterogeneity. J. Endocrinol. 194, 21–29 (2007).

    CAS  PubMed  Google Scholar 

  35. Mawla, A. M. & Huising, M. O. Navigating the depths and avoiding the shallows of pancreatic islet cell transcriptomes. Diabetes 68, 1380–1393 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Cadwell, C. R. et al. Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq. Nat. Biotechnol. 34, 199–203 (2016).

    CAS  PubMed  Google Scholar 

  37. Camunas-Soler, J. et al. Patch-seq links single-cell transcriptomes to human islet dysfunction in diabetes. Cell Metab. 31, 1017–1031.e4 (2020). Patch-seq analysis applied to human β-cells that links functional heterogeneity and transcriptional heterogeneity and thus provides understanding for the basis of functional heterogeneity within the islet.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tritschler, S., Theis, F. J., Lickert, H. & Böttcher, A. Systematic single-cell analysis provides new insights into heterogeneity and plasticity of the pancreas. Mol. Metab. 6, 974–990 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lernmark, Å. The preparation of, and studies on, free cell suspensions from mouse pancreatic islets. Diabetologia 10, 431–438 (1974).

    CAS  PubMed  Google Scholar 

  40. Head, W. S. et al. Connexin-36 gap junctions regulate in vivo first- and second-phase insulin secretion dynamics and glucose tolerance in the conscious mouse. Diabetes 61, 1700–1707 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Konstantinova, I. et al. EphA-Ephrin-A-mediated β cell communication regulates insulin secretion from pancreatic islets. Cell 129, 359–370 (2007).

    CAS  PubMed  Google Scholar 

  42. Capozzi, M. E. et al. β Cell tone is defined by proglucagon peptides through cAMP signaling. JCI Insight 4, e126742 (2019).

    PubMed Central  Google Scholar 

  43. Rodriguez-Diaz, R. et al. Paracrine interactions within the pancreatic islet determine the glycemic set point. Cell Metab. 27, 549–558.e4 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Farnsworth, N. L. & Benninger, R. K. P. New insights into the role of connexins in pancreatic islet function and diabetes. FEBS Lett. 588, 1278–1287 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Meissner, H. P. Electrophysiological evidence for coupling between β cells of pancreatic islets. Nature 262, 502–504 (1976).

    CAS  PubMed  Google Scholar 

  46. Meda, P. Gap junction proteins are key drivers of endocrine function. Biochim. Biophys. Acta 1860, 124–140 (2018).

    CAS  Google Scholar 

  47. Jonkers, F. C., Jonas, J. C., Gilon, P. & Henquin, J. C. Influence of cell number on the characteristics and synchrony of Ca2+ oscillations in clusters of mouse pancreatic islet cells. J. Physiol. 520, 839–849 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rodriguez-Diaz, R., Menegaz, D. & Caicedo, A. Neurotransmitters act as paracrine signals to regulate insulin secretion from the human pancreatic islet. J. Physiol. 592, 3413–3417 (2014).

    PubMed  PubMed Central  Google Scholar 

  49. Menegaz, D. et al. Mechanism and effects of pulsatile GABA secretion from cytosolic pools in the human beta cell. Nat. Metab. 1, 1110–1126 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Esni, F. et al. Neural cell adhesion molecule (N-CAM) is required for cell type segregation and normal ultrastructure in pancreatic islets. J. Cell Biol. 144, 325–337 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Jain, R. & Lammert, E. Cell-cell interactions in the endocrine pancreas. Diabetes Obes. Metab. 11 (Suppl. 4), 159–167 (2009).

    CAS  PubMed  Google Scholar 

  52. Hutchens, T. & Piston, D. W. EphA4 receptor forward signaling inhibits glucagon secretion from α-cells. Diabetes 64, 3839–3851 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Cirulli, V. Cadherins in islet β-cells: more than meets the eye. Diabetes 64, 709–711 (2015).

    CAS  PubMed  Google Scholar 

  54. Jonkers, F. C. & Henquin, J. C. Measurements of cytoplasmic Ca2+ in islet cell clusters show that glucose rapidly recruits beta-cells and gradually increases the individual cell response. Diabetes 50, 540–550 (2001).

    CAS  PubMed  Google Scholar 

  55. Hraha, T. H. et al. Phase transitions in the multi-cellular regulatory behavior of pancreatic islet excitability. PLoS Comput. Biol. 10, e1003819 (2014).

    PubMed  PubMed Central  Google Scholar 

  56. Johnston, N. R. et al. Beta cell hubs dictate pancreatic islet responses to glucose. Cell Metab. 24, 389–401 (2016). The application of imaging and optogenetics to identify a hub β-cell subpopulation that maintains and coordinates glucose-stimulated [Ca2+] and insulin secretion across the islet.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Nasteska, D. et al. PDX1LOW MAFALOW β-cells contribute to islet function and insulin release. Nat. Commun. 12, 674 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lammert, E. & Thorn, P. The role of the islet niche on beta cell structure and function. J. Mol. Biol. 432, 1407–1418 (2020).

    CAS  PubMed  Google Scholar 

  59. Roscioni, S. S., Migliorini, A., Gegg, M. & Lickert, H. Impact of islet architecture on β-cell heterogeneity, plasticity and function. Nat. Rev. Endocrinol. 12, 695–709 (2016).

    CAS  PubMed  Google Scholar 

  60. Hughes, J. W. et al. Primary cilia control glucose homeostasis via islet paracrine interactions. Proc. Natl Acad. Sci. USA 117, 8912–8923 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Steiner, D. J., Kim, A., Miller, K. & Hara, M. Pancreatic islet plasticity: interspecies comparison of islet architecture and composition. Islets 2, 135–145 (2010).

    PubMed  Google Scholar 

  62. Cabrera, O. et al. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl Acad. Sci. USA 103, 2334–2339 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Brissova, M. et al. Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J. Histochem. Cytochem. 53, 1087–1097 (2005). An in-depth description of the differences in cytoarchitecture between mouse and human islets, both in situ and isolated from the pancreas.

    CAS  PubMed  Google Scholar 

  64. Adams, M. T. et al. Reduced synchroneity of intra-islet Ca2+ oscillations in vivo in Robo-deficient β cells. eLife 10, e61308 (2021).

    PubMed  PubMed Central  Google Scholar 

  65. Serre-Beinier, V. et al. Cx36 makes channels coupling human pancreatic β-cells, and correlates with insulin expression. Hum. Mol. Genet. 18, 428–439 (2009).

    CAS  PubMed  Google Scholar 

  66. Almaça, J. et al. Human beta cells produce and release serotonin to inhibit glucagon secretion from alpha cells. Cell Rep. 17, 3281–3291 (2016).

    PubMed  PubMed Central  Google Scholar 

  67. Rodriguez-Diaz, R. et al. Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming beta cell function in humans. Nat. Med. 17, 888–892 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Scarl, R. T. et al. Intact pancreatic islets and dispersed beta-cells both generate intracellular calcium oscillations but differ in their responsiveness to glucose. Cell Calcium 83, 102081 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Farack, L. et al. Transcriptional heterogeneity of beta cells in the intact pancreas. Dev. Cell 48, 115–125.e4 (2019).

    CAS  PubMed  Google Scholar 

  70. Benninger, R. K. P., Head, W. S., Zhang, M., Satin, L. S. & Piston, D. W. Gap junctions and other mechanisms of cell–cell communication regulate basal insulin secretion in the pancreatic islet. J. Physiol. 589, 5453–5466 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Halban, P. A. et al. The possible importance of contact between pancreatic islet cells for the control of insulin release*. Endocrinology 111, 86–94 (1982).

    CAS  PubMed  Google Scholar 

  72. Speier, S., Gjinovci, A., Charollais, A., Meda, P. & Rupnik, M. Cx36-mediated coupling reduces β-cell heterogeneity, confines the stimulating glucose concentration range, and affects insulin release kinetics. Diabetes 56, 1078–1086 (2007).

    CAS  PubMed  Google Scholar 

  73. Ravier, M. A. et al. Loss of connexin36 channels alters beta-cell coupling, islet synchronization of glucose-induced Ca2+and insulin oscillations, and basal insulin release. Diabetes 54, 1798–1807 (2005).

    CAS  PubMed  Google Scholar 

  74. Rocheleau, J. V. et al. Critical role of gap junction coupled KATP channel activity for regulated insulin secretion. PLoS Biol. 4, e26 (2006). This paper identifies the critical role gap junction coupling has in coordinating the electrical activity and electrical response between functionally heterogenous β-cells.

    PubMed  PubMed Central  Google Scholar 

  75. Nguyen, L. M., Pozzoli, M., Hraha, T. H. & Benninger, R. K. P. Decreasing cx36 gap junction coupling compensates for overactive KATP channels to restore insulin secretion and prevent hyperglycemia in a mouse model of neonatal diabetes. Diabetes 63, 1685–1697 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Dwulet, J. M. et al. How heterogeneity in glucokinase and gap-junction coupling determines the islet [Ca2+] response. Biophys. J. 117, 2188–2203 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Farnsworth, N. L., Hemmati, A., Pozzoli, M. & Benninger, R. K. P. Fluorescence recovery after photobleaching reveals regulation and distribution of connexin36 gap junction coupling within mouse islets of Langerhans. J. Physiol. 592, 4431–4446 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hodson, D. J. et al. Existence of long-lasting experience-dependent plasticity in endocrine cell networks. Nat. Commun. 3, 605 (2012).

    PubMed  Google Scholar 

  79. Gosak, M. et al. Network science of biological systems at different scales: a review. Phys. Life Rev. 24, 118–135 (2018).

    PubMed  Google Scholar 

  80. Bassett, D. S. & Sporns, O. Network neuroscience. Nat. Neurosci. 20, 353–364 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Hodson, D. J. et al. Lipotoxicity disrupts incretin-regulated human β cell connectivity. J. Clin. Invest. 123, 4182–4194 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Stožer, A. et al. Functional connectivity in islets of Langerhans from mouse pancreas tissue slices. PLoS Comput. Biol. 9, e1002923 (2013).

    PubMed  PubMed Central  Google Scholar 

  83. Rutter, G. A., Ninov, N., Salem, V. & Hodson, D. J. Comment on Satin et al. ‘Take me to your leader’: an electrophysiological appraisal of the role of hub cells in pancreatic islets. Diabetes 2020;69:830-836. Diabetes 69, e10–e11 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Satin, L. S. & Rorsman, P. Response to Comment on Satin et al. ‘Take me to your leader’: an electrophysiological appraisal of the role of hub cells in pancreatic islets. Diabetes 2020;69:830-836. Diabetes 69, e12–e13 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Satin, L. S., Zhang, Q. & Rorsman, P. ‘Take me to your leader’: an electrophysiological appraisal of the role of hub cells in pancreatic islets. Diabetes 69, 830–836 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Lei, C.-L. et al. Beta-cell hubs maintain Ca2+ oscillations in human and mouse islet simulations. Islets 10, 151–167 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Dwulet, J. M., Briggs, J. K. & Benninger, R. K. P. Small subpopulations of β-cells do not drive islet oscillatory [Ca2+] dynamics via gap junction communication. PLoS Comput. Biol. 17, e1008948 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Westacott, M. J., Ludin, N. W. F. & Benninger, R. K. P. Spatially organized β-cell subpopulations control electrical dynamics across islets of Langerhans. Biophys. J. 113, 1093–1108 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Salem, V. et al. Leader β-cells coordinate Ca2+ dynamics across pancreatic islets in vivo. Nat. Metab. 1, 615–629 (2019).

    CAS  PubMed  Google Scholar 

  90. Nunemaker, C. S. et al. Insulin secretion in the conscious mouse is biphasic and pulsatile. Am. J. Physiol. Endocrinol. Metab. 290, E523–E529 (2006).

    CAS  PubMed  Google Scholar 

  91. Gilon, P., Ravier, M. A., Jonas, J.-C. & Henquin, J.-C. Control mechanisms of the oscillations of insulin secretion in vitro and in vivo. Diabetes 51 (Suppl. 1), S144–S151 (2002).

    CAS  PubMed  Google Scholar 

  92. Matveyenko, A. V. et al. Pulsatile portal vein insulin delivery enhances hepatic insulin action and signaling. Diabetes 61, 2269–2279 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Kravets, V. et al. Functional architecture of the pancreatic islets: first responder cells drive the first-phase [Ca2+] response. bioRxiv https://doi.org/10.1101/2020.12.22.424082 (2020). This article identifies a β-cell subpopulation that drives the initial first phase response to nutrient stimulation but which represents a transient state of the cell.

    Article  Google Scholar 

  94. Westacott, M. J. et al. Age-dependent decline in the coordinated [Ca2+] and insulin secretory dynamics in human pancreatic islets. Diabetes 66, 2436–2445 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Stožer, A. et al. Glucose-dependent activation, activity, and deactivation of beta cell networks in acute mouse pancreas tissue slices. Am. J. Physiol. Endocrinol. Metab. 321, E305–E323 (2021).

    PubMed  Google Scholar 

  96. Verkerk, A. O. et al. Pacemaker current (If) in the human sinoatrial node. Eur. Heart J. 28, 2472–2478 (2007).

    PubMed  Google Scholar 

  97. Irisawa, H., Brown, H. F. & Giles, W. Cardiac pacemaking in the sinoatrial node. Physiol. Rev. 73, 197–227 (1993).

    CAS  PubMed  Google Scholar 

  98. Ideker, R. E., Kong, W. & Pogwizd, S. Purkinje fibers and arrhythmias. Pacing Clin. Electrophysiol. 32, 283–285 (2009).

    PubMed  PubMed Central  Google Scholar 

  99. Nunemaker, C. S. et al. Glucose metabolism, islet architecture, and genetic homogeneity in imprinting of [Ca2+]i and insulin rhythms in mouse islets. PLoS One 4, e8428 (2009).

    PubMed  PubMed Central  Google Scholar 

  100. Bertram, R. & Sherman, A. Dynamical complexity and temporal plasticity in pancreatic gβb-cells. J. Biosci. 25, 197–209 (2000).

    CAS  PubMed  Google Scholar 

  101. Cook, D. L. & Perara, E. Islet electrical pacemaker response to alpha-adrenergic stimulation. Diabetes 31, 985–990 (1982).

    CAS  PubMed  Google Scholar 

  102. Fridlyand, L. E., Tamarina, N. & Philipson, L. H. Bursting and calcium oscillations in pancreatic beta-cells: specific pacemakers for specific mechanisms. Am. J. Physiol. Endocrinol. Metab. 299, E517–E532 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Bertram, R., Sherman, A. & Satin, L. S. Electrical bursting, calcium oscillations, and synchronization of pancreatic islets. Adv. Exp. Med. Biol. 654, 261–279 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Adablah, J. E., Vinson, R., Roper, M. G. & Bertram, R. Synchronization of pancreatic islets by periodic or non-periodic muscarinic agonist pulse trains. PLoS One 14, e0211832 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. McKenna, J. P., Dhumpa, R., Mukhitov, N., Roper, M. G. & Bertram, R. Glucose oscillations can activate an endogenous oscillator in pancreatic islets. PLoS Comput. Biol. 12, e1005143 (2016).

    PubMed  PubMed Central  Google Scholar 

  106. Zhang, M. et al. Long lasting synchronization of calcium oscillations by cholinergic stimulation in isolated pancreatic islets. Biophys. J. 95, 4676–4688 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Benninger, R. K. P. et al. Intrinsic islet heterogeneity and gap junction coupling determine spatiotemporal Ca2+ wave dynamics. Biophys. J. 107, 2723–2733 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Zimliki, C. L., Mears, D. & Sherman, A. Three roads to islet bursting: emergent oscillations in coupled phantom bursters. Biophys. J. 87, 193–206 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Lewandowski, S. L. et al. Pyruvate kinase controls signal strength in the insulin secretory pathway. Cell Metab. 32, 736–750.e5 (2020). The study identified the key role pyruvate kinase has in controlling the regulation of KATP channel closure and Ca2+ dynamics, which might be important to the regulation of the dynamics of β-cell subpopulations.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Dominguez Gutierrez, G. et al. Gene signature of proliferating human pancreatic α cells. Endocrinology 159, 3177–3186 (2018).

    PubMed  Google Scholar 

  111. Drigo, R. A. E. et al. Aging of human endocrine pancreatic cell types is heterogeneous and sex-specific. bioRxiv https://doi.org/10.1101/729541 (2019).

    Article  Google Scholar 

  112. Quesada, I. et al. Glucose induces opposite intracellular Ca2+ concentration oscillatory patterns in identified alpha- and beta-cells within intact human islets of Langerhans. Diabetes 55, 2463–2469 (2006).

    CAS  PubMed  Google Scholar 

  113. Nadal, A., Quesada, I. & Soria, B. Homologous and heterologous asynchronicity between identified alpha-, beta- and delta-cells within intact islets of Langerhans in the mouse. J. Physiol. 517, 85–93 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Le Marchand, S. J. & Piston, D. W. Glucose suppression of glucagon secretion: metabolic and calcium responses from alpha-cells in intact mouse pancreatic islets. J. Biol. Chem. 285, 14389–14398 (2010).

    PubMed  PubMed Central  Google Scholar 

  115. Briant, L. J. B. et al. Functional identification of islet cell types by electrophysiological fingerprinting. J. R. Soc. Interface 14, 20160999 (2017).

    PubMed  PubMed Central  Google Scholar 

  116. Huang, Y.-C., Rupnik, M. & Gaisano, H. Y. Unperturbed islet α-cell function examined in mouse pancreas tissue slices. J. Physiol. 589, 395–408 (2011).

    CAS  PubMed  Google Scholar 

  117. Ghazvini Zadeh, E. H. et al. ZIGIR, a granule-specific Zn2+ indicator, reveals human islet α cell heterogeneity. Cell Rep. 32, 107904 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Montefusco, F., Cortese, G. & Pedersen, M. G. Heterogeneous alpha-cell population modeling of glucose-induced inhibition of electrical activity. J. Theor. Biol. 485, 110036 (2020).

    CAS  PubMed  Google Scholar 

  119. Campbell, S. A. et al. Human islets contain a subpopulation of glucagon-like peptide-1 secreting α cells that is increased in type 2 diabetes. Mol. Metab. 39, 101014 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Dai, X.-Q. et al. Heterogenous impairment of α-cell function in type 2 diabetes is linked to cell maturation state. bioRxiv https://doi.org/10.1101/2021.04.08.435504 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Zhang, Q. et al. Role of KATP channels in glucose-regulated glucagon secretion and impaired counterregulation in type 2 diabetes. Cell Metab. 18, 871–882 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Vierra, N. C. et al. TALK-1 reduces delta-cell endoplasmic reticulum and cytoplasmic calcium levels limiting somatostatin secretion. Mol. Metab. 9, 84–97 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Briant, L. J. B. et al. δ-Cells and β-cells are electrically coupled and regulate α-cell activity via somatostatin. J. Physiol. 596, 197–215 (2018).

    CAS  PubMed  Google Scholar 

  124. Drigo, R. A. E. et al. Structural basis for delta cell paracrine regulation in pancreatic islets. Nat. Commun. 10, 3700 (2019).

    Google Scholar 

  125. Vergari, E. et al. Insulin inhibits glucagon release by SGLT2-induced stimulation of somatostatin secretion. Nat. Commun. 10, 139 (2019).

    PubMed  PubMed Central  Google Scholar 

  126. Vergari, E. et al. Somatostatin secretion by Na+-dependent Ca2+-induced Ca2+ release in pancreatic delta-cells. Nat. Metab. 2, 32–40 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. D’Alessio, D. A., Sieber, C., Beglinger, C. & Ensinck, J. W. A physiologic role for somatostatin 28 as a regulator of insulin secretion. J. Clin. Invest. 84, 857–862 (1989).

    PubMed  PubMed Central  Google Scholar 

  128. Huising, M. O., van der Meulen, T., Huang, J. L., Pourhosseinzadeh, M. S. & Noguchi, G. M. The difference δ-cells make in glucose control. Physiology 33, 403–411 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Huang, J. L. et al. Genetic deletion of Urocortin 3 does not prevent functional maturation of beta cells. J. Endocrinol. 246, 69–78 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Modi, H. et al. Ins2 gene bursting activity defines a mature β-cell state. bioRxiv https://doi.org/10.1101/702589 (2019).

    Article  Google Scholar 

  131. Saunders, D. C. et al. Ectonucleoside triphosphate diphosphohydrolase-3 antibody targets adult human pancreatic β cells for in vitro and in vivo analysis. Cell Metab. 29, 745–754.e4 (2019).

    CAS  PubMed  Google Scholar 

  132. Damond, N. et al. A map of human type 1 diabetes progression by imaging mass cytometry. Cell Metab. 29, 755–768.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Wang, Y. J. et al. Multiplexed in situ imaging mass cytometry analysis of the human endocrine pancreas and immune system in type 1 diabetes. Cell Metab. 29, 769–783.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Oliver-Krasinski, J. M. & Stoffers, D. A. On the origin of the beta cell. Genes Dev. 22, 1998–2021 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Lori Sussel (University of Colorado Anschutz Medical campus) for providing constructive feedback in preparing this Review. R.K.P.B. acknowledges funding from National Institute of Health (NIH) grants R01 DK102950, R01 DK106412 and JDRF grant 1-INO-2019-783-S-B. V.K. acknowledges funding from JDRF grant 3-PDF-2019-741-A-N, a Human islet research network emerging leader award and a Burroughs Wellcome Fund Career Award at the Scientific Interface.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article. Both authors contributed substantially to the discussion of content. R.K.P.B. wrote the article. Both authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Richard K. P. Benninger or Vira Kravets.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks W.-H. Li, A. Stozer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benninger, R.K.P., Kravets, V. The physiological role of β-cell heterogeneity in pancreatic islet function. Nat Rev Endocrinol 18, 9–22 (2022). https://doi.org/10.1038/s41574-021-00568-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-021-00568-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing