Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

One hundred years of insulin therapy

Abstract

At the time of its first clinical application 100 years ago, insulin was presented as the cure for people with diabetes mellitus. That transpired to be an overstatement, yet insulin has proven to be the lifesaver for people with type 1 diabetes mellitus and an essential therapy for many with type 2 diabetes mellitus or other forms of diabetes mellitus. Since its discovery, insulin (a molecule of only 51 amino acids) has been the subject of pharmaceutical research and development that has paved the way for other protein-based therapies. From purified animal-extracted insulin and human insulin produced by genetically modified organisms to a spectrum of insulin analogues, pharmaceutical laboratories have strived to tailor the preparations to the needs of patients. Nonetheless, overall glycaemic control often remains poor as exogenous insulin is still not able to mimic the physiological insulin profile. Circumventing subcutaneous administration and the design of analogues with profiles that mimic that of physiological insulin are ongoing areas of research. Novel concepts, such as once-weekly insulins or glucose-dependent and oral insulins, are on the horizon but their real-world effectiveness still needs to be proven. Until a true cure for type 1 diabetes mellitus is found and the therapeutic arsenal for other forms of diabetes mellitus is expanded, insulin will remain central in the treatment of many people living with diabetes mellitus.

Key points

  • Insulin has proven to be a lifesaver for people with type 1 diabetes mellitus and an essential therapy for many people with type 2 diabetes mellitus or other forms of diabetes mellitus.

  • Since its discovery, insulin has been the subject of extensive pharmaceutical research and development that has also paved the way for other protein-based therapies.

  • Initially, advancements were mainly focused on improving the quality of life by reducing the frequency of injections and reducing antigenicity.

  • Since the Diabetes Control and Complications Trial in 1993, the focus has shifted towards mimicking the physiological insulin profile.

  • The risk of hypoglycaemia remains a major burden of insulin therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A timeline of the major scientific and pharmaceutical discoveries in the development of insulin with the approximate historical dates.
Fig. 2: Past, current and future challenges of insulin.

Similar content being viewed by others

References

  1. Petersen, M. C. & Shulman, G. I. Mechanisms of insulin action and insulin resistance. Physiol. Rev. 98, 2133–2223 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sanders, L. J. From Thebes to Toronto and the 21st century: an incredible journey. Diabetes Spectr. 15, 56–60 (2002).

    Article  Google Scholar 

  3. Mazur, A. Why were “starvation diets” promoted for diabetes in the pre-insulin period? Nutr. J. 10, 23 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  4. von Mering, J. & Minkowski, O. Diabetes mellitus nach pankreasextirpation. Centralblatt Klinische Med. 10, 393–394 (1889).

    Google Scholar 

  5. Hedon, E. Diabète pancreatique. Travaux de Physiologie. (O. Doin, 1898).

  6. Opie, E. L. The relation of diabetes mellitus to lesions of the pancreas. Hyaline degeneration of the islands of Langerhans. J. Exp. Med. 5, 527–540 (1901).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. De Meyer, J. Action de la sécrétion interne du pancréas sur différents organes et en particulier sur la sécrétion rénale. Arch. Int. Physiol. 7, 96–99 (1909).

    Google Scholar 

  8. Zuelzer, G. Ueber versuche einer specifischen fermenttherapie des diabetes. Z. f. exp. Pathologie u. Theraphie 5, 307–318 (1908).

    Article  Google Scholar 

  9. Scott, E. L. On the influence of intravenous injections of an extract of the pancreas on experimental pancreatic diabetes. Am. J. Physiol. 29, 306–310 (1912).

    Article  CAS  Google Scholar 

  10. Kleiner, I. S. The action of intravenous injections of pancreas emulsions in experimental diabetes. J. Biol. Chem. 40, 507–533 (1919).

    Article  Google Scholar 

  11. Paulescu, N. C. Recherche sur le role du pancreas dans l’assimilation nutritive. Z. f. exp. 17, 85–109 (1921).

    Google Scholar 

  12. Lewis, R. & Benedict, S. R. A method for the estimation of sugar in small quantities of blood. J. Biol. Chem. 20, 61 (1915).

    Article  CAS  Google Scholar 

  13. Myers, V. C. & Bailey, C. V. The Lewis and Benedict method for the estimation of blood sugar with some observations in disease. J. Biol. Chem. 24, 147–161 (1916).

    Article  Google Scholar 

  14. Barron, M. The relation of the islets of Langerhans to diabetes with special reference to cases of pancreatic lithiasis. Surg. Gynecol. Obstet. 31, 437–448 (1920).

    Google Scholar 

  15. Bliss, M. The Discovery of Insulin. (McClelland & Stewart Inc., 1982).

  16. Banting, F. G. & Best, C. H. The internal secretion of the pancreas. J. Lab. Clin. Med. VII, 256–271 (1922).

    Google Scholar 

  17. Banting, F. G., Best, C. H., Collip, J. B., Campbell, W. R. & Fletcher, A. A. Pancreatic extracts in the treatment of diabetes mellitus. Can. Med. Assoc. J. 12, 141–146 (1922).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Banting, F. G., Best, C. H., Collip, J. B. & Macleod, J. J. R. The effect of insulin on the excretion of ketone bodies by the diabetic dog. Trans. R. Soc. Can. 16, 43–44 (1922). Section V.

    Google Scholar 

  19. Banting, F. G. et al. The effect produced on diabetes by extracts of pancreas. Trans. Assoc. Am. Physicians 37, 337–347 (1922).

    Google Scholar 

  20. Cox, C. Elizabeth Evans Hughes — surviving starvation therapy for diabetes. Lancet 377, 1232–1233 (2011).

    Article  PubMed  Google Scholar 

  21. Rosenfeld, L. Insulin: discovery and controversy. Clin. Chem. 48, 2270–2288 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Lacey, A. H. The unit of insulin. Diabetes 16, 198–200 (1967).

    Article  CAS  PubMed  Google Scholar 

  23. Donner, T. & Sarkar, S. Insulin – pharmacology, therapeutic regimens and principles of intensive insulin therapy. https://www.ncbi.nlm.nih.gov/books/NBK278938/ (2000).

  24. Hagedorn, H. C., Norman Jensen, B., Krarup, N. B. & Wodstrup, I. Promatine insulinate. JAMA 106, 177–180 (1936).

    Article  CAS  Google Scholar 

  25. Fisher, A. M. & Scott, D. A. The effect of various substances on the action of insulin. J. Pharm. Exp. Ther. 58, 93 (1936).

    CAS  Google Scholar 

  26. Krayenbuhl, C. & Rosenberg, T. Crystalline protamine insulin. Rep. Steno Mem. Hosp. Nord. Insulinlab. 1, 60–73 (1946).

    Google Scholar 

  27. Oakley, W., Hill, D. & Oakley, N. Combined use of regular and crystalline protamine (NPH) insulins in the treatment of severe diabetes. Diabetes 15, 219–222 (1966).

    Article  CAS  PubMed  Google Scholar 

  28. Hallas-Møller, K., Jersild, M., Petersen, K. & Schlichtkrull, J. Zinc insulin preparations for single daily injection; clinical studies of new preparations with prolonged action. J. Am. Med. Assoc. 150, 1667–1671 (1952).

    Article  PubMed  Google Scholar 

  29. Owens, D. R. Insulin preparations with prolonged effect. Diabetes Technol. Ther. 13 (Suppl. 1), S5–S14 (2011).

    Article  PubMed  Google Scholar 

  30. Heine, R. J., Bilo, H. J., Fonk, T., van der Veen, E. A. & van der Meer, J. Absorption kinetics and action profiles of mixtures of short- and intermediate-acting insulins. Diabetologia 27, 558–562 (1984).

    Article  CAS  PubMed  Google Scholar 

  31. Turner, H. E. & Matthews, D. R. The use of fixed-mixture insulins in clinical practice. Eur. J. Clin. Pharmacol. 56, 19–25 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Nathan, D. M. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview. Diabetes Care 37, 9–16 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Nathan, D. M. et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977–986 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Schlichtkrull, J. et al. Clinical aspects of insulin–antigenicity. Diabetes 21, 649–656 (1972).

    Article  CAS  PubMed  Google Scholar 

  35. Bruni, B., D’Alberto, M., Osenda, M., Ricci, C. & Turco, G. L. Clinical trial with monocomponent lente insulins. Preliminary report. Diabetologia 9, 492–498 (1973).

    Article  CAS  PubMed  Google Scholar 

  36. Sutcliffe, N. & Bristow, A. F. The proinsulin content of commercial bovine insulin formulations. J. Pharm. Pharmacol. 36, 163–166 (1984).

    Article  CAS  PubMed  Google Scholar 

  37. Alberti, K. G. & Nattrass, M. Highly purified insulins. Diabetologia 15, 77–80 (1978).

    Article  CAS  PubMed  Google Scholar 

  38. Katsoyannis, P. G., Fukuda, K. & Tometsko, A. Insulin peptides 9. Synthesis of a-chain of insulin and its combination with natural B-chain to generate insulin activity. J. Am. Chem. Soc. 85, 164–166 (1963).

    Article  Google Scholar 

  39. Zahn, H. & Schade, F. Chemische modifizierung von insulin, seidenfibroin, sehnenkollagen und wollkeratin mit nitrophenylestern. Angew. Chem. Int. Ed. 75, 377 (1963).

    Article  Google Scholar 

  40. Goeddel, D. V. et al. Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc. Natl Acad. Sci. USA 76, 106–110 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Itakura, K. et al. Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin. Science 198, 1056–1063 (1977).

    Article  CAS  PubMed  Google Scholar 

  42. Lilly, Six Generations of Caring and Discovery. https://www.lilly.com/company/about-lilly/milestones-of-caring-and-discovery (2021).

  43. Richter, B. & Neises, G. ‘Human’ insulin versus animal insulin in people with diabetes mellitus. Cochrane Database Syst. Rev. 2003, CD003816 (2003).

    Google Scholar 

  44. Heise, T. & Mathieu, C. Impact of the mode of protraction of basal insulin therapies on their pharmacokinetic and pharmacodynamic properties and resulting clinical outcomes. Diabetes Obes. Metab. 19, 3–12 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Gagnon-Auger, M. et al. Dose-dependent delay of the hypoglycemic effect of short-acting insulin analogs in obese subjects with type 2 diabetes: a pharmacokinetic and pharmacodynamic study. Diabetes Care 33, 2502–2507 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. de la Pena, A. et al. Pharmacokinetics and pharmacodynamics of high-dose human regular U-500 insulin versus human regular U-100 insulin in healthy obese subjects. Diabetes Care 34, 2496–2501 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Brange, J. et al. Monomeric insulins obtained by protein engineering and their medical implications. Nature 333, 679–682 (1988).

    Article  CAS  PubMed  Google Scholar 

  48. FDA. FAD-approved drugs, Lilly. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=020563 (2021).

  49. Howey, D. C., Bowsher, R. R., Brunelle, R. L. & Woodworth, J. R. [Lys(B28), Pro(B29)]-human insulin. A rapidly absorbed analogue of human insulin. Diabetes 43, 396–402 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Torlone, E. et al. Pharmacokinetics, pharmacodynamics and glucose counterregulation following subcutaneous injection of the monomeric insulin analogue [Lys(B28),Pro(B29)] in IDDM. Diabetologia 37, 713–720 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Anderson, J. H. Jr. et al. Improved mealtime treatment of diabetes mellitus using an insulin analogue. Multicenter Insulin Lispro Study Group. Clin. Ther. 19, 62–72 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Lindholm, A., McEwen, J. & Riis, A. P. Improved postprandial glycemic control with insulin aspart. A randomized double-blind cross-over trial in type 1 diabetes. Diabetes Care 22, 801–805 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Home, P. D., Barriocanal, L. & Lindholm, A. Comparative pharmacokinetics and pharmacodynamics of the novel rapid-acting insulin analogue, insulin aspart, in healthy volunteers. Eur. J. Clin. Pharmacol. 55, 199–203 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Becker, R. H., Frick, A. D., Burger, F., Potgieter, J. H. & Scholtz, H. Insulin glulisine, a new rapid-acting insulin analogue, displays a rapid time-action profile in obese non-diabetic subjects. Exp. Clin. Endocrinol. Diabetes 113, 435–443 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Heise, T. et al. Insulin glulisine: a faster onset of action compared with insulin lispro. Diabetes Obes. Metab. 9, 746–753 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Kerr, D., Wizemann, E., Senstius, J., Zacho, M. & Ampudia-Blasco, F. J. Stability and performance of rapid-acting insulin analogs used for continuous subcutaneous insulin infusion: a systematic review. J. Diabetes Sci. Technol. 7, 1595–1606 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Heise, T. & Meneghini, L. F. Insulin stacking versus therapeutic accumulation: understanding the differences. Endocr. Pract. 20, 75–83 (2014).

    Article  PubMed  Google Scholar 

  58. Home, P. D., Lindholm, A. & Riis, A., European Insulin Aspart Study Group.Insulin aspart vs. human insulin in the management of long-term blood glucose control in type 1 diabetes mellitus: a randomized controlled trial. Diabet. Med. 17, 762–770 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Plank, J. et al. A direct comparison of insulin aspart and insulin lispro in patients with type 1 diabetes. Diabetes Care 25, 2053–2057 (2002).

    Article  PubMed  Google Scholar 

  60. Homko, C., Deluzio, A., Jimenez, C., Kolaczynski, J. W. & Boden, G. Comparison of insulin aspart and lispro: pharmacokinetic and metabolic effects. Diabetes Care 26, 2027–2031 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Dreyer, M. et al. Efficacy and safety of insulin glulisine in patients with type 1 diabetes. Horm. Metab. Res. 37, 702–707 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Elizarova, S., Galstyan, G. R. & Wolffenbuttel, B. H. Role of premixed insulin analogues in the treatment of patients with type 2 diabetes mellitus: a narrative review. J. Diabetes 6, 100–110 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Home, P. et al. An observational non-interventional study of people with diabetes beginning or changed to insulin analogue therapy in non-Western countries: the A1chieve study. Diabetes Res. Clin. Pract. 94, 352–363 (2011).

    Article  PubMed  Google Scholar 

  64. Kalra, S. et al. Expert opinion: patient selection for premixed insulin formulations in diabetes care. Diabetes Ther. 9, 2185–2199 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Heise, T. et al. Time-action profiles of novel premixed preparations of insulin lispro and NPL insulin. Diabetes Care 21, 800–803 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Roach, P., Trautmann, M., Arora, V., Sun, B. & Anderson, J. H. Jr. Improved postprandial blood glucose control and reduced nocturnal hypoglycemia during treatment with two novel insulin lispro-protamine formulations, insulin lispro mix25 and insulin lispro mix50. Mix50 Study Group. Clin. Ther. 21, 523–534 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Boehm, B. O., Home, P. D., Behrend, C., Kamp, N. M. & Lindholm, A. Premixed insulin aspart 30 vs. premixed human insulin 30/70 twice daily: a randomized trial in type 1 and type 2 diabetic patients. Diabet. Med. 19, 393–399 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Bellido, V. et al. Comparison of Basal-Bolus and premixed insulin regimens in hospitalized patients with type 2 diabetes. Diabetes Care 38, 2211–2216 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kildegaard, J. et al. Elucidating the mechanism of absorption of fast-acting insulin aspart: the role of niacinamide. Pharm. Res. 36, 49 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Heise, T., Pieber, T. R., Danne, T., Erichsen, L. & Haahr, H. A pooled analysis of clinical pharmacology trials investigating the pharmacokinetic and pharmacodynamic characteristics of fast-acting insulin aspart in adults with type 1 diabetes. Clin. Pharmacokinet. 56, 551–559 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Russell-Jones, D. et al. Fast-acting insulin aspart improves glycemic control in basal-bolus treatment for type 1 diabetes: results of a 26-week multicenter, active-controlled, treat-to-target, randomized, parallel-group trial (onset 1). Diabetes Care 40, 943–950 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Mathieu, C. et al. Efficacy and safety of fast-acting insulin aspart in comparison with insulin aspart in type 1 diabetes (onset 1): a 52-week, randomized, treat-to-target, phase III trial. Diabetes Obes. Metab. 20, 1148–1155 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pal, R., Banerjee, M. & Bhadada, S. K. Glycemic efficacy and safety of mealtime faster-acting insulin aspart administered by injection as compared to insulin aspart in people with diabetes mellitus: a meta-analysis of randomized controlled trials. Diabet. Med. 38, e14515 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Klonoff, D. C. et al. A randomized, multicentre trial evaluating the efficacy and safety of fast-acting insulin aspart in continuous subcutaneous insulin infusion in adults with type 1 diabetes (onset 5). Diabetes Obes. Metab. 21, 961–967 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Owens, D. R. & Bolli, G. B. The continuing quest for better subcutaneously administered prandial insulins: a review of recent developments and potential clinical implications. Diabetes Obes. Metab. 22, 743–754 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Klaff, L. et al. Ultra rapid lispro improves postprandial glucose control compared with lispro in patients with type 1 diabetes: results from the 26-week PRONTO-T1D study. Diabetes Obes. Metab. 22, 1799–1807 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Heise, T. et al. Ultrarapid lispro lowers postprandial glucose and more closely matches normal physiological glucose response compared to other rapid insulin analogues: a phase 1 randomized, crossover study. Diabetes Obes. Metab. 22, 1789–1798 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bode, B. W. et al. Compatibility and safety of ultra rapid lispro with continuous subcutaneous insulin infusion in patients with type 1 diabetes: PRONTO-pump study. Diabetes Technol. Ther. 23, 41–50 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. de la Pena, A. et al. Bioequivalence and comparative pharmacodynamics of insulin lispro 200 U/mL relative to insulin lispro (Humalog(R)) 100 U/mL. Clin. Pharmacol. Drug Dev. 5, 69–75 (2016).

    Article  PubMed  Google Scholar 

  80. Owens, D. R., Matfin, G. & Monnier, L. Basal insulin analogues in the management of diabetes mellitus: what progress have we made? Diabetes Metab. Res. Rev. 30, 104–119 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Mathieu, C., Gillard, P. & Benhalima, K. Insulin analogues in type 1 diabetes mellitus: getting better all the time. Nat. Rev. Endocrinol. 13, 385–399 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Monami, M., Marchionni, N. & Mannucci, E. Long-acting insulin analogues vs. NPH human insulin in type 1 diabetes. A meta-analysis. Diabetes Obes. Metab. 11, 372–378 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. FDA. FDA-approved drugs, Sanofi Aventis US. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=021081 (2021).

  84. Rosenstock, J. et al. Basal insulin therapy in type 2 diabetes: 28-week comparison of insulin glargine (HOE 901) and NPH insulin. Diabetes Care 24, 631–636 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Lepore, M. et al. Pharmacokinetics and pharmacodynamics of subcutaneous injection of long-acting human insulin analog glargine, NPH insulin, and ultralente human insulin and continuous subcutaneous infusion of insulin lispro. Diabetes 49, 2142–2148 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Koehler, G. et al. Pharmacodynamics of the long-acting insulin analogues detemir and glargine following single-doses and under steady-state conditions in patients with type 1 diabetes. Diabetes Obes. Metab. 16, 57–62 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Chatterjee, S. et al. Glargine versus NPH insulin: efficacy in comparison with insulin aspart in a basal bolus regimen in type 1 diabetes–the glargine and aspart study (GLASS) a randomised cross-over study. Diabetes Res. Clin. Pract. 77, 215–222 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Havelund, S. et al. The mechanism of protraction of insulin detemir, a long-acting, acylated analog of human insulin. Pharm. Res. 21, 1498–1504 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Porcellati, F. et al. Comparison of pharmacokinetics and dynamics of the long-acting insulin analogs glargine and detemir at steady state in type 1 diabetes: a double-blind, randomized, crossover study. Diabetes Care 30, 2447–2452 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Heise, T. et al. Lower within-subject variability of insulin detemir in comparison to NPH insulin and insulin glargine in people with type 1 diabetes. Diabetes 53, 1614–1620 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Frier, B. M., Russell-Jones, D. & Heise, T. A comparison of insulin detemir and neutral protamine Hagedorn (isophane) insulin in the treatment of diabetes: a systematic review. Diabetes Obes. Metab. 15, 978–986 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Pieber, T. R. et al. Comparison of insulin detemir and insulin glargine in subjects with type 1 diabetes using intensive insulin therapy. Diabet. Med. 24, 635–642 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Swinnen, S. G., Simon, A. C., Holleman, F., Hoekstra, J. B. & Devries, J. H. Insulin detemir versus insulin glargine for type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2011, CD006383 (2011).

    PubMed Central  Google Scholar 

  94. Becker, R. H. et al. New insulin glargine 300 units.mL-1 provides a more even activity profile and prolonged glycemic control at steady state compared with insulin glargine 100 units.mL-1. Diabetes Care 38, 637–643 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Danne, T. et al. Lower risk of severe hypoglycaemia with insulin glargine 300 U/mL versus glargine 100 U/mL in participants with type 1 diabetes: a meta-analysis of 6-month phase 3 clinical trials. Diabetes Obes. Metab. 22, 1880–1885 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jonassen, I. et al. Design of the novel protraction mechanism of insulin degludec, an ultra-long-acting basal insulin. Pharm. Res. 29, 2104–2114 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Korsatko, S. et al. A comparison of the steady-state pharmacokinetic and pharmacodynamic profiles of 100 and 200 U/mL formulations of ultra-long-acting insulin degludec. Clin. Drug Investig. 33, 515–521 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Heise, T., Nosek, L., Bottcher, S. G., Hastrup, H. & Haahr, H. Ultra-long-acting insulin degludec has a flat and stable glucose-lowering effect in type 2 diabetes. Diabetes Obes. Metab. 14, 944–950 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Ratner, R. E. et al. Hypoglycaemia risk with insulin degludec compared with insulin glargine in type 2 and type 1 diabetes: a pre-planned meta-analysis of phase 3 trials. Diabetes Obes. Metab. 15, 175–184 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Heise, T. et al. Comparison of the pharmacokinetic and pharmacodynamic profiles of insulin degludec and insulin glargine. Expert Opin. Drug Metab. Toxicol. 11, 1193–1201 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Heise, T. et al. Insulin degludec: lower day-to-day and within-day variability in pharmacodynamic response compared with insulin glargine 300 U/mL in type 1 diabetes. Diabetes Obes. Metab. 19, 1032–1039 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rosenstock, J. et al. More similarities than differences testing insulin glargine 300 units/mL versus insulin degludec 100 units/mL in insulin-naive type 2 diabetes: the randomized head-to-head BRIGHT trial. Diabetes Care 41, 2147–2154 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Philis-Tsimikas, A. et al. Risk of hypoglycaemia with insulin degludec versus insulin glargine U300 in insulin-treated patients with type 2 diabetes: the randomised, head-to-head CONCLUDE trial. Diabetologia 63, 698–710 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fulcher, G. R. et al. Comparison of insulin degludec/insulin aspart and biphasic insulin aspart 30 in uncontrolled, insulin-treated type 2 diabetes: a phase 3a, randomized, treat-to-target trial. Diabetes Care 37, 2084–2090 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Rosenstock, J. et al. Efficacy and safety of LixiLan, a titratable fixed-ratio combination of Lixisenatide and insulin Glargine, versus insulin Glargine in type 2 diabetes inadequately controlled on metformin monotherapy: the LixiLan proof-of-concept randomized trial. Diabetes Care 39, 1579–1586 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Aroda, V. R. et al. Efficacy and safety of LixiLan, a titratable fixed-ratio combination of insulin Glargine plus Lixisenatide in type 2 diabetes inadequately controlled on basal insulin and metformin: the LixiLan-L randomized trial. Diabetes Care 39, 1972–1980 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Gough, S. C. et al. Efficacy and safety of a fixed-ratio combination of insulin degludec and liraglutide (IDegLira) compared with its components given alone: results of a phase 3, open-label, randomised, 26-week, treat-to-target trial in insulin-naive patients with type 2 diabetes. Lancet Diabetes Endocrinol. 2, 885–893 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Buse, J. B. et al. Contribution of liraglutide in the fixed-ratio combination of insulin degludec and liraglutide (IDegLira). Diabetes Care 37, 2926–2933 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Clarke, S. F. & Foster, J. R. A history of blood glucose meters and their role in self-monitoring of diabetes mellitus. Br. J. Biomed. Sci. 69, 83–93 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Koenig, R. J. et al. Correlation of glucose regulation and hemoglobin AIc in diabetes mellitus. N. Engl. J. Med. 295, 417–420 (1976).

    Article  CAS  PubMed  Google Scholar 

  111. Kadiri, A. et al. Comparison of NovoPen 3 and syringes/vials in the acceptance of insulin therapy in NIDDM patients with secondary failure to oral hypoglycaemic agents. Diabetes Res. Clin. Pract. 41, 15–23 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Lee, I. T. et al. Improvement in health-related quality of life, independent of fasting glucose concentration, via insulin pen device in diabetic patients. J. Eval. Clin. Pract. 15, 699–703 (2009).

    Article  PubMed  Google Scholar 

  113. Lee, W. C., Balu, S., Cobden, D., Joshi, A. V. & Pashos, C. L. Medication adherence and the associated health-economic impact among patients with type 2 diabetes mellitus converting to insulin pen therapy: an analysis of third-party managed care claims data. Clin. Ther. 28, 1712–1725 (2006).

    Article  PubMed  Google Scholar 

  114. Skyler, J. S. et al. Efficacy of inhaled human insulin in type 1 diabetes mellitus: a randomised proof-of-concept study. Lancet 357, 331–335 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Heinemann, L. The failure of exubera: are we beating a dead horse? J. Diabetes Sci. Technol. 2, 518–529 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Rave, K., Heise, T., Heinemann, L. & Boss, A. H. Inhaled Technosphere insulin in comparison to subcutaneous regular human insulin: time action profile and variability in subjects with type 2 diabetes. J. Diabetes Sci. Technol. 2, 205–212 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Bode, B. W. et al. Inhaled technosphere insulin compared with injected prandial insulin in type 1 diabetes: a randomized 24-week trial. Diabetes Care 38, 2266–2273 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Oleck, J., Kassam, S. & Goldman, J. D. Commentary: why was inhaled insulin a failure in the market? Diabetes Spectr. 29, 180–184 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Dideriksen, L. H., Jorgensen, L. N. & Drejer, K. Carcinogenic effect of female rats after 12 months administration of the insulin analog B10Asp (abstract). Diabetes 41, 143A (1992).

    Google Scholar 

  120. Varewijck, A. J. & Janssen, J. A. Insulin and its analogues and their affinities for the IGF1 receptor. Endocr. Relat. Cancer 19, F63–F75 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Hansen, B. F. et al. Sustained signalling from the insulin receptor after stimulation with insulin analogues exhibiting increased mitogenic potency. Biochem. J. 315, 271–279 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Caparrotta, T. M. & Evans, M. PEGylated insulin Lispro, (LY2605541)–a new basal insulin analogue. Diabetes Obes. Metab. 16, 388–395 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. Garg, S. et al. A randomized clinical trial comparing basal insulin peglispro and insulin glargine, in combination with prandial insulin lispro, in patients with type 1 diabetes: IMAGINE 1. Diabetes Obes. Metab. 18, 25–33 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Bergenstal, R. M. et al. Randomized, double-blind clinical trial comparing basal insulin peglispro and insulin glargine, in combination with prandial insulin lispro, in patients with type 1 diabetes: IMAGINE 3. Diabetes Obes. Metab. 18, 1081–1088 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Munoz-Garach, A., Molina-Vega, M. & Tinahones, F. J. How can a good idea fail? Basal insulin peglispro [LY2605541] for the treatment of type 2 diabetes. Diabetes Ther. 8, 9–22 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. Rosenstock, J. et al. Once-weekly insulin for type 2 diabetes without previous insulin treatment. N. Engl. J. Med. 383, 2107–2116 (2020).

    Article  CAS  PubMed  Google Scholar 

  127. Kumar, V. et al. Oral insulin: myth or reality. Curr. Diabetes Rev. 14, 497–508 (2018).

    Article  CAS  PubMed  Google Scholar 

  128. Halberg, I. B. et al. Efficacy and safety of oral basal insulin versus subcutaneous insulin glargine in type 2 diabetes: a randomised, double-blind, phase 2 trial. Lancet Diabetes Endocrinol. 7, 179–188 (2019).

    Article  PubMed  Google Scholar 

  129. Mathieu, C. Oral insulin: time to rewrite the textbooks. Lancet Diabetes Endocrinol. 7, 162–163 (2019).

    Article  PubMed  Google Scholar 

  130. Abramson, A. et al. An ingestible self-orienting system for oral delivery of macromolecules. Science 363, 611–615 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lamson, N. G., Berger, A., Fein, K. C. & Whitehead, K. A. Anionic nanoparticles enable the oral delivery of proteins by enhancing intestinal permeability. Nat. Biomed. Eng. 4, 84–96 (2020).

    Article  CAS  PubMed  Google Scholar 

  132. Frier, B. M., Schernthaner, G. & Heller, S. R. Hypoglycemia and cardiovascular risks. Diabetes Care 34, S132–S137 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Warnes, H., Helliwell, R., Pearson, S. M. & Ajjan, R. A. Metabolic control in type 1 diabetes: is adjunctive therapy the way forward? Diabetes Ther. 9, 1831–1851 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gruessner, R. W. & Gruessner, A. C. The current state of pancreas transplantation. Nat. Rev. Endocrinol. 9, 555–562 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Heinemann, L. et al. Insulin pump risks and benefits: a clinical appraisal of pump safety standards, adverse event reporting, and research needs: a joint statement of the European Association for the Study of Diabetes and the American Diabetes Association Diabetes Technology Working Group. Diabetes Care 38, 716–722 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Ly, T. T. et al. Effect of sensor-augmented insulin pump therapy and automated insulin suspension vs standard insulin pump therapy on hypoglycemia in patients with type 1 diabetes: a randomized clinical trial. JAMA 310, 1240–1247 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Bergenstal, R. M. et al. Safety of a hybrid closed-loop insulin delivery system in patients with type 1 diabetes. JAMA 316, 1407–1408 (2016).

    Article  PubMed  Google Scholar 

  138. Hoeg-Jensen, T. Review: glucose-sensitive insulin. Mol. Metab. 46, 101107 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Brownlee, M. & Cerami, A. A glucose-controlled insulin-delivery system: semisynthetic insulin bound to lectin. Science 206, 1190–1191 (1979).

    Article  CAS  PubMed  Google Scholar 

  140. Lancaster, T. C., Zion T. C. Conjugate based systems for controlled drug delivery (patent). https://uspto.report/patent/grant/10,398,781 (2010).

  141. Chen, Z., Lancaster, T. M., Zion, T. C. Drug-ligand, conjugates, synthesis therof, and intermediated thereto (patent). https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2012015681 (2012).

  142. Edgerton, D. S. et al. Targeting insulin to the liver corrects defects in glucose metabolism caused by peripheral insulin delivery. JCI Insight 5, e126974 (2019).

    Article  Google Scholar 

  143. Cefalu, W. T. et al. Insulin Access and Affordability Working Group: Conclusions and Recommendations. Diabetes Care 41, 1299–1311 (2018).

    Article  PubMed  Google Scholar 

  144. Fralick, M. & Kesselheim, A. S. The US insulin crisis - rationing a lifesaving medication discovered in the 1920s. N. Engl. J. Med. 381, 1793–1795 (2019).

    Article  PubMed  Google Scholar 

  145. Luo, J., Kesselheim, A. S., Greene, J. & Lipska, K. J. Strategies to improve the affordability of insulin in the USA. Lancet Diabetes Endocrinol. 5, 158–159 (2017).

    Article  PubMed  Google Scholar 

  146. Luo, J., Avorn, J. & Kesselheim, A. S. Trends in medicaid reimbursements for insulin from 1991 through 2014. JAMA Intern. Med. 175, 1681–1686 (2015).

    Article  PubMed  Google Scholar 

  147. Somogyi, M., Doisy, E. A. & Shaffer, P. A. On the preparation of insulin. J. Biol. Chem. 60, 31–58 (1924).

    Article  CAS  Google Scholar 

  148. Abel, J. J. Crystalline insulin. Proc. Natl Acad. Sci. USA 12, 132–136 (1926).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Sjogren, B. & Svedberg, T. The molecular weight of insulin. J. Am. Chem. Soc. 53, 2657–2661 (1931).

    Article  CAS  Google Scholar 

  150. Crowfoot, D. X-ray single crystal photographs of insulin. Nature 135, 591–592 (1935).

    Article  CAS  Google Scholar 

  151. Sanger, F. & Tuppy, H. The amino-acid sequence in the phenylalanyl chain of insulin. I. The identification of lower peptides from partial hydrolysates. Biochem. J. 49, 463–481 (1951).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Sanger, F. & Tuppy, H. The amino-acid sequence in the phenylalanyl chain of insulin. 2. The investigation of peptides from enzymic hydrolysates. Biochem. J. 49, 481–490 (1951).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sanger, F. & Thompson, E. O. The amino-acid sequence in the glycyl chain of insulin. I. The identification of lower peptides from partial hydrolysates. Biochem. J. 53, 353–366 (1953).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sanger, F. & Thompson, E. O. The amino-acid sequence in the glycyl chain of insulin. II. The investigation of peptides from enzymic hydrolysates. Biochem. J. 53, 366–374 (1953).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yalow, R. S. & Berson, S. A. Immunoassay of endogenous plasma insulin in man. J. Clin. Invest. 39, 1157–1175 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Chantal Mathieu.

Ethics declarations

Competing interests

C.M. serves or has served on the advisory panel for Novo Nordisk, Sanofi, Merck Sharp and Dohme Ltd., Eli Lilly and Company, Novartis, AstraZeneca, Boehringer Ingelheim, Roche, Medtronic, ActoBio Therapeutics, Pfizer, Insulet and Zealand Pharma. Financial compensation for these activities has been received by KU Leuven; KU Leuven has received research support for C.M. from Medtronic, Novo Nordisk, Sanofi and ActoBio Therapeutics; C.M. serves or has served on the speakers’ bureau for Novo Nordisk, Sanofi, Eli Lilly and Company, Boehringer Ingelheim, AstraZeneca and Novartis. Financial compensation for these activities has been received by KU Leuven. R.V. serves or has served on the speakers’ bureau for Novo Nordisk, Sanofi, Boehringer Ingelheim, AstraZeneca and Mundipharma. Financial compensation for these activities has been received by KU Leuven. P.-J. M. declares no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathieu, C., Martens, PJ. & Vangoitsenhoven, R. One hundred years of insulin therapy. Nat Rev Endocrinol 17, 715–725 (2021). https://doi.org/10.1038/s41574-021-00542-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-021-00542-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing