Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hepatic sexual dimorphism — implications for non-alcoholic fatty liver disease

Abstract

The liver is often thought of as a single functional unit, but both its structural and functional architecture make it highly multivalent and adaptable. In any given physiological situation, the liver can maintain metabolic homeostasis, conduct appropriate inflammatory responses, carry out endobiotic and xenobiotic transformation and synthesis reactions, as well as store and release multiple bioactive molecules. Moreover, the liver is a very resilient organ. This resilience means that chronic liver diseases can go unnoticed for decades, yet culminate in life-threatening clinical complications once the adaptive capacity of the liver is overwhelmed. Non-alcoholic fatty liver disease (NAFLD) predisposes individuals to cirrhosis and increases liver-related and cardiovascular disease-related mortality. This Review discusses the accumulating evidence of sexual dimorphism in NAFLD, which is currently rarely considered in preclinical and clinical studies. Increased awareness of the mechanistic causes of hepatic sexual dimorphism could lead to improved understanding of the biological processes that are dysregulated in NAFLD, to the identification of relevant therapeutic targets and to improved risk stratification of patients with NAFLD undergoing therapeutic intervention.

Key points

  • Liver pathophysiology is sexually dimorphic.

  • Male individuals predominantly show more severe stages of non-alcoholic fatty liver, non-alcoholic steatohepatitis (NASH) and fibrosis than do female individuals.

  • Individual variations in humans require large cohorts to identify sex-specific features of non-alcoholic fatty liver disease (NAFLD).

  • Preclinical and clinical investigations of NAFLD and of fibrosis rarely consider sex as a biological variable.

  • The time (and technologies) are ripe for investigating the sexual dimorphism of liver diseases in time and space.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Main physiological pathways involved in liver sexual dimorphism.
Fig. 2: Progression of NAFLD is influenced by sexual dimorphism.

Similar content being viewed by others

References

  1. Schork, N. J. Personalized medicine: time for one-person trials. Nature 520, 609–611 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Prendergast, B. J., Onishi, K. G. & Zucker, I. Female mice liberated for inclusion in neuroscience and biomedical research. Neurosci. Biobehav. Rev. 40, 1–5 (2014).

    Article  PubMed  Google Scholar 

  3. Woitowich, N. C. & Woodruff, T. K. Opinion: research community needs to better appreciate the value of sex-based research. Proc. Natl Acad. Sci. USA 116, 7154–7156 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lam, C. S. P. et al. Sex differences in heart failure. Eur. Heart J. 40, 3859–3868 (2019).

    Article  PubMed  Google Scholar 

  5. Gannon, M., Kulkarni, R. N., Tse, H. M. & Mauvais-Jarvis, F. Sex differences underlying pancreatic islet biology and its dysfunction. Mol. Metab. 15, 82–91 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rubin, J. B. et al. Sex differences in cancer mechanisms. Biol. Sex. Differ. 11, 17–46 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kokturk, N., Kilic, H., Baha, A., Lee, S. D. & Jones, P. W. Sex difference in chronic obstructive lung disease. Does it matter? A concise review. COPD 13, 799–806 (2016).

    Article  PubMed  Google Scholar 

  8. Mauvais-Jarvis, F. et al. Sex and gender: modifiers of health, disease, and medicine. Lancet 396, 565–582 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lonardo, A. & Suzuki, A. Sexual dimorphism of NAFLD in adults. Focus on clinical aspects and implications for practice and translational research. J. Clin. Med. 9, 1278–1307 (2020).

    Article  PubMed Central  Google Scholar 

  10. Ludwig, J., Viggiano, T. R., McGill, D. B. & Oh, B. J. Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin. Proc. 55, 434–438 (1980).

    CAS  PubMed  Google Scholar 

  11. Younossi, Z. M. et al. From NAFLD to MAFLD: implications of a premature change in terminology. Hepatology https://doi.org/10.1002/hep.31420 (2020).

    Article  PubMed  Google Scholar 

  12. Eslam, M. et al. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 158, 1999–2014 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. James, O. F. & Day, C. P. Non-alcoholic steatohepatitis (NASH): a disease of emerging identity and importance. J. Hepatol. 29, 495–501 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. James, O. & Day, C. Non-alcoholic steatohepatitis: another disease of affluence. Lancet 353, 1634–1636 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Dowman, J. K., Tomlinson, J. W. & Newsome, P. N. Pathogenesis of non-alcoholic fatty liver disease. QJM 103, 71–83 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Tilg, H., Adolph, T. E. & Moschen, A. R. Multiple parallel hits hypothesis in NAFLD — revisited after a decade. Hepatology 73, 833–842 (2021).

    Article  PubMed  Google Scholar 

  17. Kolodziejczyk, A. A., Zheng, D., Shibolet, O. & Elinav, E. The role of the microbiome in NAFLD and NASH. EMBO Mol. Med. 11, e9302 (2019).

    Article  PubMed  CAS  Google Scholar 

  18. Eslam, M., Valenti, L. & Romeo, S. Genetics and epigenetics of NAFLD and NASH: clinical impact. J. Hepatol. 68, 268–279 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Younossi, Z. et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 15, 11–20 (2018).

    Article  PubMed  Google Scholar 

  20. Sheka, A. C. et al. Nonalcoholic steatohepatitis: a review. JAMA 323, 1175–1183 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Ye, Q. et al. Global prevalence, incidence, and outcomes of non-obese or lean non-alcoholic fatty liver disease: a systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 5, 739–752 (2020).

    Article  PubMed  Google Scholar 

  22. Chen, F. et al. Lean NAFLD: a distinct entity shaped by differential metabolic adaptation. Hepatology 71, 1213–1227 (2019).

    Article  CAS  Google Scholar 

  23. Chang, Y. et al. Metabolically healthy obesity and the development of nonalcoholic fatty liver disease. Am. J. Gastroenterol. 111, 1133–1140 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Younossi, Z. M. et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: a systematic review and meta-analysis. J. Hepatol. 71, 793–801 (2019).

    Article  PubMed  Google Scholar 

  25. Jarvis, H. et al. Metabolic risk factors and incident advanced liver disease in non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of population-based observational studies. PLoS Med. 17, e1003100 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Targher, G., Byrne, C. D. & Tilg, H. NAFLD and increased risk of cardiovascular disease: clinical associations, pathophysiological mechanisms and pharmacological implications. Gut 69, 1691–1705 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Hagstrom, H. et al. Fibrosis stage but not NASH predicts mortality and time to development of severe liver disease in biopsy-proven NAFLD. J. Hepatol. 67, 1265–1273 (2017).

    Article  PubMed  Google Scholar 

  28. Deprince, A., Haas, J. T. & Staels, B. Dysregulated lipid metabolism links NAFLD to cardiovascular disease. Mol. Metab. 42, 101092 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Haas, J. T., Francque, S. & Staels, B. Pathophysiology and mechanisms of nonalcoholic fatty liver disease. Annu. Rev. Physiol. 78, 181–205 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Schwabe, R. F., Tabas, I. & Pajvani, U. B. Mechanisms of fibrosis development in NASH. Gastroenterology 158, 1913–1928 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Smith, G. I. et al. Insulin resistance drives hepatic de novo lipogenesis in nonalcoholic fatty liver disease. J. Clin. Invest. 130, 1453–1460 (2019).

    Article  Google Scholar 

  32. Goossens, G. H., Jocken, J. W. E. & Blaak, E. E. Sexual dimorphism in cardiometabolic health: the role of adipose tissue, muscle and liver. Nat. Rev. Endocrinol. 17, 47–66 (2021).

    Article  PubMed  Google Scholar 

  33. Romero, F. A., Jones, C. T., Xu, Y., Fenaux, M. & Halcomb, R. L. The race to bash NASH: emerging targets and drug development in a complex liver disease. J. Med. Chem. 63, 5031–5073 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Jensen, V. S. et al. Variation in diagnostic NAFLD/NASH read-outs in paired liver samples from rodent models. J. Pharmacol. Toxicol. Methods 101, 106651–106660 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Rinella, M. E. et al. Report on the AASLD/EASL joint workshop on clinical trial endpoints in NAFLD. J. Hepatol. 71, 823–833 (2019).

    Article  PubMed  Google Scholar 

  36. Ren, C. & Sylvia, K. E. Sexual dimorphism in the gut microbiome. IU J. Undergrad. Res. 4, 12–16 (2018).

    Article  Google Scholar 

  37. Jaillon, S., Berthenet, K. & Garlanda, C. Sexual dimorphism in innate immunity. Clin. Rev. Allergy Immunol. 56, 308–321 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Roy, A. K. & Chatterjee, B. Sexual dimorphism in the liver. Annu. Rev. Physiol. 45, 37–50 (1983).

    Article  CAS  PubMed  Google Scholar 

  39. Klaassen, C. D. & Aleksunes, L. M. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol. Rev. 62, 1–96 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Della Torre, S. & Maggi, A. Sex differences: a resultant of an evolutionary pressure? Cell Metab. 25, 499–505 (2017).

    Article  PubMed  CAS  Google Scholar 

  41. Maggi, A. & Della Torre, S. Sex, metabolism and health. Mol. Metab. 15, 3–7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Justo, R. et al. Gender dimorphism in rat liver mitochondrial oxidative metabolism and biogenesis. Am. J. Physiol. Cell Physiol. 289, C372–C378 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Weger, B. D. et al. The mouse microbiome is required for sex-specific diurnal rhythms of gene expression and metabolism. Cell Metab. 29, 1–21 (2018).

    Google Scholar 

  44. Jansson, J. O., Edén, S. & Isaksson, O. Sexual dimorphism in the control of growth hormone secretion. Endocr. Rev. 6, 128–150 (1985).

    Article  CAS  PubMed  Google Scholar 

  45. Waxman, D. J. & Holloway, M. G. Sex differences in the expression of hepatic drug metabolizing enzymes. Mol. Pharmacol. 76, 215–228 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Davey, H. W., Wilkins, R. J. & Waxman, D. J. STAT5 signaling in sexually dimorphic gene expression and growth patterns. Am. J. Hum. Genet. 65, 959–965 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Waxman, D. J. & O’Connor, C. Growth hormone regulation of sex-dependent liver gene expression. Mol. Endocrinol. 20, 2613–2629 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Zheng, D., Wang, X., Antonson, P., Gustafsson, J. & Li, Z. Genomics of sex hormone receptor signaling in hepatic sexual dimorphism. Mol. Cell Endocrinol. 471, 33–41 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Rando, G. & Wahli, W. Sex differences in nuclear receptor-regulated liver metabolic pathways. Biochim. Biophys. Acta 1812, 964–973 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Yang, X., Zhang, Y. K., Esterly, N., Klaassen, C. D. & Wan, Y. J. Gender disparity of hepatic lipid homoeostasis regulated by the circadian clock. J. Biochem. 145, 609–623 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Qian, J. et al. Sex differences in the circadian misalignment effects on energy regulation. Proc. Natl Acad. Sci. USA 116, 23806–23812 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sheng, L. et al. Gender differences in bile acids and microbiota in relationship with gender dissimilarity in steatosis induced by diet and FXR inactivation. Sci. Rep. 7, 1748 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Chiang, J. Y. L. Linking sex differences in non-alcoholic fatty liver disease to bile acid signaling, gut microbiota, and high fat diet. Am. J. Pathol. 187, 1658–1659 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jena, P. K. et al. Western diet-induced dysbiosis in farnesoid X receptor knockout mice causes persistent hepatic inflammation after antibiotic treatment. Am. J. Pathol. 187, 1800–1813 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Giles, D. A. et al. Thermoneutral housing exacerbates nonalcoholic fatty liver disease in mice and allows for sex-independent disease modeling. Nat. Med. 23, 829–838 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nobs, S. P., Tuganbaev, T. & Elinav, E. Microbiome diurnal rhythmicity and its impact on host physiology and disease risk. EMBO Rep. 20, e47129 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Fernandez-Perez, L. et al. in Chemistry and Biological Activity of Steroids (eds Ribeiro Salvador, J. A. & Cruz Silva, M. M.) Ch.4 (Intechopen, 2019).

  58. Jansson, J. O. & Frohman, L. A. Differential effects of neonatal and adult androgen exposure on the growth hormone secretory pattern in male rats. Endocrinology 120, 1551–1557 (1987).

    Article  CAS  PubMed  Google Scholar 

  59. Reizel, Y. et al. Gender-specific postnatal demethylation and establishment of epigenetic memory. Genes Dev. 29, 923–933 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hosui, A. & Hennighausen, L. Genomic dissection of the cytokine-controlled STAT5 signaling network in liver. Physiol. Genomics 34, 135–143 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Clodfelter, K. H. et al. Sex-dependent liver gene expression is extensive and largely dependent upon signal transducer and activator of transcription 5b (STAT5b): STAT5b-dependent activation of male genes and repression of female genes revealed by microarray analysis. Mol. Endocrinol. 20, 1333–1351 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Lau-Corona, D., Suvorov, A. & Waxman, D. J. Feminization of male mouse liver by persistent growth hormone stimulation: activation of sex-biased transcriptional networks and dynamic changes in chromatin states. Mol. Cell Biol. 37, e00301–e00317 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Palmisano, B. T., Zhu, L. & Stafford, J. M. Role of estrogens in the regulation of liver lipid metabolism. Adv. Exp. Med. Biol. 1043, 227–256 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mittendorfer, B. Sexual dimorphism in human lipid metabolism. J. Nutr. 135, 681–686 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Phelps, T., Snyder, E., Rodriguez, E., Child, H. & Harvey, P. The influence of biological sex and sex hormones on bile acid synthesis and cholesterol homeostasis. Biol. Sex. Differ. 10, 52–64 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Koulouri, O., Ostberg, J. & Conway, G. S. Liver dysfunction in Turner’s syndrome: prevalence, natural history and effect of exogenous oestrogen. Clin. Endocrinol. 69, 306–310 (2008).

    Article  CAS  Google Scholar 

  67. Tramunt, B. et al. Sex differences in metabolic regulation and diabetes susceptibility. Diabetologia 63, 453–461 (2020).

    Article  PubMed  Google Scholar 

  68. Shen, M. & Shi, H. Sex hormones and their receptors regulate liver energy homeostasis. Int. J. Endocrinol. 2015, 294278 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Grossmann, M., Wierman, M. E., Angus, P. & Handelsman, D. J. Reproductive endocrinology of nonalcoholic fatty liver disease. Endocr. Rev. 40, 417–446 (2019).

    Article  PubMed  Google Scholar 

  70. Sharma, G. & Prossnitz, E. R. G-protein-coupled estrogen receptor (GPER) and sex-specific metabolic homeostasis. Adv. Exp. Med. Biol. 1043, 427–453 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Meda, C. et al. Hepatic ERα accounts for sex differences in the ability to cope with an excess of dietary lipids. Mol. Metab. 32, 97–108 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Anderson, S. T. & Fitzgerald, G. A. Sexual dimorphism in body clocks. Science 369, 1164–1165 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Saran, A. R., Dave, S. & Zarrinpar, A. Circadian rhythms in the pathogenesis and treatment of fatty liver disease. Gastroenterology 158, 1948–1966 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Mukherji, A., Bailey, S. M., Staels, B. & Baumert, T. F. The circadian clock and liver function in health and disease. J. Hepatol. 71, 200–211 (2019).

    Article  PubMed  Google Scholar 

  75. Stols-Goncalves, D., Hovingh, G. K., Nieuwdorp, M. & Holleboom, A. G. NAFLD and atherosclerosis: two sides of the same dysmetabolic coin? Trends Endocrinol. Metab. 30, 891–902 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Anstee, Q. M., Reeves, H. L., Kotsiliti, E., Govaere, O. & Heikenwalder, M. From NASH to HCC: current concepts and future challenges. Nat. Rev. Gastroenterol. Hepatol. 16, 411–428 (2019).

    Article  PubMed  Google Scholar 

  77. Victor, R. G. et al. The Dallas Heart Study: a population-based probability sample for the multidisciplinary study of ethnic differences in cardiovascular health. Am. J. Cardiol. 93, 1473–1480 (2004).

    Article  PubMed  Google Scholar 

  78. Browning, J. D. et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 40, 1387–1395 (2004).

    Article  PubMed  Google Scholar 

  79. Guerrero, R., Vega, G. L., Grundy, S. M. & Browning, J. D. Ethnic differences in hepatic steatosis: an insulin resistance paradox? Hepatology 49, 791–801 (2009).

    Article  PubMed  Google Scholar 

  80. Romeo, S. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 40, 1461–1465 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mashek, D. G. Hepatic lipid droplets: a balancing act between energy storage and metabolic dysfunction in NAFLD. Mol. Metab. https://doi.org/10.1016/j.molmet.2020.101115 (2020).

  82. Trepo, E. & Valenti, L. Update on NAFLD genetics: from new variants to the clinic. J. Hepatol. 72, 1196–1209 (2020).

    Article  CAS  PubMed  Google Scholar 

  83. Loomba, R. et al. Heritability of hepatic fibrosis and steatosis based on a prospective twin study. Gastroenterology 149, 1784–1793 (2015).

    Article  PubMed  Google Scholar 

  84. Verrijken, A. et al. A gene variant of PNPLA3, but not of APOC3, is associated with histological parameters of NAFLD in an obese population. Obesity 21, 2138–2145 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Parisinos, C. A. et al. Genome-wide and Mendelian randomisation studies of liver MRI yield insights into the pathogenesis of steatohepatitis. J. Hepatol. 73, 241–325 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Petaja, E. M. & Yki-Jarvinen, H. Definitions of normal liver fat and the association of insulin sensitivity with acquired and genetic NAFLD—a systematic review. Int. J. Mol. Sci. 17, 633–649 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  87. Yki-Jarvinen, H. & Luukkonen, P. K. Heterogeneity of non-alcoholic fatty liver disease. Liver Int. 35, 2498–2500 (2015).

    Article  PubMed  Google Scholar 

  88. Stender, S. et al. Adiposity amplifies the genetic risk of fatty liver disease conferred by multiple loci. Nat. Genet. 49, 842–847 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ballestri, S. et al. NAFLD as a sexual dimorphic disease: role of gender and reproductive status in the development and progression of nonalcoholic fatty liver disease and inherent cardiovascular risk. Adv. Ther. 34, 1291–1326 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Beaudry, K. M. & Devries, M. C. Sex-based differences in hepatic and skeletal muscle triglyceride storage and metabolism. Appl. Physiol. Nutr. Metab. 44, 805–813 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Tian, G. X. et al. Oestradiol is a protective factor for non-alcoholic fatty liver disease in healthy men. Obes. Rev. 13, 381–387 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Cai, M. J., Kong, X. N. & Zhao, X. Y. Influences of gender and age on the prevalence and complications of nonalcoholic fatty liver disease. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 39, 499–505 (2017).

    PubMed  Google Scholar 

  93. Younossi, Z. M. et al. Global epidemiology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64, 73–84 (2016).

    Article  PubMed  Google Scholar 

  94. Ribeiro, A., Igual-Perez, M. J., Santos Silva, E. & Sokal, E. M. Childhood fructoholism and fructoholic liver disease. Hepatol. Commun. 3, 44–51 (2019).

    Article  PubMed  Google Scholar 

  95. Nobili, V., Alisi, A., Newton, K. P. & Schwimmer, J. B. Comparison of the phenotype and approach to pediatric vs adult patients with nonalcoholic fatty liver disease. Gastroenterology 150, 1798–1810 (2016).

    Article  PubMed  Google Scholar 

  96. Mueller, N. T. et al. Sex hormone relations to histologic severity of pediatric nonalcoholic fatty liver disease. J. Clin. Endocrinol. Metab. 105, 3496–3504 (2020).

    Article  PubMed Central  Google Scholar 

  97. Hatton, G., Alterio, T., Nobili, V. & Mann, J. P. Unmet needs in pediatric NAFLD research: what do we need to prioritize for the future? Expert. Rev. Gastroenterol. Hepatol. 12, 961–967 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Arun, J., Clements, R. H., Lazenby, A. J., Leeth, R. R. & Abrams, G. A. The prevalence of nonalcoholic steatohepatitis is greater in morbidly obese men compared to women. Obes. Surg. 16, 1351–1358 (2006).

    Article  PubMed  Google Scholar 

  99. Skubic, C., Drakulić, Ž. & Rozman, D. Personalized therapy when tackling nonalcoholic fatty liver disease: a focus on sex, genes, and drugs. Expert Opin. Drug Metab. Toxicol. 14, 831–841 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Lonardo, A. et al. Sex differences in NAFLD: state of the art and identification of research gaps. Hepatology 70, 1457–1469 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Petrick, J. L. et al. International trends in hepatocellular carcinoma incidence, 1978–2012. Int. J. Cancer 147, 317–330 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. El-Serag, H. B. & Rudolph, K. L. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132, 2557–2576 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Durazzo, M. et al. Gender specific medicine in liver diseases: a point of view. World J. Gastroenterol. 20, 2127–2135 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Yang, J. D. et al. Gender and menopause impact severity of fibrosis among patients with nonalcoholic steatohepatitis. Hepatology 59, 1406–1414 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Klair, J. S. et al. A longer duration of estrogen deficiency increases fibrosis risk among postmenopausal women with nonalcoholic fatty liver disease. Hepatology 64, 85–91 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Turola, E. et al. Ovarian senescence increases liver fibrosis in humans and zebrafish with steatosis. Dis. Model. Mech. 8, 1037–1046 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Lee, C., Kim, J. & Jung, Y. Potential therapeutic application of estrogen in gender disparity of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Cells 8, 1259–1279 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  108. Kumarendran, B. et al. Polycystic ovary syndrome, androgen excess, and the risk of nonalcoholic fatty liver disease in women: a longitudinal study based on a United Kingdom primary care database. PLoS Med. 15, e1002542–e1002562 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Ali, M. A. et al. Nonalcoholic steatohepatitis-related hepatocellular carcinoma: is there a role for the androgen receptor pathway? Onco Targets Ther. 10, 1403–1412 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Negro, F. Natural history of NASH and HCC. Liver Int. 40 (Suppl. 1), 72–76 (2020).

    Article  PubMed  Google Scholar 

  111. Altayar, O., Noureddin, N., Thanda Han, M. A., Murad, M. H. & Noureddin, M. Fibrosis changes in the placebo arm of NASH clinical trials. Clin. Gastroenterol. Hepatol. 17, 2387 (2019).

    Article  PubMed  Google Scholar 

  112. Singh, S. et al. Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies. Clin. Gastroenterol. Hepatol. 13, 643–654 (2015).

    Article  PubMed  Google Scholar 

  113. Angulo, P. et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 149, 389–397 (2015).

    Article  PubMed  Google Scholar 

  114. Ekstedt, M. et al. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 61, 1547–1554 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Dulai, P. S. et al. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: systematic review and meta-analysis. Hepatology 65, 1557–1565 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Ramachandran, P. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512–518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Moylan, C. A. et al. Hepatic gene expression profiles differentiate presymptomatic patients with mild versus severe nonalcoholic fatty liver disease. Hepatology 59, 471–482 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Arendt, B. M. et al. Altered hepatic gene expression in nonalcoholic fatty liver disease is associated with lower hepatic ω-3 and ω-6 polyunsaturated fatty acids. Hepatology 61, 1565–1578 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Lefebvre, P. et al. Interspecies NASH disease activity whole-genome profiling identifies a fibrogenic role of PPARα-regulated dermatopontin. JCI Insight 2, 92264–92281 (2017).

    Article  PubMed  Google Scholar 

  120. Haas, J. T. et al. Transcriptional network analysis implicates altered hepatic immune function in NASH development and resolution. Nat. Metab. 1, 604–614 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Suppli, M. P. et al. Hepatic transcriptome signatures in patients with varying degrees of nonalcoholic fatty liver disease compared with healthy normal-weight individuals. Am. J. Physiol. Gastrointest. Liver Physiol. 316, G462–G472 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Gerhard, G. S. et al. Transcriptomic profiling of obesity-related nonalcoholic steatohepatitis reveals a core set of fibrosis-specific genes. J. Endocr. Soc. 2, 710–726 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ratziu, V. Back to Byzance: querelles byzantines over NASH and fibrosis. J. Hepatol. 67, 1134–1136 (2017).

    Article  PubMed  Google Scholar 

  124. Chen, W. et al. Multi-transcriptome analyses reveal prioritized genes specifically associated with liver fibrosis progression independent of etiology. Am. J. Physiol. Gastrointest. Liver Physiol. 316, G744–G754 (2019).

    Article  CAS  PubMed  Google Scholar 

  125. Vandel, J. et al. Hepatic molecular signatures highlight the sexual dimorphism of non-alcoholic steatohepatitis (NASH). Hepatology 73, 920–936 (2020).

    Article  PubMed  CAS  Google Scholar 

  126. Zhang, Y. et al. Transcriptional profiling of human liver identifies sex-biased genes associated with polygenic dyslipidemia and coronary artery disease. PLoS ONE 6, e23506–e23522 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Puri, P. et al. The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology 50, 1827–1838 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Loomba, R., Quehenberger, O., Armando, A. & Dennis, E. A. Polyunsaturated fatty acid metabolites as novel lipidomic biomarkers for noninvasive diagnosis of nonalcoholic steatohepatitis. J. Lipid Res. 56, 185–192 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gaggini, M. et al. Altered amino acid concentrations in NAFLD: impact of obesity and insulin resistance. Hepatology 67, 145–158 (2017).

    Article  PubMed  CAS  Google Scholar 

  130. van den Berg, E. H. et al. Non-alcoholic fatty liver disease and risk of incident type 2 diabetes: role of circulating branched-chain amino acids. Nutrients 11, 705–720 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  131. Lake, A. D. et al. Branched chain amino acid metabolism profiles in progressive human nonalcoholic fatty liver disease. Amino Acids 47, 603–615 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Hoyles, L. et al. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat. Med. 24, 1070–1080 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Grzych, G. et al. Plasma BCAA changes in patients with NAFLD are sex dependent. J. Clin. Endocrinol. Metab. 105, 2311–2321 (2020).

    Article  Google Scholar 

  134. Terakura, D. et al. Preventive effects of branched-chain amino acid supplementation on the spontaneous development of hepatic preneoplastic lesions in C57BL/KsJ-db/db obese mice. Carcinogenesis 33, 2499–2506 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Miyake, T. et al. Long-term branched-chain amino acid supplementation improves glucose tolerance in patients with nonalcoholic steatohepatitis-related cirrhosis. Int. Med. 51, 2151–2155 (2012).

    Article  CAS  Google Scholar 

  136. Canfora, E. E., Meex, R. C. R., Venema, K. & Blaak, E. E. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat. Rev. Endocrinol. 15, 261–273 (2019).

    Article  CAS  PubMed  Google Scholar 

  137. Pietrangelo, A. Iron in NASH, chronic liver diseases and HCC: how much iron is too much? J. Hepatol. 50, 249–251 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Handa, P. et al. Iron overload results in hepatic oxidative stress, immune cell activation, and hepatocellular ballooning injury, leading to nonalcoholic steatohepatitis in genetically obese mice. Am. J. Physiol. Gastrointest. Liver Physiol. 310, G117–G127 (2016).

    Article  PubMed  Google Scholar 

  139. Margerie, D. et al. Hepatic transcriptomic signatures of statin treatment are associated with impaired glucose homeostasis in severely obese patients. BMC Med. Genomics 12, 80 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Clocchiatti, A., Cora, E., Zhang, Y. & Dotto, G. P. Sexual dimorphism in cancer. Nat. Rev. Cancer 16, 330–339 (2016).

    Article  CAS  PubMed  Google Scholar 

  141. Natri, H. M., Wilson, M. A. & Buetow, K. H. Distinct molecular etiologies of male and female hepatocellular carcinoma. BMC Cancer 19, 951–963 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Forner, A., Reig, M. & Bruix, J. Hepatocellular carcinoma. Lancet 391, 1301–1314 (2018).

    Article  PubMed  Google Scholar 

  143. Reddy, S. K. et al. Outcomes of curative treatment for hepatocellular cancer in nonalcoholic steatohepatitis versus hepatitis C and alcoholic liver disease. Hepatology 55, 1809–1819 (2012).

    Article  PubMed  Google Scholar 

  144. Yasui, K. et al. Characteristics of patients with nonalcoholic steatohepatitis who develop hepatocellular carcinoma. Clin. Gastroenterol. Hepatol. 9, 428–433 (2011).

    Article  PubMed  Google Scholar 

  145. Gupta, R. K. & Kaestner, K. H. HNF-4α: from MODY to late-onset type 2 diabetes. Trends Mol. Med. 10, 521–524 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Lau, H. H., Ng, N. H. J., Loo, L. S. W., Jasmen, J. B. & Teo, A. K. K. The molecular functions of hepatocyte nuclear factors — in and beyond the liver. J. Hepatol. 68, 1033–1048 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Fekry, B. et al. HNF4α-deficient fatty liver provides a permissive environment for sex-independent hepatocellular carcinoma. Cancer Res. 79, 5860–5873 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Varlamov, O., Bethea, C. L. & Roberts, C. T. Jr. Sex-specific differences in lipid and glucose metabolism. Front. Endocrinol. 5, 241–248 (2014).

    Google Scholar 

  149. Aldhoon-Hainerova, I. et al. Glucose homeostasis and insulin resistance: prevalence, gender differences and predictors in adolescents. Diabetol. Metab. Syndr. 6, 100–109 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Weger, B. D., Rawashdeh, O. & Gachon, F. At the intersection of microbiota and circadian clock: are sexual dimorphism and growth hormones the missing link to pathology? Circadian clock and microbiota: potential effect on growth hormone and sexual development. Bioessays 41, e1900059 (2019).

    Article  PubMed  Google Scholar 

  151. Bloor, I. D. & Symonds, M. E. Sexual dimorphism in white and brown adipose tissue with obesity and inflammation. Horm. Behav. 66, 95–103 (2014).

    Article  PubMed  Google Scholar 

  152. Moreira-Pais, A. et al. Sex differences on adipose tissue remodeling: from molecular mechanisms to therapeutic interventions. J. Mol. Med. 98, 483–493 (2020).

    Article  CAS  PubMed  Google Scholar 

  153. Korf, H., Boesch, M., Meelberghs, L. & van der Merwe, S. Macrophages as key players during adipose tissue-liver crosstalk in nonalcoholic fatty liver disease. Semin. Liver Dis. 39, 291–300 (2019).

    Article  CAS  PubMed  Google Scholar 

  154. Van Herck, M. A. et al. The differential roles of T cells in non-alcoholic fatty liver disease and obesity. Front. Immunol. 10, 82–102 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Vasanthakumar, A. et al. Sex-specific adipose tissue imprinting of regulatory T cells. Nature 579, 581–585 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Remmerie, A., Martens, L. & Scott, C. L. Macrophage subsets in obesity, aligning the liver and adipose tissue. Front. Endocrinol. 11, 259–264 (2020).

    Article  Google Scholar 

  157. Brier, A. B. et al. The KDM5 family is required for activation of pro-proliferative cell cycle genes during adipocyte differentiation. Nucleic Acids Res. 45, 1743–1759 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  158. Link, J. C. et al. X chromosome dosage of histone demethylase KDM5C determines sex differences in adiposity. J. Clin. Invest. 130, 5688–5701 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kaltenecker, D. et al. Hepatic growth hormone–JAK2–STAT5 signalling: metabolic function, non-alcoholic fatty liver disease and hepatocellular carcinoma progression. Cytokine 124, 154569–154581 (2019).

    Article  CAS  PubMed  Google Scholar 

  160. Wattacheril, J. et al. Non-alcoholic fatty liver disease phosphoproteomics: a functional piece of the precision puzzle. Hepatol. Res. 47, 1469–1483 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kurt, Z. et al. Tissue-specific pathways and networks underlying sexual dimorphism in non-alcoholic fatty liver disease. Biol. Sex. Differ. 9, 46–60 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Cvitanović Tomaš, T., Urlep, Ž., Moškon, M., Mraz, M. & Rozman, D. LiverSex computational model: sexual aspects in hepatic metabolism and abnormalities. Front. Physiol. 9, 360–372 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Haczeyni, F. et al. Mouse models of non-alcoholic steatohepatitis: a reflection on recent literature. J. Gastroenterol. Hepatol. 33, 1312–1320 (2018).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors’ research work was supported by grants from Agence Nationale pour la Recherche (ANR-16-RHUS-0006-PreciNASH and ANR-10-LBEX-46 to P.L. and B.S.), the European Union (FP6 Hepadip FP6-018734 and FP7 Resolve FP7-305707 to B.S.), Fondation de France (grant 2014 00047965 to P.L.), Fondation pour la Recherche Médicale (Equipe labellisée DEQ20150331724 to P.L.). B.S. is a recipient of an Advanced ERC Grant (694717).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Philippe Lefebvre.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks L. Valenti, J. Sethi, who co-reviewed with J. Bilson, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Expandability

The capacity of adipocytes to proliferate and differentiate, particularly in a metabolically challenging environment.

Partially refractory

A general phenomenon in receptor biology whereby continuous activation of a signalling pathway renders it less active and resistant to further stimulation.

Pioneer transcription factors

Transcription factors that are able to install an open chromatin state, thus opening new methods or ways to regulate transcription.

X-escape genes

Genes on the inactivated X chromosome that are nonetheless transcribed to produce RNA levels ≥10% of the expression of their counterparts on the active X chromosome.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lefebvre, P., Staels, B. Hepatic sexual dimorphism — implications for non-alcoholic fatty liver disease. Nat Rev Endocrinol 17, 662–670 (2021). https://doi.org/10.1038/s41574-021-00538-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-021-00538-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing