Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Improving clinical outcomes through attention to sex and hormones in research

Abstract

Biological sex, fluctuations in sex steroid hormones throughout life and gender as a social construct all influence every aspect of health and disease. Yet, for decades, most basic and clinical studies have included only male individuals. As modern health care moves towards personalized medicine, it is clear that considering sex and hormonal status in basic and clinical studies will bring precision to the development of novel therapeutics and treatment paradigms. To this end, funding, regulatory and policy agencies now require inclusion of female animals and women in basic and clinical studies. However, inclusion of female animals and women often does not mean that information regarding potential hormonal interactions with pharmacological treatments or clinical outcomes is available. All sex steroid hormones can interact with receptors for drug targets, metabolism and transport. Genetic variation in receptors or in enzymatic function might contribute to sex differences in therapeutic efficacy and adverse drug reactions. Outcomes from clinical trials are often not reported by sex, and, if the data are available, they are not translated into clinical practice guidelines. This Review will provide a historical perspective for the current state of research related to hormone trials and provide concrete strategies that, if implemented, will improve the health of all people.

Key points

  • Sex as a biological variable, variation in sex steroidal hormones throughout life and gender as a social construct influence all aspects of health and disease.

  • Inactivation of the X chromosome in XX individuals is random and might cluster within a tissue, resulting in a patchy pattern or mosaicism of X expression in female individuals; it is unclear how this mosaicism affects disease risk and progression across the lifespan.

  • Sex steroids can alter the efficacy of therapeutic interventions via multiple mechanisms and can contribute to adverse drug reactions.

  • Many contraceptives and menopausal hormone therapies are available; better understanding of their metabolism and interaction with genes is needed to develop prescription guidelines and individualized medication approaches.

  • Use of hormones (for example, testosterone, 17β-oestradiol or other androgen or oestrogen compounds), surgical history (oophorectomy or orchiectomy), pregnancy history and menopausal status should be routinely collected and considered for potential medication interactions and effects on health.

  • Clinical trial data should be reported by sex so as to improve transparency and reproducibility, and to inform future studies and treatment guidelines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sex steroids influence cellular processes through both genomic and non-genomic regulation.

Similar content being viewed by others

References

  1. Merkatz, R. B. et al. Women in clinical trials of new drugs — a change in Food and Drug Administration policy. N. Engl. J. Med. 329, 292–296 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Prendergast, B. J., Onishi, K. G. & Zucker, I. Female mice liberated for inclusion in neuroscience and biomedical research. Neurosci. Biobehav. Rev. 40, 1–5 (2014).

    Article  PubMed  Google Scholar 

  3. Itoh, Y. & Arnold, A. P. Are females more variable than males in gene expression? Meta-analysis of microarray datasets. Biol. Sex. Differ. 6, 18 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Institute of Medicine (US) Committee on Understanding the Biology of Sex and Gender Differences. in Exploring the Biological Contributions to Human Health: Does Sex Matter? (eds Wizemann, T. M. & Pardue, M. L.) (National Academies Press, 2001). This is a landmark report that conceptualizes the need for the study of sex differences.

  5. European Commission. Vademecum. Gender Mainstreaming in the 6th Framework Programme — Reference Guide for Scientific Officers/Project Officers. http://www.eurosfaire.prd.fr/bibliotheque/pdf/gender_vademecum.pdf (2003).

  6. Institute of Medicine. Sex-Specific Reporting of Scientific Research: A Workshop Summary. https://orwh.od.nih.gov/sites/orwh/files/docs/Sex-Specific-Reporting-Scientific-Research-2011.pdf (National Academies Press, 2012).

  7. Miller, V. M. In pursuit of scientific excellence: sex matters. J. Appl. Physiol. 112, 1427–1428 (2012).

    Article  PubMed  Google Scholar 

  8. Heidari, S., Babor, T. F., De Castro, P., Tort, S. & Curno, M. Sex and Gender Equity in Research: rationale for the SAGER guidelines and recommended use. Res. Integr. Peer Rev. 1, 2 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  9. European Commission. Gender equality in research and innovation. https://ec.europa.eu/info/research-and-innovation/strategy/strategy-2020-2024/democracy-and-citizens-rights/gender-equality-research-and-innovation_en (2021).

  10. Clayton, J. A. & Collins, F. S. Policy: NIH to balance sex in cell and animal studies. Nature 509, 282–283 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Collins, F. S. & Tabak, L. A. Policy: NIH plans to enhance reproducibility. Nature 505, 612–613 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Clayton, J. A. & Tannenbaum, C. Reporting sex, gender, or both in clinical research? JAMA 316, 1863–1864 (2016).

    Article  PubMed  Google Scholar 

  13. Tannenbaum, C., Ellis, R. P., Eyssel, F., Zou, J. & Schiebinger, L. Sex and gender analysis improves science and engineering. Nature 575, 137–146 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Lahn, B. T. & Page, D. C. Four evolutionary strata on the human X chromosome. Science 286, 964–967 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Bellott, D. W. et al. Convergent evolution of chicken Z and human X chromosomes by expansion and gene acquisition. Nature 466, 612–616 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Skaletsky, H. et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423, 825–837 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Mueller, J. L. et al. Independent specialization of the human and mouse X chromosomes for the male germ line. Nat. Genet. 45, 1083–1087 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bellott, D. W. et al. Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 508, 494–499 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Arnold, A. P. & Lusis, A. J. Understanding the sexome: measuring and reporting sex differences in gene systems. Endocrinology 153, 2551–2555 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maan, A. A. et al. The Y chromosome: a blueprint for men’s health? Eur. J. Hum. Genet. 25, 1181–1188 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Agrelo, R. & Wutz, A. X inactivation and disease. Semin. Cell Dev. Biol. 21, 194–200 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Wu, H. et al. Cellular resolution maps of X chromosome inactivation: implications for neural development, function, and disease. Neuron 81, 103–119 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Snell, D. M. & Turner, J. M. A. Sex chromosome effects on male−female differences in mammals. Curr. Biol. 28, R1313–R1324 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Carrel, L. & Willard, H. F. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434, 400–404 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Cotton, A. M. et al. Analysis of expressed SNPs identifies variable extents of expression from the human inactive X chromosome. Genome Biol. 14, R122 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tukiainen, T. et al. Landscape of X chromosome inactivation across human tissues. Nature 550, 244–248 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Arnold, A. P. Rethinking sex determination of non-gonadal tissues. Curr. Top. Dev. Biol. 134, 289–315 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Berletch, J. B., Yang, F. & Disteche, C. M. Escape from X inactivation in mice and humans. Genome Biol. 11, 213 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Deng, X., Berletch, J. B., Nguyen, D. K. & Disteche, C. M. X chromosome regulation: diverse patterns in development, tissues and disease. Nat. Rev. Genet. 15, 367–378 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Disteche, C. M. & Berletch, J. B. X-chromosome inactivation and escape. J. Genet. 94, 591–599 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pageau, G. J., Hall, L. L., Ganesan, S., Livingston, D. M. & Lawrence, J. B. The disappearing Barr body in breast and ovarian cancers. Nat. Rev. Cancer 7, 628–633 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Silver, D. P. et al. Further evidence for BRCA1 communication with the inactive X chromosome. Cell 128, 991–1002 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Larson, N. B. et al. An integrative approach to assess X-chromosome inactivation using allele-specific expression with applications to epithelial ovarian cancer. Genet. Epidemiol. 41, 898–914 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Winham, S. J. et al. Molecular signatures of X chromosome inactivation and associations with clinical outcomes in epithelial ovarian cancer. Hum. Mol. Genet. 28, 1331–1342 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Arnold, A. P., Cassis, L. A., Eghbali, M., Reue, K. & Sandberg, K. Sex hormones and sex chromosomes cause sex differences in the development of cardiovascular diseases. Arterioscler. Thromb. Vasc. Biol. 37, 746–756 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Konig, I. R., Loley, C., Erdmann, J. & Ziegler, A. How to include chromosome X in your genome-wide association study. Genet. Epidemiol. 38, 97–103 (2014).

    Article  PubMed  Google Scholar 

  37. Khramtsova, E. A., Davis, L. K. & Stranger, B. E. The role of sex in the genomics of human complex traits. Nat. Rev. Genet. 20, 173–190 (2019). This paper discussed the fundamental concepts of complex traits and the need for studies of sex differences.

    Article  CAS  PubMed  Google Scholar 

  38. Gao, F. et al. XWAS: a software toolset for genetic data analysis and association studies of the X chromosome. J. Hered. 106, 666–671 (2015). This paper outlines tools for analysing the sex chromosomes in genetic data.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Whiting, K. P., Restall, C. J. & Brain, P. F. Steroid hormone-induced effects on membrane fluidity and their potential roles in non-genomic mechanisms. Life Sci. 67, 743–757 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Kelly, M. J. & Levin, E. R. Rapid actions of plasma membrane estrogen receptors. Trends Endocrinol. Metab. 12, 152–156 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. McEwen, B. S. Non-genomic and genomic effects of steroids on neural activity. Trends Pharmacol. Sci. 12, 141–147 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Simoncini, T. et al. Genomic and non-genomic effects of estrogens on endothelial cells. Steroids 69, 537–542 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Yu, J. et al. Src kinase-mediates androgen receptor-dependent non-genomic activation of signaling cascade leading to endothelial nitric oxide synthase. Biochem. Biophys. Res. Commun. 424, 538–543 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Koldzic-Zivanovic, N., Seitz, P. K., Watson, C. S., Cunningham, K. A. & Thomas, M. L. Intracellular signaling involved in estrogen regulation of serotonin reuptake. Mol. Cell. Endocrinol. 226, 33–42 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Nilsson, B. O., Olde, B. & Leeb-Lundberg, L. M. G protein-coupled oestrogen receptor 1 (GPER1)/GPR30: a new player in cardiovascular and metabolic oestrogenic signalling. Br. J. Pharmacol. 163, 1131–1139 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Miller, V. M., Li, L. & Sieck, G. C. Endothelium-dependent effects of estrogen on vasomotor tone. Consequences of nongenomic actions. Vasc. Pharmacol. 38, 109–113 (2002).

    Article  CAS  Google Scholar 

  48. Ekhart, C., van Hunsel, F., Scholl, J., de Vries, S. & van Puijenbroek, E. Sex differences in reported adverse drug reactions of selective serotonin reuptake inhibitors. Drug Saf. 41, 677–683 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. de Vries, S. T. et al. Sex differences in adverse drug reactions reported to the National Pharmacovigilance Centre in the Netherlands: an explorative observational study. Br. J. Clin. Pharmacol. 85, 1507–1515 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Moyer, A. M., Matey, E. T. & Miller, V. M. Individualized medicine: sex, hormones, genetics, and adverse drug reactions. Pharmacol. Res. Perspect. 7, e00541 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Franconi, F., Brunelleschi, S., Steardo, L. & Cuomo, V. Gender differences in drug responses. Pharmacol. Res. 55, 81–95 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Martin, R. M., Biswas, P. N., Freemantle, S. N., Pearce, G. L. & Mann, R. D. Age and sex distribution of suspected adverse drug reactions to newly marketed drugs in general practice in England: analysis of 48 cohort studies. Br. J. Clin. Pharmacol. 46, 505–511 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bots, S. H. et al. Adverse drug reactions to guideline-recommended heart failure drugs in women: a systematic review of the literature. JACC Heart Fail. 7, 258–266 (2019).

    Article  PubMed  Google Scholar 

  54. Joyner, M. J., Barnes, J. N., Hart, E. C., Wallin, B. G. & Charkoudian, N. Neural control of the circulation: how sex and age differences interact in humans. Compr. Physiol. 5, 193–215 (2015).

    PubMed  PubMed Central  Google Scholar 

  55. Hart, E. C., Charkoudian, N. & Miller, V. M. Sex, hormones and neuroeffector mechanisms. Acta Physiol. 203, 155–165 (2011).

    Article  CAS  Google Scholar 

  56. Shao, S. et al. Androgen deficit changes the response to antidepressant drugs in tail suspension test in mice. Aging Male 23, 1259–1265 (2020).

    Article  PubMed  CAS  Google Scholar 

  57. Petretta, M., Costanzo, P., Perrone-Filardi, P. & Chiariello, M. Impact of gender in primary prevention of coronary heart disease with statin therapy: a meta-analysis. Int. J. Cardiol. 138, 25–31 (2010).

    Article  PubMed  Google Scholar 

  58. Hodis, H. N. & Mack, W. J. Hormone therapy and risk of all-cause mortality in women treated with statins. Menopause 22, 363–364 (2015).

    Article  PubMed  Google Scholar 

  59. Grundy, S. M. et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 139, e1046–e1081 (2019). These clinical guidelines are not sex-specific.

    PubMed  Google Scholar 

  60. Gulati, M. & Merz, C. N. New cholesterol guidelines and primary prevention in women. Trends Cardiovasc. Med. 25, 84–94 (2015).

    Article  PubMed  Google Scholar 

  61. Faubion, S. S., Kapoor, E., Moyer, A. M., Hodis, H. N. & Miller, V. M. Statin therapy: does sex matter? Menopause 26, 1425–1435 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hodis, H. N. et al. Estrogen in the prevention of atherosclerosis. A randomized, double-blind, placebo-controlled trial. Ann. Intern. Med. 135, 939–953 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Hoyer, P. B., Devine, P. J., Hu, X., Thompson, K. E. & Sipes, I. G. Ovarian toxicity of 4-vinylcyclohexene diepoxide: a mechanistic model. Toxicol. Pathol. 29, 91–99 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Van Kempen, T. A., Milner, T. A. & Waters, E. M. Accelerated ovarian failure: a novel, chemically induced animal model of menopause. Brain Res. 1379, 176–187 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Whiteman, M. K. et al. Inpatient hysterectomy surveillance in the United States, 2000−2004. Am. J. Obstet. Gynecol. 198, 34 (2008).

    Article  PubMed  Google Scholar 

  66. Walters, M. D. & Barber, M. D. Hysterectomy for Benign Disease (Saunders Elsevier, 2010).

  67. Asante, A. et al. Elective oophorectomy in the United States: trends and in-hospital complications, 1998−2006. Obstet. Gynecol. 116, 1088–1095 (2010).

    Article  PubMed  Google Scholar 

  68. Howe, H. L. Age-specific hysterectomy and oophorectomy prevalence rates and the risks for cancer of the reproductive system. Am. J. Public Health 74, 560–563 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jamison, P. M., Noone, A. M., Ries, L. A., Lee, N. C. & Edwards, B. K. Trends in endometrial cancer incidence by race and histology with a correction for the prevalence of hysterectomy, SEER 1992 to 2008. Cancer Epidemiol. Biomark. Prev. 22, 233–241 (2013).

    Article  Google Scholar 

  70. Bower, J. K., Schreiner, P. J., Sternfeld, B. & Lewis, C. E. Black−white differences in hysterectomy prevalence: the CARDIA study. Am. J. Public. Health 99, 300–307 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Mahal, A. S., Rhoads, K. F., Elliott, C. S. & Sokol, E. R. Inappropriate oophorectomy at time of benign premenopausal hysterectomy. Menopause 24, 947–953 (2017).

    Article  PubMed  Google Scholar 

  72. Gaudet, M. M. et al. Oophorectomy and hysterectomy and cancer incidence in the Cancer Prevention Study-II Nutrition Cohort. Obstet. Gynecol. 123, 1247–1255 (2014).

    Article  PubMed  Google Scholar 

  73. Parker, W. H. et al. Ovarian conservation at the time of hysterectomy and long-term health outcomes in the Nurses’ Health study. Obstet. Gynecol. 113, 1027–1037 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rocca, W. A., Grossardt, B. R., de Andrade, M., Malkasian, G. D. & Melton, L. J. III Survival patterns after oophorectomy in premenopausal women: a population-based cohort study. Lancet Oncol. 7, 821–828 (2006).

    Article  PubMed  Google Scholar 

  75. Parker, W. H. et al. Long-term mortality associated with oophorectomy compared with ovarian conservation in the Nurses’ Health study. Obstet. Gynecol. 121, 709–716 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Rocca, W. A. et al. Increased risk of parkinsonism in women who underwent oophorectomy before menopause. Neurology 70, 200–209 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Bove, R. et al. Age at surgical menopause influences cognitive decline and Alzheimer pathology in older women. Neurology 82, 222–229 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Rivera, C. M. et al. Increased cardiovascular mortality after early bilateral oophorectomy. Menopause 16, 15–23 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Mytton, J., Evison, F., Chilton, P. J. & Lilford, R. J. Removal of all ovarian tissue versus conserving ovarian tissue at time of hysterectomy in premenopausal patients with benign disease: study using routine data and data linkage. BMJ 356, j372 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Toz, E. et al. Potential adverse effects of prophylactic bilateral salpingo-oophorectomy on skin aging in premenopausal women undergoing hysterectomy for benign conditions. Menopause 23, 138–142 (2016).

    Article  PubMed  Google Scholar 

  81. Vermeulen, R. F. M., Beurden, M. V., Korse, C. M. & Kenter, G. G. Impact of risk-reducing salpingo-oophorectomy in premenopausal women. Climacteric 20, 212–221 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Rocca, W. A. et al. Bilateral oophorectomy and accelerated aging: cause or effect? J. Gerontol. A 72, 1213–1217 (2017).

    Article  Google Scholar 

  83. Levine, M. E. et al. Menopause accelerates biological aging. Proc. Natl Acad. Sci. USA 113, 9327–9332 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fogle, R. H., Stanczyk, F. Z., Zhang, X. & Paulson, R. J. Ovarian androgen production in postmenopausal women. J. Clin. Endocrinol. Metab. 92, 3040–3043 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. American Cancer Society. Cancer Facts & Figures 2020. Cancer https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2020/cancer-facts-and-figures-2020.pdf (2020).

  86. Smith, M. R. et al. Gonadotropin-releasing hormone agonists and fracture risk: a claims-based cohort study of men with nonmetastatic prostate cancer. J. Clin. Oncol. 23, 7897–7903 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Shahinian, V. B., Kuo, Y. F., Freeman, J. L. & Goodwin, J. S. Risk of fracture after androgen deprivation for prostate cancer. N. Engl. J. Med. 352, 154–164 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Dickman, P. W., Adolfsson, J., Astrom, K. & Steineck, G. Hip fractures in men with prostate cancer treated with orchiectomy. J. Urol. 172, 2208–2212 (2004).

    Article  PubMed  Google Scholar 

  89. Keating, N. L., O’Malley, A. J. & Smith, M. R. Diabetes and cardiovascular disease during androgen deprivation therapy for prostate cancer. J. Clin. Oncol. 24, 4448–4456 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Braga-Basaria, M. et al. Metabolic syndrome in men with prostate cancer undergoing long-term androgen-deprivation therapy. J. Clin. Oncol. 24, 3979–3983 (2006).

    Article  PubMed  Google Scholar 

  91. Krahn, M. et al. Androgen deprivation therapy in prostate cancer: are rising concerns leading to falling use? BJU Int. 108, 1588–1596 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Cassileth, B. R. et al. Patients’ choice of treatment in stage D prostate cancer. Urology 33, 57–62 (1989).

    Article  CAS  PubMed  Google Scholar 

  93. Sun, M. et al. Comparison of gonadotropin-releasing hormone agonists and orchiectomy: effects of androgen-deprivation therapy. JAMA Oncol. 2, 500–507 (2016).

    Article  PubMed  Google Scholar 

  94. Gialeraki, A., Valsami, S., Pittaras, T., Panayiotakopoulos, G. & Politou, M. Oral contraceptives and HRT risk of thrombosis. Clin. Appl. Thromb. Hemost. 24, 217–225 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Shufelt, C. L. & Bairey Merz, C. N. Contraceptive hormone use and cardiovascular disease. J. Am. Coll. Cardiol. 53, 221–231 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wiegratz, I. et al. Effects of an oral contraceptive containing 30 mcg ethinyl estradiol and 2 mg dienogest on lipid metabolism during 1 year of conventional or extended-cycle use. Contraception 81, 57–61 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Manzoor, S. et al. Oral contraceptive use increases risk of inflammatory and coagulatory disorders in women with polycystic ovarian syndrome: an observational study. Sci. Rep. 9, 10182 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Lee, C. R. Drug interactions and hormonal contraception. Trends Urol. Gynaecol. Sex. Health 14, 23–26 (2009).

    Article  Google Scholar 

  99. Stewart, J. et al. Birth control in clinical trials: industry survey of current use practices, governance, and monitoring. Ther. Innov. Regul. Sci. 50, 155–168 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Santoro, N., Brown, J. R., Adel, T. & Skurnick, J. H. Characterization of reproductive hormonal dynamics in the perimenopause. J. Clin. Endocrinol. Metab. 81, 1495–1501 (1996).

    CAS  PubMed  Google Scholar 

  101. Writing Group for the PEPI Trial. Effects of hormone therapy on bone mineral density: results from the postmenopausal estrogen/progestin interventions (PEPI) trial. JAMA 276, 1389–1396 (1996).

    Article  Google Scholar 

  102. Schneider, D. L., Barrett-Connor, E. L. & Morton, D. J. Timing of postmenopausal estrogen for optimal bone mineral density. The Rancho Bernardo study. JAMA 277, 543–547 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. Writing Group for the PEPI Trial. Effects of estrogen or estrogen/progestin regimens on heart disease risk factors in postmenopausal women. The Postmenopausal Estrogen/Progestin Interventions (PEPI) trial. JAMA 273, 199–208 (1995).

    Article  Google Scholar 

  104. Bush, T. L. et al. Cardiovascular mortality and noncontraceptive use of estrogen in women: results from the Lipid Research Clinics Program Follow-up Study. Circulation 75, 1102–1109 (1987).

    Article  CAS  PubMed  Google Scholar 

  105. Bush, T. L. et al. Estrogen use and all-cause mortality. Preliminary results from the Lipid Research Clinics Program Follow-Up Study. JAMA 249, 903–906 (1983).

    Article  CAS  PubMed  Google Scholar 

  106. Colditz, G. A. et al. Type of postmenopausal hormone use and risk of breast cancer: 12-year follow-up from the Nurses’ Health study. Cancer Causes Control. 3, 433–439 (1992).

    Article  CAS  PubMed  Google Scholar 

  107. Stampfer, M. J. et al. Postmenopausal estrogen therapy and cardiovascular disease. Ten-year follow-up from the Nurses’ Health study. N. Engl. J. Med. 325, 756–762 (1991).

    Article  CAS  PubMed  Google Scholar 

  108. Lobo, R. A., Bush, T., Carr, B. R. & Pickar, J. H. Effects of lower doses of conjugated equine estrogens and medroxyprogesterone acetate on plasma lipids and lipoproteins, coagulation factors, and carbohydrate metabolism. Fertil. Steril. 76, 13–24 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Criqui, M. H. et al. Postmenopausal estrogen use and mortality. Results from a prospective study in a defined, homogeneous community. Am. J. Epidemiol. 128, 606–614 (1988).

    Article  CAS  PubMed  Google Scholar 

  110. Vinogradova, Y., Coupland, C. & Hippisley-Cox, J. Use of hormone replacement therapy and risk of venous thromboembolism: nested case-control studies using the QResearch and CPRD databases. BMJ 364, k4810 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Miller, V. M., Jayachandran, M., Heit, J. A. & Owen, W. G. Estrogen therapy and thrombotic risk. Pharmacol. Ther. 111, 792–807 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Eilertsen, A. L. et al. The effects of oral and transdermal hormone replacement therapy on C-reactive protein levels and other inflammatory markers in women with high risk of thrombosis. Maturitas 52, 111–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Aedo, A. R., Landgren, B. M. & Diczfalusy, E. Pharmacokinetics and biotransformation of orally administered oestrone sulphate and oestradiol valerate in post-menopausal women. Maturitas 12, 333–343 (1990).

    Article  CAS  PubMed  Google Scholar 

  114. Rossouw, J. E. et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA 288, 321–333 (2002). This is the original paper highlighting the methods and initial results from the Women’s Health Initiative.

    Article  CAS  PubMed  Google Scholar 

  115. Langer, R. D. The evidence base for HRT: what can we believe? Climacteric 20, 91–96 (2017). This is a thorough review of the cummulative results of the Women’s Health Initiative, including the benefits and risks of MHT, and how the benefits and risks change depending on the age of initiation of MHT.

    Article  CAS  PubMed  Google Scholar 

  116. Harman, S. M. et al. KEEPS: the Kronos early estrogen prevention study. Climacteric 8, 3–12 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Miller, V. M. et al. Using basic science to design a clinical trial: baseline characteristics of women enrolled in the Kronos Early Estrogen Prevention Study (KEEPS). J. Cardiovasc. Transl Res. 2, 228–239 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Miller, V. M. et al. The Kronos Early Estrogen Prevention Study (KEEPS): what have we learned? Menopause 26, 1071–1084 (2019). This review summarizes what has been learned from the Kronos Early Estrogen Prevention Study, including multiple ancillary studies.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Hodis, H. N. et al. Methods and baseline cardiovascular data from the early versus late intervention trial with estradiol testing the menopausal hormone timing hypothesis. Menopause 22, 391–401 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Hodis, H. N. et al. Vascular effects of early versus late postmenopausal treatment with estradiol. N. Engl. J. Med. 374, 1221–1231 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Clarkson, T. B. Estrogen effects on arteries vary with stage of reproductive life and extent of subclinical atherosclerosis progression. Menopause 14, 373–384 (2007).

    Article  PubMed  Google Scholar 

  122. Rosenfeld, M. E. et al. Estrogen inhibits the initiation of fatty streaks throughout the vasculature but does not inhibit intra-plaque hemorrhage and the progression of established lesions in apolipoprotein E deficient mice. Atherosclerosis 164, 251–259 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Salpeter, S. R., Walsh, J. M., Greyber, E. & Salpeter, E. E. Brief report: Coronary heart disease events associated with hormone therapy in younger and older women. A meta-analysis. J. Gen. Intern. Med. 21, 363–366 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Manson, J. E. et al. Menopausal hormone therapy and health outcomes during the intervention and extended poststopping phases of the Women’s Health Initiative randomized trials. JAMA 310, 1353–1368 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Schierbeck, L. L. et al. Effect of hormone replacement therapy on cardiovascular events in recently postmenopausal women: randomised trial. BMJ 345, e6409 (2012).

    Article  PubMed  CAS  Google Scholar 

  126. Harman, S. M. et al. Arterial imaging outcomes and cardiovascular risk factors in recently menopausal women: a randomized trial. Ann. Intern. Med. 161, 249–260 (2014).

    Article  PubMed  Google Scholar 

  127. Gartlehner, G. et al. Hormone therapy for the primary prevention of chronic conditions in postmenopausal women: evidence report and systematic review for the US Preventive Services Task Force. JAMA 318, 2234–2249 (2017).

    Article  PubMed  Google Scholar 

  128. Islam, R. M., Bell, R. J., Green, S., Page, M. J. & Davis, S. R. Safety and efficacy of testosterone for women: a systematic review and meta-analysis of randomised controlled trial data. Lancet Diabetes Endocrinol. 7, 754–766 (2019).

    Article  CAS  PubMed  Google Scholar 

  129. Davis, S. R. et al. Global consensus position statement on the use of testosterone therapy for women. J. Clin. Endocrinol. Metab. 104, 4660–4666 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Baillargeon, J., Urban, R. J., Ottenbacher, K. J., Pierson, K. S. & Goodwin, J. S. Trends in androgen prescribing in the United States, 2001 to 2011. JAMA Intern. Med. 173, 1465–1466 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Vigen, R. et al. Association of testosterone therapy with mortality, myocardial infarction, and stroke in men with low testosterone levels. JAMA 310, 1829–1836 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Basaria, S. et al. Adverse events associated with testosterone administration. N. Engl. J. Med. 363, 109–122 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Basaria, S. et al. Effects of testosterone administration for 3 years on subclinical atherosclerosis progression in older men with low or low−normal testosterone levels: a randomized clinical trial. JAMA 314, 570–581 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Onasanya, O. et al. Association between exogenous testosterone and cardiovascular events: an overview of systematic reviews. Lancet Diabetes Endocrinol. 4, 943–956 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Institute of Medicine (US) Committee on Assessing the Need for Clinical Trials of Testosterone Replacement Therapy. Testosterone and Aging: Clinical Research Directions (eds Liverman, C. T. & Blazer, D. G.) (National Academies Press, 2004).

  136. Snyder, P. J. et al. Lessons from the testosterone trials. Endocr. Rev. 39, 369–386 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Snyder, P. J. et al. Effects of testosterone treatment in older men. N. Engl. J. Med. 374, 611–624 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Matsumoto, A. M. Testosterone replacement in men with age-related low testosterone: what did we learn from the testosterone trials? Curr. Opin. Endocr. Metab. Res. 6, 34–41 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Resnick, S. M. et al. Testosterone treatment and cognitive function in older men with low testosterone and age-associated memory impairment. JAMA 317, 717–727 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Roy, C. N. et al. Association of testosterone levels with anemia in older men: a controlled clinical trial. JAMA Intern. Med. 177, 480–490 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Snyder, P. J. et al. Effect of testosterone treatment on volumetric bone density and strength in older men with low testosterone: a controlled clinical trial. JAMA Intern. Med. 177, 471–479 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Budoff, M. J. et al. Testosterone treatment and coronary artery plaque volume in older men with low testosterone. JAMA 317, 708–716 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Layton, J. B. et al. Testosterone lab testing and initiation in the United Kingdom and the United States, 2000 to 2011. J. Clin. Endocrinol. Metab. 99, 835–842 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Baillargeon, J. et al. Screening and monitoring in men prescribed testosterone therapy in the U.S., 2001−2010. Public Health Rep. 130, 143–152 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Moyer, A. M., de Andrade, M., Weinshilboum, R. M. & Miller, V. M. Influence of SULT1A1 genetic variation on age at menopause, estrogen levels, and response to hormone therapy in recently postmenopausal white women. Menopause 23, 863–869 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Vallabhajosyula, S., Ponamgi, S. P., Shrivastava, S., Sundaragiri, P. R. & Miller, V. M. Reporting of sex as a variable in cardiovascular studies using cultured cells: a systematic review. FASEB J. 34, 8778–8786 (2020).

    Article  CAS  PubMed  Google Scholar 

  147. Raz, L. & Miller, V. M. Considerations of sex and gender differences in preclinical and clinical trials. Handb. Exp. Pharmacol. 214, 127–147 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are supported in part by grants from the National Institutes of Health/National Institute on Aging (U54 AG044170, RF1 AG055151) and the Mayo Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to all aspects of the manuscript.

Corresponding author

Correspondence to Michelle M. Mielke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks D. Clegg and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Gender Innovations in Science, Health & Medicine, Engineering, and Environment: https://genderedinnovations.stanford.edu/

International Society of Gender Medicine: http://www.isogem.eu/

Organization for the Study of Sex Differences: https://www.ossdweb.org/

Women in Science and Engineering Statistics: https://www.nationalacademies.org/cwsem/women-in-science-and-engineering-statistics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mielke, M.M., Miller, V.M. Improving clinical outcomes through attention to sex and hormones in research. Nat Rev Endocrinol 17, 625–635 (2021). https://doi.org/10.1038/s41574-021-00531-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-021-00531-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing