Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Epigenetic inheritance of polycystic ovary syndrome — challenges and opportunities for treatment

Abstract

Polycystic ovary syndrome (PCOS) is the main cause of female infertility worldwide and is associated with a substantially increased lifetime risk of comorbidities, including type 2 diabetes mellitus, psychiatric disorders and gynaecological cancers. Despite its high prevalence (~15%) and substantial economic burden, the aetiology of PCOS remains elusive. The genetic loci linked to PCOS so far account for only ~10% of its heritability, which is estimated at 70%. However, growing evidence suggests that altered epigenetic and developmental programming resulting from hormonal dysregulation of the maternal uterine environment contributes to the pathogenesis of PCOS. Male as well as female relatives of women with PCOS are also at an increased risk of developing PCOS-associated reproductive and metabolic disorders. Although PCOS phenotypes are highly heterogenous, hyperandrogenism is thought to be the principal driver of this condition. Current treatments for PCOS are suboptimal as they can only alleviate some of the symptoms; preventative and targeted treatments are sorely needed. This Review presents an overview of the current understanding of the aetiology of PCOS and focuses on the developmental origin and epigenetic inheritance of this syndrome.

Key points

  • Polycystic ovary syndrome (PCOS) is a common heritable disorder strongly linked to hyperandrogenism and hyperinsulinaemia.

  • Disentangling the genetic and non-genetic contributions to the transmission of PCOS will require further investigation.

  • PCOS-like phenotypic traits are transgenerationally inherited in female offspring of androgen-exposed or anti-Müllerian hormone-exposed dams up to the F3 generation, indicating long-lasting effects of an aberrant maternal–fetal environment.

  • Studies in mouse models of PCOS demonstrate that epigenetic modulation connects early-life exposures to subsequent phenotypes and contributes to the development and familial transmission of PCOS.

  • Inheritance through epigenetic mechanisms opens a path towards novel treatment strategies for PCOS-like phenotypic traits.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Pathophysiology of PCOS.
Fig. 2: Genetic and epigenetic mechanisms implicated in the inheritance of PCOS.
Fig. 3: Distinguishing between the effects of in utero environment and germline transmission.

References

  1. Azziz, R., Marin, C., Hoq, L., Badamgarav, E. & Song, P. Health care-related economic burden of the polycystic ovary syndrome during the reproductive life span. J. Clin. Endocrinol. Metab. 90, 4650–4658 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. March, W. A. et al. The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Hum. Reprod. 25, 544–551 (2010).

    Article  PubMed  Google Scholar 

  3. Yildiz, B. O., Bozdag, G., Yapici, Z., Esinler, I. & Yarali, H. Prevalence, phenotype and cardiometabolic risk of polycystic ovary syndrome under different diagnostic criteria. Hum. Reprod. 27, 3067–3073 (2012).

    Article  PubMed  Google Scholar 

  4. The Rotterdam ESHRE/ASRM-sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Fertil. Steril. 81, 19–25 (2004).

    Google Scholar 

  5. Teede, H. J. et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum. Reprod. 33, 1602–1618 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lizneva, D. et al. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil. Steril. 106, 6–15 (2016).

    Article  PubMed  Google Scholar 

  7. Kataoka, J. et al. Prevalence of polycystic ovary syndrome in women with severe obesity — effects of a structured weight loss programme. Clin. Endocrinol. 91, 750–758 (2019).

    Article  CAS  Google Scholar 

  8. Ibanez, L. et al. An international consortium update: pathophysiology, diagnosis, and treatment of polycystic ovarian syndrome in adolescence. Horm. Res. Paediatr. 88, 371–395 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Mills, G., Badeghiesh, A., Suarthana, E., Baghlaf, H. & Dahan, M. H. Polycystic ovary syndrome as an independent risk factor for gestational diabetes and hypertensive disorders of pregnancy: a population-based study on 9.1 million pregnancies. Hum. Reprod. 35, 1666–1674 (2020).

    Article  PubMed  Google Scholar 

  10. Maliqueo, M. et al. Placental steroidogenesis in pregnant women with polycystic ovary syndrome. Eur. J. Obstet. Gynecol. Reprod. Biol. 166, 151–155 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Maliqueo, M. et al. Placental STAT3 signaling is activated in women with polycystic ovary syndrome. Hum. Reprod. 30, 692–700 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Dumesic, D. A. et al. Scientific statement on the diagnostic criteria, epidemiology, pathophysiology, and molecular genetics of polycystic ovary syndrome. Endocr. Rev. 36, 487–525 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Legro, R. S., Kunselman, A. R., Dodson, W. C. & Dunaif, A. Prevalence and predictors of risk for type 2 diabetes mellitus and impaired glucose tolerance in polycystic ovary syndrome: a prospective, controlled study in 254 affected women. J. Clin. Endocrinol. Metab. 84, 165–169 (1999).

    CAS  PubMed  Google Scholar 

  14. Rubin, K. H., Glintborg, D., Nybo, M., Abrahamsen, B. & Andersen, M. Development and risk factors of type 2 diabetes in a nationwide population of women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 102, 3848–3857 (2017).

    Article  PubMed  Google Scholar 

  15. Glintborg, D., Rubin, K. H., Nybo, M., Abrahamsen, B. & Andersen, M. Cardiovascular disease in a nationwide population of Danish women with polycystic ovary syndrome. Cardiovasc. Diabetol. 17, 37 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gunning, M. N. et al. Cardiometabolic health in offspring of women with PCOS compared to healthy controls: a systematic review and individual participant data meta-analysis. Hum. Reprod. Update 26, 103–117 (2020).

    Article  PubMed  CAS  Google Scholar 

  17. Barry, J. A., Azizia, M. M. & Hardiman, P. J. Risk of endometrial, ovarian and breast cancer in women with polycystic ovary syndrome: a systematic review and meta-analysis. Hum. Reprod. Update 20, 748–758 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yin, W., Falconer, H., Yin, L., Xu, L. & Ye, W. Association between polycystic ovary syndrome and cancer risk. JAMA Oncol. 5, 106–107 (2019).

    Article  PubMed  Google Scholar 

  19. Cesta, C. E. et al. Polycystic ovary syndrome and psychiatric disorders: co-morbidity and heritability in a nationwide Swedish cohort. Psychoneuroendocrinology 73, 196–203 (2016).

    Article  PubMed  Google Scholar 

  20. Chen, S. F., Yang, Y. C., Hsu, C. Y. & Shen, Y. C. Risk of bipolar disorder in patients with polycystic ovary syndrome: a nationwide population-based cohort study. J. Affect. Disord. 263, 458–462 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Dokras, A. et al. Androgen excess — Polycystic Ovary Syndrome Society: position statement on depression, anxiety, quality of life, and eating disorders in polycystic ovary syndrome. Fertil. Steril. 109, 888–899 (2018).

    Article  PubMed  Google Scholar 

  22. Jedel, E. et al. Anxiety and depression symptoms in women with polycystic ovary syndrome compared with controls matched for body mass index. Hum. Reprod. 25, 450–456 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Risal, S. et al. Prenatal androgen exposure and transgenerational susceptibility to polycystic ovary syndrome. Nat. Med. 25, 1894–1904 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Vink, J. M., Sadrzadeh, S., Lambalk, C. B. & Boomsma, D. I. Heritability of polycystic ovary syndrome in a Dutch twin-family study. J. Clin. Endocrinol. Metab. 91, 2100–2104 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Legro, R. S., Driscoll, D., Strauss, J. F. 3rd, Fox, J. & Dunaif, A. Evidence for a genetic basis for hyperandrogenemia in polycystic ovary syndrome. Proc. Natl Acad. Sci. USA 95, 14956–14960 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Escobar-Morreale, H. F. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat. Rev. Endocrinol. 14, 270–284 (2018).

    Article  PubMed  Google Scholar 

  27. Stener-Victorin, E. et al. Are there any sensitive and specific sex steroid markers for polycystic ovary syndrome? J. Clin. Endocrinol. Metab. 95, 810–819 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Gilling-Smith, C., Story, H., Rogers, V. & Franks, S. Evidence for a primary abnormality of thecal cell steroidogenesis in the polycystic ovary syndrome. Clin. Endocrinol. 47, 93–99 (1997).

    Article  CAS  Google Scholar 

  29. Nisenblat, V. & Norman, R. J. Androgens and polycystic ovary syndrome. Curr. Opin. Endocrinol. Diab Obes. 16, 224–231 (2009).

    Article  CAS  Google Scholar 

  30. Webber, L. J. et al. Formation and early development of follicles in the polycystic ovary. Lancet 362, 1017–1021 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Lenie, S. & Smitz, J. Functional AR signaling is evident in an in vitro mouse follicle culture bioassay that encompasses most stages of folliculogenesis. Biol. Reprod. 80, 685–695 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Taylor, A. E. et al. Determinants of abnormal gonadotropin secretion in clinically defined women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 82, 2248–2256 (1997).

    CAS  PubMed  Google Scholar 

  33. Baillargeon, J. P. & Carpentier, A. Role of insulin in the hyperandrogenemia of lean women with polycystic ovary syndrome and normal insulin sensitivity. Fertil. Steril. 88, 886–893 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Barbieri, R. L. et al. Insulin stimulates androgen accumulation in incubations of ovarian stroma obtained from women with hyperandrogenism. J. Clin. Endocrinol. Metab. 62, 904–910 (1986).

    Article  CAS  PubMed  Google Scholar 

  35. Barbieri, R. L. & Hornstein, M. D. Hyperinsulinemia and ovarian hyperandrogenism. Cause and effect. Endocrinol. Metab. Clin. N. Am. 17, 685–703 (1988).

    Article  CAS  Google Scholar 

  36. Barbieri, R. L., Smith, S. & Ryan, K. J. The role of hyperinsulinemia in the pathogenesis of ovarian hyperandrogenism. Fertil. Steril. 50, 197–212 (1988).

    Article  CAS  PubMed  Google Scholar 

  37. Thong, E. P., Codner, E., Laven, J. S. E. & Teede, H. Diabetes: a metabolic and reproductive disorder in women. Lancet Diab Endocrinol. 8, 134–149 (2019).

    Article  Google Scholar 

  38. Ruth, K. S. et al. Using human genetics to understand the disease impacts of testosterone in men and women. Nat. Med. 26, 252–258 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Day, F. et al. Large-scale genome-wide meta-analysis of polycystic ovary syndrome suggests shared genetic architecture for different diagnosis criteria. PLoS Genet. 14, e1007813 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Gorsic, L. K. et al. Pathogenic anti-mullerian hormone variants in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 102, 2862–2872 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gorsic, L. K., Dapas, M., Legro, R. S., Hayes, M. G. & Urbanek, M. Functional genetic variation in the anti-mullerian hormone pathway in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 104, 2855–2874 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dapas, M. et al. Distinct subtypes of polycystic ovary syndrome with novel genetic associations: an unsupervised, phenotypic clustering analysis. PLoS Med. 17, e1003132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li, J. et al. Transmission of polycystic ovary syndrome susceptibility single-nucleotide polymorphisms and their association with phenotype changes in offspring. Hum. Reprod. 35, 1711–1718 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Waddington, C. H. The epigenotype. 1942. Reprinted. Int. J. Epidemiol. 41, 10–13 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Slack, J. M. Conrad Hal Waddington: the last Renaissance biologist? Nat. Rev. Genet. 3, 889–895 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Nanney, D. L. Epigenetic control systems. Proc. Natl Acad. Sci. USA 44, 712–717 (1958).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Holliday, R. & Pugh, J. E. DNA modification mechanisms and gene activity during development. Science 187, 226–232 (1975).

    Article  CAS  PubMed  Google Scholar 

  49. Riggs, A. D. X inactivation, differentiation, and DNA methylation. Cytogenet. Cell Genet. 14, 9–25 (1975).

    Article  CAS  PubMed  Google Scholar 

  50. Lappalainen, T. & Greally, J. M. Associating cellular epigenetic models with human phenotypes. Nat. Rev. Genet. 18, 441–451 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Goldberg, A. D., Allis, C. D. & Bernstein, E. Epigenetics: a landscape takes shape. Cell 128, 635–638 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Bird, A. Perceptions of epigenetics. Nature 447, 396–398 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Cavalli, G. & Heard, E. Advances in epigenetics link genetics to the environment and disease. Nature 571, 489–499 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Sharif, J. et al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nat. Rev. Genet. 450, 908–912 (2007).

    CAS  Google Scholar 

  55. Bostick, M. et al. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317, 1760–1764 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Song, J., Rechkoblit, O., Bestor, T. H. & Patel, D. J. Structure of DNMT1-DNA complex reveals a role for autoinhibition in maintenance DNA methylation. Science 331, 1036–1040 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Okano, M., Xie, S. & Li, E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat. Genet 19, 219–220 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Bourc’his, D., Xu, G. L., Lin, C. S., Bollman, B. & Bestor, T. H. Dnmt3L and the establishment of maternal genomic imprints. Science 294, 2536–2539 (2001).

    Article  PubMed  Google Scholar 

  60. Barau, J. et al. The DNA methyltransferase DNMT3C protects male germ cells from transposon activity. Science 354, 909–912 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Kriaucionis, S. & Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324, 929–930 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ito, S. et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300–1303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Greenberg, M. V. C. & Bourc’his, D. The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Biol. 20, 590–607 (2019).

  65. Wang, L. et al. Programming and inheritance of parental DNA methylomes in mammals. Cell 157, 979–991 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tang, W. W. et al. A unique gene regulatory network resets the human germline epigenome for development. Cell 161, 1453–1467 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Skvortsova, K., Iovino, N. & Bogdanovic´, O. Functions and mechanisms of epigenetic inheritance in animals. Nat. Rev. Mol. Cell Biol. 19, 774–790 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Steger, K. & Balhorn, R. Sperm nuclear protamines: a checkpoint to control sperm chromatin quality. Anatom Histol. Embryol. 47, 273–279 (2018).

    Article  Google Scholar 

  69. Hammoud, S. S. et al. Distinctive chromatin in human sperm packages genes for embryo development. Nature 460, 473–478 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Inoue, A., Jiang, L., Lu, F., Suzuki, T. & Zhang, Y. Maternal H3K27me3 controls DNA methylation-independent imprinting. Nat. Rev. Genet. 547, 419–424 (2017).

    CAS  Google Scholar 

  71. Dahl, J. A. et al. Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition. Nat. Rev. Genet. 537, 548–552 (2016).

    CAS  Google Scholar 

  72. Peters, A. F. M. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323–337 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Brykczynska, U. et al. Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat. Struct. Mol. Biol. 17, 679–687 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Erkek, S. et al. Molecular determinants of nucleosome retention at CpG-rich sequences in mouse spermatozoa. Nat. Struct. Mol. Biol. 20, 868–875 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Duempelmann, L., Skribbe, M. & Buhler, M. Small RNAs in the transgenerational inheritance of epigenetic information. Trends Genet. 36, 203–214 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Zhang, Y., Shi, J., Rassoulzadegan, M., Tuorto, F. & Chen, Q. Sperm RNA code programmes the metabolic health of offspring. Nat. Rev. Endocrinol. 15, 489–498 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Gapp, K. et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat. Neurosci. 17, 667–669 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chen, Q. et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351, 397–400 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Zhang, Y. et al. Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs. Nat. Cell Biol. 20, 535–540 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sharma, U. et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351, 391–396 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Rodgers, A. B., Morgan, C. P., Leu, N. A. & Bale, T. L. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc. Natl Acad. Sci. USA 112, 13699–13704 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jonkhout, N. et al. The RNA modification landscape in human disease. RNA 23, 1754–1769 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mannerås-Holm, L. et al. Adipose tissue has aberrant morphology and function in PCOS: enlarged adipocytes and low serum adiponectin, but not circulating sex steroids, are strongly associated with insulin resistance. J. Clin. Endocrinol. Metab. 96, E304–E311 (2011).

    Article  PubMed  CAS  Google Scholar 

  84. Kokosar, M. et al. Epigenetic and transcriptional alterations in human adipose tissue of polycystic ovary syndrome. Sci. Rep. 6, 22883 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jones, M. R. et al. Systems genetics reveals the functional context of PCOS loci and identifies genetic and molecular mechanisms of disease heterogeneity. PLoS Genet. 11, e1005455 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Dahlman, I. et al. The fat cell epigenetic signature in post-obese women is characterized by global hypomethylation and differential DNA methylation of adipogenesis genes. Int. J. Obes. 39, 910–919 (2015).

    Article  CAS  Google Scholar 

  87. Kokosar, M. et al. A single bout of electroacupuncture remodels epigenetic and transcriptional changes in adipose tissue in polycystic ovary syndrome. Sci. Rep. 8, 1878 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Carbone, L. et al. Synergistic effects of hyperandrogenemia and obesogenic western-style diet on transcription and DNA methylation in visceral adipose tissue of nonhuman primates. Sci. Rep. 9, 19232 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Xu, N., Azziz, R. & Goodarzi, M. O. Epigenetics in polycystic ovary syndrome: a pilot study of global DNA methylation. Fertil. Steril. 94, 781–783 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Chen, Y.-H. et al. miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance. Diabetes 62, 2278–2286 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wu, H.-L. et al. The expression of the miR-25/93/106b family of micro-RNAs in the adipose tissue of women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 99, E2754–E2761 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nilsson, E. et al. Transcriptional and epigenetic changes influencing skeletal muscle metabolism in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 103, 4465–4477 (2018).

    Article  PubMed  Google Scholar 

  93. Benrick, A. et al. Electroacupuncture mimics exercise-induced changes in skeletal muscle gene expression in polycystic ovary syndrome women. J. Clin. Endocrinol. Metab. 105, 2027–2041 (2020).

    Article  PubMed Central  Google Scholar 

  94. Yu, Y. Y. et al. Genome-wide screen of ovary-specific DNA methylation in polycystic ovary syndrome. Fertil. Steril. 104, 145–153 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Wang, X. X. et al. Genome-wide DNA methylation and gene expression patterns provide insight into polycystic ovary syndrome development. Oncotarget 5, 6603–6610 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Yu, Y. Y. et al. Promoter methylation of CYP19A1 gene in Chinese polycystic ovary syndrome patients. Gynecol. Obstet. Invest. 76, 209–213 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Qu, F. et al. A molecular mechanism underlying ovarian dysfunction of polycystic ovary syndrome: hyperandrogenism induces epigenetic alterations in the granulosa cells. J. Mol. Med. 90, 911–923 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Wang, P. et al. Hypomethylation of the LH/choriogonadotropin receptor promoter region is a potential mechanism underlying susceptibility to polycystic ovary syndrome. Endocrinology 155, 1445–1452 (2014).

    Article  PubMed  CAS  Google Scholar 

  99. Sagvekar, P., Mangoli, V., Desai, S., Patil, A. & Mukherjee, S. LINE1 CpG-DNA hypomethylation in granulosa cells and blood leukocytes is associated with PCOS and related traits. J. Clin. Endocrinol. Metab. 102, 1396–1405 (2017).

    Article  PubMed  Google Scholar 

  100. Xu, J. et al. Comprehensive analysis of genome-wide DNA methylation across human polycystic ovary syndrome ovary granulosa cell. Oncotarget 7, 27899–27909 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Sagvekar, P., Kumar, P., Mangoli, V., Desai, S. & Mukherjee, S. DNA methylome profiling of granulosa cells reveals altered methylation in genes regulating vital ovarian functions in polycystic ovary syndrome. Clin. Epigenet. 11, 61 (2019).

    Article  CAS  Google Scholar 

  102. Imbar, T. & Eisenberg, I. Regulatory role of microRNAs in ovarian function. Fertil. Steril. 101, 1524–1530 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Nagaraja, A. K. et al. Deletion of Dicer in somatic cells of the female reproductive tract causes sterility. Mol. Endocrinol. 22, 2336–2352 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lei, L., Jin, S., Gonzalez, G., Behringer, R. R. & Woodruff, T. K. The regulatory role of Dicer in folliculogenesis in mice. Mol. Cell Endocrinol. 315, 63–73 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Naji, M. et al. Expression of miR-15a, miR-145, and miR-182 in granulosa-lutein cells, follicular fluid, and serum of women with polycystic ovary syndrome (PCOS). Arch. Gynecol. Obstet. 297, 221–231 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. Naji, M. et al. Differential expression of miR-93 and miR-21 in granulosa cells and follicular fluid of polycystic ovary syndrome associating with different phenotypes. Sci. Rep. 7, 14671 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Wang, M. et al. MicroRNA-27a-3p affects estradiol and androgen imbalance by targeting Creb1 in the granulosa cells in mouse polycytic ovary syndrome model. Reprod. Biol. 17, 295–304 (2017).

    Article  PubMed  Google Scholar 

  108. Barker, D. J. The fetal and infant origins of adult disease. BMJ 301, 1111 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. de Rooij, S. R., Wouters, H., Yonker, J. E., Painter, R. C. & Roseboom, T. J. Prenatal undernutrition and cognitive function in late adulthood. Proc. Natl Acad. Sci. USA 107, 16881–16886 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Roseboom, T., de Rooij, S. & Painter, R. The Dutch famine and its long-term consequences for adult health. Early Hum. Dev. 82, 485–491 (2006).

    Article  PubMed  Google Scholar 

  111. Schulz, L. C. The Dutch Hunger Winter and the developmental origins of health and disease. Proc. Natl Acad. Sci. USA 107, 16757–16758 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bygren, L. O. et al. Change in paternal grandmothers’ early food supply influenced cardiovascular mortality of the female grandchildren. BMC Genet. 15, 12 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Pembrey, M., Saffery, R. & Bygren, L. O., Network in Epigenetic Epidemiology & Network in Epigenetic Epidemiology. Human transgenerational responses to early-life experience: potential impact on development, health and biomedical research. J. Med. Genet. 51, 563–572 (2014).

    Article  PubMed  Google Scholar 

  114. Hanson, M. A. & Gluckman, P. D. Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiol. Rev. 94, 1027–1076 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cesta, C. E. et al. Maternal polycystic ovary syndrome and risk of neuropsychiatric disorders in offspring: prenatal androgen exposure or genetic confounding? Psychol. Med. 50, 616–624 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Crisosto, N. et al. Higher luteinizing hormone levels associated with antimullerian hormone in postmenarchal daughters of women with polycystic ovary syndrome. Fertil. Steril. 111, 381–388 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Crisosto, N. et al. Reproductive and metabolic features during puberty in sons of women with polycystic ovary syndrome. Endocr. Connect. 6, 607–613 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Torchen, L. C. et al. Increased antimullerian hormone levels and other reproductive endocrine changes in adult male relatives of women with polycystic ovary syndrome. Fertil. Steril. 106, 50–55 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kent, J. et al. Gestational weight gain in women with polycystic ovary syndrome: a controlled study. J. Clin. Endocrinol. Metab. 103, 4315–4323 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Tata, B. et al. Elevated prenatal anti-Mullerian hormone reprograms the fetus and induces polycystic ovary syndrome in adulthood. Nat. Med. 24, 834–846 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Barrett, E. S. et al. Anogenital distance in newborn daughters of women with polycystic ovary syndrome indicates fetal testosterone exposure. J. Dev. Orig. Health Dis. 9, 307–314 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sir-Petermann, T. et al. Increased anti-Mullerian hormone serum concentrations in prepubertal daughters of women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 91, 3105–3109 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Detti, L. et al. Serum anti-mullerian hormone (AMH) in mothers with polycystic ovary syndrome (PCOS) and their term fetuses. Syst. Biol. Reprod. Med. 65, 147–154 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Manti, M. et al. Maternal androgen excess induces cardiac hypertrophy and left ventricular dysfunction in female mice offspring. Cardiovasc Res. 116, 619–632 (2019).

    Article  CAS  Google Scholar 

  125. Hu, M. et al. Maternal testosterone exposure increases anxiety-like behavior and impacts the limbic system in the offspring. Proc. Natl Acad. Sci. USA 112, 14348–14353 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Rusche, L. N., Kirchmaier, A. L. & Rine, J. The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Ann. Rev. Biochem. 72, 481–516 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Quadrana, L. & Colot, V. Plant transgenerational epigenetics. Ann. Rev. Genet. 50, 467–491 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Serobyan, V. & Sommer, R. J. Developmental systems of plasticity and trans-generational epigenetic inheritance in nematodes. Curr. Opin. Genet. Dev. 45, 51–57 (2017).

    Article  CAS  PubMed  Google Scholar 

  129. Morgan, H. D., Sutherland, H. G. E., Martin, D. I. K. & Whitelaw, E. Epigenetic inheritance at the agouti locus in the mouse. Nat. Genet. 23, 314–318 (1999).

    Article  CAS  PubMed  Google Scholar 

  130. Saitou, M., Barton, S. C. & Surani, M. A. A molecular programme for the specification of germ cell fate in mice. Nature 418, 293–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Ohinata, Y. et al. A signaling principle for the specification of the germ cell lineage in mice. Cell 137, 571–584 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Hill, P. W. S. et al. Epigenetic reprogramming enables the transition from primordial germ cell to gonocyte. Nature 555, 392–396 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sasaki, H. & Matsui, Y. Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat. Rev. Genet. 9, 129–140 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Hargan-Calvopina, J. et al. Stage-specific demethylation in primordial germ cells safeguards against precocious differentiation. Dev. Cell 39, 75–86 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gkountela, S. et al. DNA demethylation dynamics in the human prenatal germline. Cell 161, 1425–1436 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Skvortsova, K., Iovino, N. & Bogdanovic, O. Functions and mechanisms of epigenetic inheritance in animals. Nat. Rev. Mol. Cell Biol. 19, 774–790 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Ginno, P. A. et al. A genome-scale map of DNA methylation turnover identifies site-specific dependencies of DNMT and TET activity. Nat. Commun. 11, 2680 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Heard, E. & Martienssen, R. A. Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157, 95–109 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Radford, E. J. et al. In utero effects. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science 345, 1255903 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Tobi, E. W. et al. DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat. Commun. 5, 5592 (2014).

    Article  CAS  PubMed  Google Scholar 

  141. Painter, R. C. et al. Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG 115, 1243–1249 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Veenendaal, M. et al. Transgenerational effects of prenatal exposure to the 1944-45 Dutch famine. BJOG 120, 548–554 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Perez, M. F. & Lehner, B. Intergenerational and transgenerational epigenetic inheritance in animals. Nat. Cell Biol. 21, 143–151 (2019).

    Article  CAS  PubMed  Google Scholar 

  144. Chen, Q., Yan, W. & Duan, E. Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications. Nat. Rev. Genet. 17, 733–743 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Nilsson, E. E., Sadler-Riggleman, I. & Skinner, M. K. Environmentally induced epigenetic transgenerational inheritance of disease. Env. Epigenet. 4, dvy016 (2018).

    Article  CAS  Google Scholar 

  146. Skinner, M. K. Endocrine disruptors in 2015: epigenetic transgenerational inheritance. Nat. Rev. Endocrinol. 12, 68–70 (2016).

    Article  CAS  PubMed  Google Scholar 

  147. Kaspar, D., Hastreiter, S., Irmler, M., de Angelis, M. H. & Beckers, J. Nutrition and its role in epigenetic inheritance of obesity and diabetes across generations. Mamm. Genome 2, 1–15 (2020).

    Google Scholar 

  148. Bohacek, J. & Mansuy, I. M. Molecular insights into transgenerational non-genetic inheritance of acquired behaviours. Nat. Rev. Genet. 16, 641–652 (2015).

    Article  CAS  PubMed  Google Scholar 

  149. Mimouni, N. E. H. et al. Polycystic ovary syndrome is transmitted via a transgenerational epigenetic process. Cell Metab. 33, 513–530 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Stener-Victorin, E. et al. Animal models to understand the etiology and pathophysiology of polycystic ovary syndrome. Endocr. Rev. 41, 538–576 (2020).

    Article  Google Scholar 

  151. Gluckman, P. D., Hanson, M. A., Cooper, C. & Thornburg, K. L. Effect of in utero and early-life conditions on adult health and disease. N. Engl. J. Med. 359, 61–73 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors’ research is supported by the Swedish Medical Research Council (Project No. 2018-02435: E.S.V., 2018-02557: Q.D.), Novo Nordisk Foundation (NNF19OC0056647: E.S.V.), the Strategic Research Programme in Diabetes at Karolinska Institutet (E.S.V.), Adlerbert Research Foundation (E.S.V.), Åke Wibergs Stiftelse (Q.D.) and faculty funding at Karolinska Institutet (Q.D.).

Author information

Authors and Affiliations

Authors

Contributions

E.S.V. and Q.D. contributed equally to all aspects of the article.

Corresponding author

Correspondence to Elisabet Stener-Victorin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks E. Diamanti-Kandarakis, H. Teede, who co-reviewed with A. Johan, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Mendelian randomization analyses

A genetic approach that determines the causal effects of putative risk factors in disease by using genetic variants as instrumental variables to infer whether a risk factor causally affects a health outcome.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stener-Victorin, E., Deng, Q. Epigenetic inheritance of polycystic ovary syndrome — challenges and opportunities for treatment. Nat Rev Endocrinol 17, 521–533 (2021). https://doi.org/10.1038/s41574-021-00517-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-021-00517-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing