Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Type 2 diabetes mellitus in older adults: clinical considerations and management

Abstract

The past 50 years have seen a growing ageing population with an increasing prevalence of type 2 diabetes mellitus (T2DM); now, nearly half of all individuals with diabetes mellitus are older adults (aged ≥65 years). Older adults with T2DM present particularly difficult challenges. For example, the accentuated heterogeneity of these patients, the potential presence of multiple comorbidities, the increased susceptibility to hypoglycaemia, the increased dependence on care and the effect of frailty all add to the complexity of managing diabetes mellitus in this age group. In this Review, we offer an update on the key pathophysiological mechanisms associated with T2DM in older people. We then evaluate new evidence relating particularly to the effects of frailty and sarcopenia, the clinical difficulties of age-associated comorbidities, and the implications for existing guidelines and therapeutic options. Our conclusions will focus on the effect of T2DM on an ageing society.

Key points

  • Older adults (≥65 years of age) with type 2 diabetes mellitus (T2DM) account for nearly half of all individuals with diabetes mellitus.

  • T2DM in older adults is highly heterogeneous but is generally associated with various degrees of underlying insulin resistance, excess adiposity, β-cell dysfunction and sarcopenia.

  • The management of T2DM in older adults is complicated by the frequent occurrence of multimorbidity, necessitating highly individualized approaches.

  • The presence of frailty, cognitive decline and functional impairments in older adults with T2DM highlights the importance of liaison with carers and social support.

  • Targets for glycaemic control in older adults with T2DM are often less stringent than in younger adults to avoid hypoglycaemia and minimize unbeneficial interventions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Pathophysiological links between ageing, obesity and T2DM.

References

  1. 1.

    Khan, M. A. B. et al. Epidemiology of type 2 diabetes — global burden of disease and forecasted trends. J. Epidemiol. Glob. Health 10, 107–111 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    NHS Digital. National Diabetes Audit Report 1: Care Processes and Treatment Targets 2017-18 https://digital.nhs.uk/data-and-information/publications/statistical/national-diabetes-audit/report-1-care-processes-and-treatment-targets-2017-18-short-report (2018).

  3. 3.

    Sinclair, A., Dunning, T. & Rodriguez-Manas, L. Diabetes in older people: new insights and remaining challenges. Lancet Diabetes Endocrinol. 3, 275–285 (2015). An excellent synopsis of key clinical issues and unmet needs facing the management of T2DM in older adults.

    PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    International Diabetes Federation. IDF Diabetes Atlas 8th Edn. https://diabetesatlas.org/upload/resources/previous/files/8/IDF_DA_8e-EN-final.pdf (2017).

  5. 5.

    Salomon, J. A. et al. Healthy life expectancy for 187 countries, 1990-2010: a systematic analysis for the Global Burden Disease Study 2010. Lancet 380, 2144–2162 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Dunning, T., Sinclair, A. & Colagiuri, S. New IDF Guideline for managing type 2 diabetes in older people. Diabetes Res. Clin. Pract. 103, 538–540 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    NCD Risk Factor Collaboration (NCD-RisC).Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 387, 1513–1530 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Cho, N. H. et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 138, 271–81 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Center for Disease Control. National Diabetes Statistics Report https://www.cdc.gov/diabetes/library/features/diabetes-stat-report.html (2020).

  10. 10.

    American Diabetes Association. 6. Glycemic targets: standards of medical care in diabetes–2018. Diabetes Care 41 (Suppl. 1), S55–S64 (2018).

    Article  Google Scholar 

  11. 11.

    Leung, E., Wongrakpanich, S. & Munshi, M. N. Diabetes management in the elderly. Diabetes Spectr. 31, 245–53 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Miller, R. G., Secrest, A. M., Sharma, R. K., Songer, T. J. & Orchard, T. J. Improvements in the life expectancy of type 1 diabetes: the Pittsburgh Epidemiology of Diabetes Complications study cohort. Diabetes 61, 2987–2992 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Kirkman, M. S. et al. Diabetes in older adults: a consensus report. J. Am. Geriatr. Soc. 60, 2342–2356 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    American Diabetes Association. Standards of Medical Care in Diabetes — 2021; Chapter 12, older adults. Diabetes Care 44 (Suppl 1), S168–S179 (2021).

  15. 15.

    DeFronzo, R. A. Pathogenesis of type 2 diabetes mellitus. Med. Clin. North. Am. 88, 787–835 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Lee, P. G. & Halter, J. B. The pathophysiology of hyperglycemia in older adults: clinical considerations. Diabetes Care 40, 444–452 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Chia, C. W., Egan, J. M. & Ferrucci, L. Age-related changes in glucose metabolism, hyperglycemia, and cardiovascular risk. Circ. Res. 123, 886–904 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Chang, A. M., Smith, M. J., Galecki, A. T., Bloem, C. J. & Halter, J. B. Impaired beta-cell function in human aging: response to nicotinic acid-induced insulin resistance. J. Clin. Endocrinol. Metab. 91, 3303–3309 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Li, N. et al. Aging and stress induced beta cell senescence and its implication in diabetes development. Aging 11, 9947–9959 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Ferrannini, E. et al. Insulin action and age. European Group for the Study of Insulin Resistance (EGIR). Diabetes 45, 947–953 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Karakelides, H., Irving, B. A., Short, K. R., O’Brien, P. & Nair, K. S. Age, obesity, and sex effects on insulin sensitivity and skeletal muscle mitochondrial function. Diabetes 59, 89–97 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Amati, F. et al. Physical inactivity and obesity underlie the insulin resistance of aging. Diabetes Care 32, 1547–1549 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Shou, J., Chen, P. J. & Xiao, W. H. Mechanism of increased risk of insulin resistance in aging skeletal muscle. Diabetol. Metab. Syndr. 12, 14 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Buffa, R., Floris, G. U., Putzu, P. F. & Marini, E. Body composition variations in ageing. Coll. Antropol. 35, 259–265 (2011).

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Kyrou, I. & Tsigos, C. Obesity in the elderly diabetic patient: is weight loss beneficial? Diabetes Care 32 (Suppl. 2), 403–409 (2009).

    Article  Google Scholar 

  26. 26.

    Al-Sofiani, M. E., Ganji, S. S. & Kalyani, R. R. Body composition changes in diabetes and aging. J. Diabetes Complications 33, 451–459 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Tsai, A. C. & Lee, S. H. Determinants of new-onset diabetes in older adults-Results of a national cohort study. Clin. Nutr. 34, 937–942 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Conn, V. S., Minor, M. A., Burks, K. J., Rantz, M. J. & Pomeroy, S. H. Integrative review of physical activity intervention research with aging adults. J. Am. Geriatr. Soc. 51, 1159–1168 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Petersen, K. F. & Shulman, G. I. Etiology of insulin resistance. Am. J. Med. 119 (Suppl. 1), S10–S16 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. 30.

    Mancuso, P. & Bouchard, B. The impact of aging on adipose function and adipokine synthesis. Front. Endocrinol. 10, 137 (2019).

    Article  Google Scholar 

  31. 31.

    Martyniak, K. & Masternak, M. M. Changes in adipose tissue cellular composition during obesity and aging as a cause of metabolic dysregulation. Exp. Gerontol. 94, 59–63 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Petersen, K. F. et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300, 1140–1142 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Groen, B. B. et al. Skeletal muscle capillary density and microvascular function are compromised with aging and type 2 diabetes. J. Appl. Physiol. 116, 998–1005 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Ahima, R. S. Connecting obesity, aging and diabetes. Nat. Med. 15, 996–997 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Crescioli, C. Targeting age-dependent functional and metabolic decline of human skeletal muscle: the geroprotective role of exercise, myokine IL-6, and vitamin D. Int. J. Mol. Sci. 21, 1010 (2020).

    CAS  PubMed Central  Article  Google Scholar 

  36. 36.

    Kalinkovich, A. & Livshits, G. Sarcopenic obesity or obese sarcopenia: a cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Res. Rev. 35, 200–21 (2017).

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Jiao, J. & Demontis, F. Skeletal muscle autophagy and its role in sarcopenia and organismal aging. Curr. Opin. Pharmacol. 34, 1–6 (2017).

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Wang, J. et al. Association between telomere length and diabetes mellitus: A meta-analysis. J. Int. Med. Res. 44, 1156–73 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Burton, D. G. A. & Faragher, R. G. A. Obesity and type-2 diabetes as inducers of premature cellular senescence and ageing. Biogerontology 19, 447–59 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Kyrou, I. & Tsigos, C. Stress hormones: physiological stress and regulation of metabolism. Curr. Opin. Pharmacol. 9, 787–793 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Selvin, E., Coresh, J. & Brancati, F. L. The burden and treatment of diabetes in elderly individuals in the U.S. Diabetes Care 29, 2415–2419 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Dunning, T. Care of older people with diabetes. Nurs. Stand. 32, 50–63 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Munshi, M. N. et al. Diabetes in ageing: pathways for developing the evidence base for clinical guidance. Lancet Diabetes Endocrinol. 8, 855–867 (2020). A highly informative insight into key research questions and research needs relating to T2DM in older adults.

    PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Godino, J. G. et al. Diabetes, hyperglycemia, and the burden of functional disability among older adults in a community-based study. J. Diabetes 9, 76–84 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Cesari, M. et al. Frailty: an emerging public health priority. J. Am. Med. Dir. Assoc. 17, 188–192 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Fried, L. P. et al. Frailty in older adults: evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 56, M146–M156 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Rockwood, K. & Mitnitski, A. Frailty in relation to the accumulation of deficits. J. Gerontol. A Biol. Sci. Med. Sci. 62, 722–727 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Collard, R. M., Boter, H., Schoevers, R. A., Oude & Voshaar, R. C. Prevalence of frailty in community-dwelling older persons: a systematic review. J. Am. Geriatr. Soc. 60, 1487–1492 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Sinclair, A. & Morley, J. Frailty and diabetes. Lancet 382, 1386–1387 (2013). A comprehensive assessment of the implications of frailty for the management of diabetes mellitus.

    PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Abdelhafiz, A. H. & Sinclair, A. J. Low HbA1c and increased mortality risk-is frailty a confounding factor? Aging Dis. 6, 262–270 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Castrejon-Perez, R. C., Aguilar-Salinas, C. A., Gutierrez-Robledo, L. M., Cesari, M. & Perez-Zepeda, M. U. Frailty, diabetes, and the convergence of chronic disease in an age-related condition: a population-based nationwide cross-sectional analysis of the Mexican nutrition and health survey. Aging Clin. Exp. Res. 30, 935–941 (2018).

    PubMed  Article  Google Scholar 

  52. 52.

    Hsu, A., Gan, S., Cenzer-Stijacic, I. & Lee, S. J. Glycemic control and functional decline in nursing home residents with diabetes. JAMA Intern. Med. 177, 130–132 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Yau, C. K. et al. Glycosylated hemoglobin and functional decline in community-dwelling nursing home-eligible elderly adults with diabetes mellitus. J. Am. Geriatr. Soc. 60, 1215–1221 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Zaslavsky, O., Walker, R. L., Crane, P. K., Gray, S. L. & Larson, E. B. Glucose levels and risk of frailty. J. Gerontol. A Biol. Sci. Med. Sci. 71, 1223–1229 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Rodriguez-Manas, L. et al. Effectiveness of a multimodal intervention in functionally impaired older people with type 2 diabetes mellitus. J. Cachexia Sarcopenia Muscle 10, 721–733 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Strain, W. D., Agarwal, A. S. & Paldanius, P. M. Individualizing treatment targets for elderly patients with type 2 diabetes: factors influencing clinical decision making in the 24-week, randomized INTERVAL study. Aging 9, 769–777 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Kalyani, R. R., Saudek, C. D., Brancati, F. L. & Selvin, E. Association of diabetes, comorbidities, and A1C with functional disability in older adults: results from the National Health and Nutrition Examination Survey (NHANES), 1999-2006. Diabetes Care 33, 1055–1060 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Rodriguez-Poncelas, A. et al. Glycaemic control and treatment of type 2 diabetes in adults aged 75 years or older. Int. J. Clin. Pract. 72, e13075 (2018).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  59. 59.

    Huang, E. S., Zhang, Q., Gandra, N., Chin, M. H. & Meltzer, D. O. The effect of comorbid illness and functional status on the expected benefits of intensive glucose control in older patients with type 2 diabetes: a decision analysis. Ann. Intern. Med. 149, 11–19 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Cruz-Jentoft, A. J. et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48, 601 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Vellas, B. et al. Sarcopenia trials in specific diseases: report by the International Conference on frailty and sarcopenia research task force. J. Frailty Aging 5, 194–200 (2016).

    CAS  PubMed  Google Scholar 

  62. 62.

    Jang, H. C. Sarcopenia, frailty, and diabetes in older adults. Diabetes Metab. J. 40, 182–189 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Zhang, X. et al. Falls among older adults with sarcopenia dwelling in nursing home or community: a meta-analysis. Clin. Nutr. 39, 33–39 (2020).

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Zhang, X. et al. Sarcopenia as a predictor of all-cause mortality among older nursing home residents: a systematic review and meta-analysis. BMJ Open 8, e021252 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Mesinovic, J., Zengin, A., De Courten, B., Ebeling, P. R. & Scott, D. Sarcopenia and type 2 diabetes mellitus: a bidirectional relationship. Diabetes Metab. Syndr. Obes. 12, 1057–1072 (2019). A useful perspective on the complexities of the relationship between sarcopenia and T2DM.

    PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Marcell, T. J. Sarcopenia: causes, consequences, and preventions. J. Gerontol. A Biol. Sci. Med. Sci. 58, M911–M916 (2003).

    PubMed  Article  Google Scholar 

  67. 67.

    Hughes, V. A., Frontera, W. R., Roubenoff, R., Evans, W. J. & Singh, M. A. Longitudinal changes in body composition in older men and women: role of body weight change and physical activity. Am. J. Clin. Nutr. 76, 473–481 (2002).

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Kim, K. S. et al. Type 2 diabetes is associated with low muscle mass in older adults. Geriatr. Gerontol. Int. 14, 115–121 (2014).

    PubMed  Article  Google Scholar 

  69. 69.

    Leenders, M. et al. Patients with type 2 diabetes show a greater decline in muscle mass, muscle strength, and functional capacity with aging. J. Am. Med. Dir. Assoc. 14, 585–592 (2013).

    PubMed  Article  Google Scholar 

  70. 70.

    Park, S. W. et al. Excessive loss of skeletal muscle mass in older adults with type 2 diabetes. Diabetes Care 32, 1993–1997 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  71. 71.

    Park, S. W. et al. Accelerated loss of skeletal muscle strength in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes Care 30, 1507–1512 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    Bianchi, L. & Volpato, S. Muscle dysfunction in type 2 diabetes: a major threat to patient’s mobility and independence. Acta Diabetol. 53, 879–889 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Kim, T. N. et al. Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes: the Korean Sarcopenic Obesity Study (KSOS). Diabetes Care 33, 1497–1499 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Anbalagan, V. P. et al. The prevalence of presarcopenia in Asian Indian individuals with and without type 2 diabetes. Diabetes Technol. Ther. 15, 768–775 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. 75.

    Scott, D., de Courten, B. & Ebeling, P. R. Sarcopenia: a potential cause and consequence of type 2 diabetes in Australia’s ageing population? Med. J. Aust. 207, 89 (2017).

    PubMed  Article  Google Scholar 

  76. 76.

    Cleasby, M. E., Jamieson, P. M. & Atherton, P. J. Insulin resistance and sarcopenia: mechanistic links between common co-morbidities. J. Endocrinol. 229, R67–R81 (2016).

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Yoon, J. W. et al. Hyperglycemia is associated with impaired muscle quality in older men with diabetes: the Korean Longitudinal Study on Health and Aging. Diabetes Metab. J. 40, 140–146 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Graveling, A. J. & Frier, B. M. Hypoglycaemia: an overview. Prim. Care Diabetes 3, 131–139 (2009).

    PubMed  Article  Google Scholar 

  79. 79.

    Zammitt, N. N. & Frier, B. M. Hypoglycemia in type 2 diabetes: pathophysiology, frequency, and effects of different treatment modalities. Diabetes Care 28, 2948–2961 (2005).

    PubMed  Article  Google Scholar 

  80. 80.

    Henderson, J. N., Allen, K. V., Deary, I. J. & Frier, B. M. Hypoglycaemia in insulin-treated type 2 diabetes: frequency, symptoms and impaired awareness. Diabet. Med. 20, 1016–1021 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. 81.

    No Authors Listed. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352, 837–853 (1998).

    Article  Google Scholar 

  82. 82.

    Shorr, R. I., Ray, W. A., Daugherty, J. R. & Griffin, M. R. Incidence and risk factors for serious hypoglycemia in older persons using insulin or sulfonylureas. Arch. Intern. Med. 157, 1681–1686 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83.

    Davis, T. M. et al. Determinants of severe hypoglycemia complicating type 2 diabetes: the Fremantle Diabetes Study. J. Clin. Endocrinol. Metab. 95, 2240–2247 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. 84.

    Matyka, K. et al. Altered hierarchy of protective responses against severe hypoglycemia in normal aging in healthy men. Diabetes Care 20, 135–141 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85.

    Meneilly, G. S., Cheung, E. & Tuokko, H. Altered responses to hypoglycemia of healthy elderly people. J. Clin. Endocrinol. Metab. 78, 1341–1348 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Holstein, A., Plaschke, A. & Egberts, E. H. Clinical characterisation of severe hypoglycaemia-a prospective population-based study. Exp. Clin. Endocrinol. Diabetes 111, 364–369 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87.

    Hope, S. V., Taylor, P. J., Shields, B. M., Hattersley, A. T. & Hamilton, W. Are we missing hypoglycaemia? Elderly patients with insulin-treated diabetes present to primary care frequently with non-specific symptoms associated with hypoglycaemia. Prim. Care Diabetes 12, 139–146 (2018). This paper draws attention to the problem of missed hypoglycaemia in older patients with insulin-treated diabetes mellitus.

    PubMed  PubMed Central  Article  Google Scholar 

  88. 88.

    Bonds, D. E. et al. The association between symptomatic, severe hypoglycaemia and mortality in type 2 diabetes: retrospective epidemiological analysis of the ACCORD study. BMJ 340, b4909 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Zoungas, S. et al. Severe hypoglycemia and risks of vascular events and death. N. Engl. J. Med. 363, 1410–1418 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90.

    Davis, S. N. et al. Effects of severe hypoglycemia on cardiovascular outcomes and death in the Veterans Affairs Diabetes Trial. Diabetes Care 42, 157–163 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  91. 91.

    Miller, M. E. et al. Effects of randomization to intensive glucose control on adverse events, cardiovascular disease, and mortality in older versus younger adults in the ACCORD Trial. Diabetes Care 37, 634–643 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  92. 92.

    Lee, A. K. et al. Severe hypoglycemia and risk of falls in type 2 diabetes: the Atherosclerosis Risk in Communities (ARIC) Study. Diabetes Care 43, 2060–2065 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  93. 93.

    Munshi, M. et al. Cognitive dysfunction is associated with poor diabetes control in older adults. Diabetes Care 29, 1794–1799 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  94. 94.

    Rawlings, A. M. et al. Diabetes in midlife and cognitive change over 20 years: a cohort study. Ann. Intern. Med. 161, 785–793 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  95. 95.

    Luchsinger, J. A., Tang, M. X., Stern, Y., Shea, S. & Mayeux, R. Diabetes mellitus and risk of Alzheimer’s disease and dementia with stroke in a multiethnic cohort. Am. J. Epidemiol. 154, 635–641 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  96. 96.

    Ott, A. et al. Diabetes mellitus and the risk of dementia: the Rotterdam Study. Neurology 53, 1937–1942 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97.

    Peila, R., Rodriguez, B. L., Launer, L. J. & Honolulu-Asia Aging, S. Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: the Honolulu-Asia Aging Study. Diabetes 51, 1256–1262 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  98. 98.

    Mansur, R. B. et al. Determinants of cognitive function in individuals with type 2 diabetes mellitus: a meta-analysis. Ann. Clin. Psychiatry 30, 38–50 (2018). A meta-analysis that highlights the range of determinants and presentations of cognitive decline in individuals with T2DM.

    PubMed  PubMed Central  Google Scholar 

  99. 99.

    Cholerton, B., Baker, L. D., Montine, T. J. & Craft, S. Type 2 diabetes, cognition, and dementia in older adults: toward a precision health approach. Diabetes Spectr. 29, 210–219 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  100. 100.

    Janssen, J. et al. HbA1c, insulin resistance, and beta-cell function in relation to cognitive function in type 2 diabetes: the CAROLINA cognition substudy. Diabetes Care 42, e1–e3 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  101. 101.

    Zhong, Y. et al. The relationship between glucose excursion and cognitive function in aged type 2 diabetes patients. Biomed. Env. Sci. 25, 1–7 (2012).

    CAS  Google Scholar 

  102. 102.

    Huang, L., Yang, L., Shen, X. & Yan, S. Relationship between glycated hemoglobin A1c and cognitive function in nondemented elderly patients with type 2 diabetes. Metab. Brain Dis. 31, 347–353 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  103. 103.

    Lacy, M. E. et al. Long-term glycemic control and dementia risk in type 1 diabetes. Diabetes Care 41, 2339–2345 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. 104.

    Tuligenga, R. H. et al. Midlife type 2 diabetes and poor glycaemic control as risk factors for cognitive decline in early old age: a post-hoc analysis of the Whitehall II cohort study. Lancet Diabetes Endocrinol. 2, 228–235 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  105. 105.

    Umegaki, H. et al. The associations among insulin resistance, hyperglycemia, physical performance, diabetes mellitus, and cognitive function in relatively healthy older adults with subtle cognitive dysfunction. Front. Aging Neurosci. 9, 72 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  106. 106.

    Kong, S. H., Park, Y. J., Lee, J. Y., Cho, N. H. & Moon, M. K. Insulin resistance is associated with cognitive decline among older Koreans with normal baseline cognitive function: a prospective community-based cohort study. Sci. Rep. 8, 650 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  107. 107.

    van Gemert, T. et al. Cognitive function is impaired in patients with recently diagnosed type 2 diabetes, but not type 1 diabetes. J. Diabetes Res. 2018, 1470476 (2018).

    PubMed  PubMed Central  Google Scholar 

  108. 108.

    Ben Assayag, E. et al. Type 2 diabetes mellitus and impaired renal function are associated with brain alterations and poststroke cognitive decline. Stroke 48, 2368–2374 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  109. 109.

    Kawamura, T. et al. Effect of renal impairment on cognitive function during a 3-year follow up in elderly patients with type 2 diabetes: association with microinflammation. J. Diabetes Investig. 5, 597–605 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Talfournier, J. et al. Relationship between blood pressure, cognitive function and education level in elderly patients with diabetes: a preliminary study. Diabetes Metab. 39, 418–423 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  111. 111.

    Danna, S. M., Graham, E., Burns, R. J., Deschenes, S. S. & Schmitz, N. Association between depressive symptoms and cognitive function in persons with diabetes mellitus: a systematic review. PLoS One 11, e0160809 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  112. 112.

    Weinstein, G., Elran Barak, R., Schnaider Beeri, M. & Ravona-Springer, R. Personality traits and cognitive function in old-adults with type-2 diabetes. Aging Ment. Health 23, 1317–1325 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  113. 113.

    Blackwood, J. Cognitive function and falls in older adults with type 2 diabetes mellitus. J. Geriatr. Phys. Ther. 42, E91–E96 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  114. 114.

    Smith, D. et al. A systematic review of medication non-adherence in persons with dementia or cognitive impairment. PLoS One 12, e0170651 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  115. 115.

    Munshi, M. N. Cognitive dysfunction in older adults with diabetes: what a clinician needs to know. Diabetes Care 40, 461–467 (2017).

    PubMed  Article  CAS  Google Scholar 

  116. 116.

    Zhao, R. R., O’Sullivan, A. J. & Fiatarone Singh, M. A. Exercise or physical activity and cognitive function in adults with type 2 diabetes, insulin resistance or impaired glucose tolerance: a systematic review. Eur. Rev. Aging Phys. Act. 15, 1 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  117. 117.

    World Health Organization. Multimorbidity: technical series on safer primary care https://apps.who.int/iris/bitstream/handle/10665/252275/9789241511650-eng.pdf?sequence=1 (2016).

  118. 118.

    Nunes, B. P., Flores, T. R., Mielke, G. I., Thume, E. & Facchini, L. A. Multimorbidity and mortality in older adults: a systematic review and meta-analysis. Arch. Gerontol. Geriatr. 67, 130–138 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  119. 119.

    Cassell, A. et al. The epidemiology of multimorbidity in primary care: a retrospective cohort study. Br. J. Gen. Pract. 68, e245–e251 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  120. 120.

    Melis, R., Marengoni, A., Angleman, S. & Fratiglioni, L. Incidence and predictors of multimorbidity in the elderly: a population-based longitudinal study. PLoS One 9, e103120 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  121. 121.

    Perez Fernandez, M. et al. Comorbidity, frailty, and waitlist mortality among kidney transplant candidates of all ages. Am. J. Nephrol. 49, 103–110 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  122. 122.

    Piette, J. D. & Kerr, E. A. The impact of comorbid chronic conditions on diabetes care. Diabetes Care 29, 725–731 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  123. 123.

    Eurich, D. T., Majumdar, S. R., Tsuyuki, R. T. & Johnson, J. A. Reduced mortality associated with the use of ACE inhibitors in patients with type 2 diabetes. Diabetes Care 27, 1330–1334 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  124. 124.

    Kennedy, B. K. et al. Geroscience: linking aging to chronic disease. Cell 159, 709–713 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  125. 125.

    Wolff, J. L., Starfield, B. & Anderson, G. Prevalence, expenditures, and complications of multiple chronic conditions in the elderly. Arch. Intern. Med. 162, 2269–2276 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  126. 126.

    Quinones, A. R., Markwardt, S. & Botoseneanu, A. Diabetes-multimorbidity combinations and disability among middle-aged and older adults. J. Gen. Intern. Med. 34, 944–951 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  127. 127.

    Laiteerapong, N. et al. Correlates of quality of life in older adults with diabetes: the Diabetes & Aging Study. Diabetes Care 34, 1749–1753 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  128. 128.

    Magnan, E. M. et al. The relationship of individual comorbid chronic conditions to diabetes care quality. BMJ Open Diabetes Res. Care 3, e000080 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  129. 129.

    Heisler, M. et al. When do patients and their physicians agree on diabetes treatment goals and strategies, and what difference does it make? J. Gen. Intern. Med. 18, 893–902 (2003).

    PubMed  PubMed Central  Article  Google Scholar 

  130. 130.

    Crandall, J. P. et al. The prevention of type 2 diabetes. Nat. Clin. Pract. Endocrinol. Metab. 4, 382–393 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  131. 131.

    Pan, X. R. et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care 20, 537–544 (1997).

    CAS  PubMed  Article  Google Scholar 

  132. 132.

    Tuomilehto, J. et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med. 344, 1343–1350 (2001).

    CAS  PubMed  Article  Google Scholar 

  133. 133.

    Knowler, W. C. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 346, 393–403 (2002).

    CAS  PubMed  Article  Google Scholar 

  134. 134.

    Crandall, J. et al. The influence of age on the effects of lifestyle modification and metformin in prevention of diabetes. J. Gerontol. A Biol. Sci. Med. Sci. 61, 1075–1081 (2006).

    PubMed  Article  Google Scholar 

  135. 135.

    Valabhji, J. et al. Early outcomes from the english national health service diabetes prevention programme. Diabetes Care 43, 152–160 (2020).

    PubMed  Article  Google Scholar 

  136. 136.

    Stevens, J. W. et al. Preventing the progression to type 2 diabetes mellitus in adults at high risk: a systematic review and network meta-analysis of lifestyle, pharmacological and surgical interventions. Diabetes Res. Clin. Pract. 107, 320–331 (2015).

    CAS  PubMed  Article  Google Scholar 

  137. 137.

    Strain, W. D. et al. Type 2 diabetes mellitus in older people: a brief statement of key principles of modern day management including the assessment of frailty. A national collaborative stakeholder initiative. Diabet. Med. 35, 838–845 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  138. 138.

    Sinclair, A. et al. Diabetes mellitus in older people: position statement on behalf of the International Association of Gerontology and Geriatrics (IAGG), the European Diabetes Working Party for Older People (EDWPOP), and the International Task Force of Experts in Diabetes. J. Am. Med. Dir. Assoc. 13, 497–502 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  139. 139.

    Davies, M. J. et al. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 41, 2669–2701 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  140. 140.

    Garber, A. J. et al. Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm — 2019 executive summary. Endocr. Pract. 25, 69–100 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  141. 141.

    Sinclair, A. J. et al. An international position statement on the management of frailty in diabetes mellitus: summary of recommendations 2017. J. Frailty Aging 7, 10–20 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Khunti, K. & Seidu, S. Therapeutic inertia and the legacy of dysglycemia on the microvascular and macrovascular complications of diabetes. Diabetes Care 42, 349–351 (2019).

    PubMed  Article  Google Scholar 

  143. 143.

    Sinclair, A. J., Gadsby, R., Abdelhafiz, A. H. & Kennedy, M. Failing to meet the needs of generations of care home residents with diabetes: a review of the literature and a call for action. Diabet. Med. 35, 1144–1156 (2018).

    Article  Google Scholar 

  144. 144.

    Strain, W. D., Lukashevich, V., Kothny, W., Hoellinger, M. J. & Paldanius, P. M. Individualised treatment targets for elderly patients with type 2 diabetes using vildagliptin add-on or lone therapy (INTERVAL): a 24 week, randomised, double-blind, placebo-controlled study. Lancet 382, 409–416 (2013).

    CAS  PubMed  Article  Google Scholar 

  145. 145.

    Yakaryilmaz, F. D. & Ozturk, Z. A. Treatment of type 2 diabetes mellitus in the elderly. World J. Diabetes 8, 278–285 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  146. 146.

    Home, P. et al. Insulin therapy in people with type 2 diabetes: opportunities and challenges? Diabetes Care 37, 1499–1508 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  147. 147.

    Valdes-Ramos, R., Guadarrama-Lopez, A. L., Martinez-Carrillo, B. E. & Benitez-Arciniega, A. D. Vitamins and type 2 diabetes mellitus. Endocr. Metab. Immune Disord. Drug. Targets 15, 54–63 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  148. 148.

    de Rekeneire, N. & Volpato, S. Physical function and disability in older adults with diabetes. Clin. Geriatr. Med. 31, 51–65 (2015).

    PubMed  Article  Google Scholar 

  149. 149.

    Lee, J., Kim, D. & Kim, C. Resistance training for glycemic control, muscular strength, and lean body mass in old type 2 diabetic patients: a meta-analysis. Diabetes Ther. 8, 459–473 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  150. 150.

    Dixit, S., Maiya, A. & Shastry, B. A. Effect of moderate-intensity aerobic exercise on glycosylated haemoglobin among elderly patients with type 2 diabetes & peripheral neuropathy. Indian J. Med. Res. 145, 129–132 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  151. 151.

    Emerenziani, G. P. et al. Effects of aerobic exercise based upon heart rate at aerobic threshold in obese elderly subjects with type 2 diabetes. Int. J. Endocrinol. 2015, 695297 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  152. 152.

    Sinclair, A. J., Abdelhafiz, A. H. & Rodriguez-Manas, L. Frailty and sarcopenia - newly emerging and high impact complications of diabetes. J. Diabetes Complications 31, 1465–1473 (2017).

    PubMed  Article  Google Scholar 

  153. 153.

    Pan, B. et al. Exercise training modalities in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. Int. J. Behav. Nutr. Phys. Act. 15, 72 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  154. 154.

    Villareal, D. T. et al. Aerobic or resistance exercise, or both, in dieting obese older adults. N. Engl. J. Med. 376, 1943–1955 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  155. 155.

    Brannick, B. & Dagogo-Jack, S. Prediabetes and cardiovascular disease: pathophysiology and interventions for prevention and risk reduction. Endocrinol. Metab. Clin. North. Am. 47, 33–50 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  156. 156.

    Shang, Y. et al. Natural history of prediabetes in older adults from a population-based longitudinal study. J. Intern. Med. 286, 326–340 (2019). A study showing the value of T2DM prevention strategies in older adults.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  157. 157.

    LeRoith, D. et al. Treatment of diabetes in older adults: an endocrine society* clinical practice guideline. J. Clin. Endocrinol. Metab. 104, 1520–1574 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  158. 158.

    Shenoy, P. & Harugeri, A. Elderly patients’ participation in clinical trials. Perspect. Clin. Res. 6, 184–189 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  159. 159.

    Tahrani, A. A., Barnett, A. H. & Bailey, C. J. Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus. Nat. Rev. Endocrinol. 12, 566–592 (2016). An overview of pharmacological treatment options for T2DM.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  160. 160.

    Wang, C. P., Lorenzo, C. & Espinoza, S. E. Frailty attenuates the impact of metformin on reducing mortality in older adults with type 2 diabetes. J. Endocrinol. Diabetes Obes. 2, 1031 (2014).

    PubMed  PubMed Central  Google Scholar 

  161. 161.

    Sumantri, S., Setiati, S., Purnamasari, D. & Dewiasty, E. Relationship between metformin and frailty syndrome in elderly people with type 2 diabetes. Acta Med. Indones. 46, 183–188 (2014).

    PubMed  PubMed Central  Google Scholar 

  162. 162.

    Apolzan, J. W. et al. Long-term weight loss with metformin or lifestyle intervention in the diabetes prevention program outcomes study. Ann. Intern. Med. 170, 682–690 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  163. 163.

    Porter, K. M. et al. Hyperglycemia and metformin use are associated with B vitamin deficiency and cognitive dysfunction in older adults. J. Clin. Endocrinol. Metab. 104, 4837–4847 (2019).

    PubMed  Article  Google Scholar 

  164. 164.

    Schlender, L. et al. Efficacy and safety of metformin in the management of type 2 diabetes mellitus in older adults: a systematic review for the development of recommendations to reduce potentially inappropriate prescribing. BMC Geriatr. 17, 227 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  165. 165.

    Bailey, C. J. Safety of antidiabetes medications: An update. Clin. Pharmacol. Ther. 98, 185–195 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  166. 166.

    Andersen, S. E. & Christensen, M. Hypoglycaemia when adding sulphonylurea to metformin: a systematic review and network meta-analysis. Br. J. Clin. Pharmacol. 82, 1291–1302 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  167. 167.

    Munshi, M. N. et al. Frequent hypoglycemia among elderly patients with poor glycemic control. Arch. Intern. Med. 171, 362–364 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  168. 168.

    Rosenstock, J. et al. Effect of linagliptin vs glimepiride on major adverse cardiovascular outcomes in patients with type 2 diabetes: the CAROLINA randomized clinical trial. JAMA 322, 1155–1166 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  169. 169.

    Barnett, A. et al. Efficacy and safety of linagliptin in elderly patients (>70 years) with type 2 diabetes. Diabetes 61, A260–A261 (2012).

    Google Scholar 

  170. 170.

    Patel, S. et al. Renal safety of linagliptin in elderly patients with type 2 diabetes mellitus (T2DM): analysis of pooled patient data from 7 phase 3 clinical trials. J. Am. Geriatr. Soc. 62, S182 (2014).

    Article  Google Scholar 

  171. 171.

    Hartley, P. et al. Efficacy and tolerability of sitagliptin compared with glimepiride in elderly patients with type 2 diabetes mellitus and inadequate glycemic control: a randomized, double-blind, non-inferiority trial. Drugs Aging 32, 469–476 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  172. 172.

    Bethel, M. A. et al. Assessing the safety of sitagliptin in older participants in the trial evaluating cardiovascular outcomes with sitagliptin (TECOS). Diabetes Care 40, 494–501 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  173. 173.

    Leiter, L. A. et al. Efficacy and safety of saxagliptin in older participants in the SAVOR-TIMI 53 trial. Diabetes Care 38, 1145–1153 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  174. 174.

    Rosenstock, J. et al. Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk: the CARMELINA randomized clinical trial. JAMA 321, 69–79 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  175. 175.

    Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 373, 2117–2128 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  176. 176.

    Neal, B. et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med. 377, 644–657 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  177. 177.

    Wiviott, S. D. et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 380, 347–357 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  178. 178.

    Monteiro, P. et al. Efficacy and safety of empagliflozin in older patients in the EMPA-REG OUTCOME(R) trial. Age Ageing 48, 859–866 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  179. 179.

    Custodio, J. S. Jr., Roriz-Filho, J., Cavalcanti, C. A. J., Martins, A. & Salles, J. E. N. Use of SGLT2 inhibitors in older adults: scientific evidence and practical aspects. Drugs Aging 37, 399–409 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  180. 180.

    Scheen, A. J. Sodium-glucose cotransporter type 2 inhibitors for the treatment of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 16, 556–577 (2020).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  181. 181.

    Meneilly, G. S. et al. Lixisenatide therapy in older patients with type 2 diabetes inadequately controlled on their current antidiabetic treatment: The GetGoal-O randomized trial. Diabetes Care 40, 485–493 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  182. 182.

    Pawaskar, M., Li, Q. & Reynolds, M. W. Metabolic outcomes of elderly patient populations initiating exenatide BID versus insulin glargine in an ambulatory care setting. Curr. Med. Res. Opin. 28, 991–997 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  183. 183.

    Gilbert, M. P. et al. Effect of liraglutide on cardiovascular outcomes in elderly patients: a post hoc analysis of a randomized controlled trial. Ann. Intern. Med. 170, 423–426 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  184. 184.

    Scheen, A. J. Cardiovascular outcome studies in type 2 diabetes: comparison between SGLT2 inhibitors and GLP-1 receptor agonists. Diabetes Res. Clin. Pract. 143, 88–100 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  185. 185.

    Rajagopalan, R., Perez, A., Ye, Z., Khan, M. & Murray, F. T. Pioglitazone is effective therapy for elderly patients with type 2 diabetes mellitus. Drugs Aging 21, 259–271 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  186. 186.

    Graham, D. J. et al. Risk of acute myocardial infarction, stroke, heart failure, and death in elderly Medicare patients treated with rosiglitazone or pioglitazone. JAMA 304, 411–418 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  187. 187.

    Vaccaro, O. et al. Effects on the incidence of cardiovascular events of the addition of pioglitazone versus sulfonylureas in patients with type 2 diabetes inadequately controlled with metformin (TOSCA.IT): a randomised, multicentre trial. Lancet Diabetes Endocrinol. 5, 887–897 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  188. 188.

    Hanefeld, M. Cardiovascular benefits and safety profile of acarbose therapy in prediabetes and established type 2 diabetes. Cardiovasc. Diabetol. 6, 20 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  189. 189.

    Josse, R. G. et al. Acarbose in the treatment of elderly patients with type 2 diabetes. Diabetes Res. Clin. Pract. 59, 37–42 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Srikanth Bellary.

Ethics declarations

Competing interests

S.B. has received research grants from The Binding Site Ltd. and Novo Nordisk, UK, Ltd. as well as speaker fees and honoraria from AstraZeneca, Boehringer Ingelheim, MSD, Novo Nordisk, Janssen, Eli Lilly, and Sanofi-Aventis outside of the submitted work. C.J.B. has received personal fees from AstraZeneca, Boehringer Ingelheim, Elcelyx, Lexicon, Poxel, Eli Lilly, Janssen, Merck, Sharpe & Dohme, Novo Nordisk, and Sanofi-Aventis. J.E.B. has received speaker fees from Gilead Biosciences Inc. I.K. has no competing interests to declare.

Additional information

Peer review information

Nature Reviews Endocrinology thanks L. Rodriguez-Mañas and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Review criteria

Literature searches were conducted using Google Scholar, MEDLINE and Embase with the following terms: ‘elderly’, ‘frail’, ‘older people’ and ‘aged’ combined with ‘diabetes’, ‘type 2 diabetes’, ‘prediabetes’ and ‘glucose control’. The selection was made by at least two of the present authors and was limited to English language articles from 2000 to 2020 and relevant references cited in the publications selected. Priority was given to prospective randomized studies and meta-analyses, though these were scarce, and observational and descriptive studies, guidelines, and policy documents were also consulted.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bellary, S., Kyrou, I., Brown, J.E. et al. Type 2 diabetes mellitus in older adults: clinical considerations and management. Nat Rev Endocrinol 17, 534–548 (2021). https://doi.org/10.1038/s41574-021-00512-2

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing