Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of biomineralization in disorders of skeletal development and tooth formation

Abstract

The major mineralized tissues are bone and teeth, which share several mechanisms governing their development and mineralization. This crossover includes the hormones that regulate circulating calcium and phosphate concentrations, and the genes that regulate the differentiation and transdifferentiation of cells. In developing endochondral bone and in developing teeth, parathyroid hormone-related protein (PTHrP) acts in chondrocytes to delay terminal differentiation, thereby increasing the pool of precursor cells. Chondrocytes and (in specific circumstances) pre-odontoblasts can also transdifferentiate into osteoblasts. Moreover, bone and teeth share outcomes when affected by systemic disorders of mineral homeostasis or of the extracellular matrix, and by adverse effects of treatments such as bisphosphonates and fluoride. Unlike bone, teeth have more permanent effects from systemic disorders because they are not remodelled after they are formed. This Review discusses the normal processes of bone and tooth development, followed by disorders that have effects on both bone and teeth, versus disorders that have effects in one without affecting the other. The takeaway message is that bone specialists should know when to screen for dental disorders, just as dental specialists should recognize when a tooth disorder should raise suspicions about a possible underlying bone disorder.

Key points

  • Bone and teeth, the major mineralized tissues, are regulated by many of the same genes and hormones.

  • Parathyroid hormone-related protein acts to delay terminal differentiation in chondrocytes of developing endochondral bone and in developing teeth.

  • Bone and teeth share fates when affected by systemic disorders of mineral homeostasis or of the extracellular matrix.

  • Teeth are not remodelled after they are formed, and so effects of systemic disorders are permanent, whereas bone remodelling can restore the skeleton.

  • Bone specialists and dental specialists should recognize when a disorder of one of the mineralized tissues should raise awareness of a disorder of the other.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Normal bone and tooth development.
Fig. 2: Fetal bone and tooth mineralization are dependent on both PTH and PTHrP but not FGF23.
Fig. 3: Developmental pathways of bone and tooth cells.

Similar content being viewed by others

References

  1. MacDougall, M. J. & Javed, A. in Bone and Development Ch. 11 (eds Bronner, F., Farach-Carson, M. C. & Roach, H. I.) 183–200 (Springer, 2010).

  2. Opsahl Vital, S. et al. Tooth dentin defects reflect genetic disorders affecting bone mineralization. Bone 50, 989–997 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Roschger, P., Misof, B., Paschalis, E., Fratzl, P. & Klaushofer, K. Changes in the degree of mineralization with osteoporosis and its treatment. Curr. Osteoporos. Rep. 12, 338–350 (2014).

    Article  PubMed  Google Scholar 

  4. Berendsen, A. D. & Olsen, B. R. Bone development. Bone 80, 14–18 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Karsenty, G., Kronenberg, H. M. & Settembre, C. Genetic control of bone formation. Annu. Rev. Cell Dev. Biol. 25, 629–648 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Caplan, A. I. & Pechak, D. G. in Bone and Mineral Research (ed. Peck, W. A.) 117–183 (Elsevier, 1987).

  7. Horton, W. A. in Extracellular Matrix and Heritable Disorders of Connective Tissue (eds Royce, P. M. & Steinman, B.) 73–84 (Alan R. Liss, 1993).

  8. Linsenmayer, T. F. et al. Collagen types IX and X in the developing chick tibiotarsus: analyses of mRNAs and proteins. Development 111, 191–196 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Poole, A. R. in Cartilage: Molecular Aspects (eds Hall, B. K. & Newman, S. A.) 179–211 (CRC, 1991).

  10. Ducy, P. et al. Increased bone formation in osteocalcin-deficient mice. Nature 382, 448–452 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Wolff, L. I. & Hartmann, C. A second career for chondrocytes–transformation into osteoblasts. Curr. Osteoporos. Rep. 17, 129–137 (2019).

    Article  PubMed  Google Scholar 

  12. Jahn, K. et al. Osteocytes acidify their microenvironment in response to PTHrP in vitro and in lactating mice in vivo. J. Bone Min. Res. 32, 1761–1772 (2017).

    Article  Google Scholar 

  13. Hemmatian, H., Bakker, A. D., Klein-Nulend, J. & van Lenthe, G. H. Aging, osteocytes, and mechanotransduction. Curr. Osteoporos. Rep. 15, 401–411 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sabbagh, Y., Carpenter, T. O. & Demay, M. B. Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proc. Natl Acad. Sci. USA 102, 9637–9642 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Yang, Y. in Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism 9th edn (ed. Bilezikian, J. P.) 3–11 (Wiley Blackwell, 2019).

  16. Karner, C. M. & Hilton, M. J. in Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism 9th edn (ed. Bilezikian, J. P.) 12–19 (Wiley Blackwell, 2019).

  17. Lee, K. et al. In situ localization of PTH/PTHrP receptor mRNA in the bone of fetal and young rats. Bone 14, 341–345 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Lee, K., Deeds, J. D. & Segre, G. V. Expression of parathyroid hormone-related peptide and its receptor messenger ribonucleic acids during fetal development of rats. Endocrinology 136, 453–463 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Lanske, B. et al. PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science 273, 663–666 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Vortkamp, A. et al. Indian hedgehog and parathyroid hormone-related protein regulate the rate of cartilage differentiation. Science 273, 613–622 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Karaplis, A. C. et al. Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev. 8, 277–289 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Karaplis, A. C. et al. Inactivating mutation in the human parathyroid hormone receptor type 1 gene in Blomstrand chondrodysplasia. Endocrinology 139, 5255–5258 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Oostra, R. J. et al. Blomstrand osteochondrodysplasia: three novel cases and histological evidence for heterogeneity. Virchows Arch. 436, 28–35 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Miao, D., He, B., Karaplis, A. C. & Goltzman, D. Parathyroid hormone is essential for normal fetal bone formation. J. Clin. Invest. 109, 1173–1182 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Weir, E. C. et al. Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Proc. Natl Acad. Sci. USA 93, 10240–10245 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Schipani, E. et al. Targeted expression of constitutively active PTH/PTHrP receptors delays endochondral bone formation and rescues PTHrP-less mice. Proc. Natl Acad. Sci. USA 94, 13689–13694 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Kovacs, C. S. et al. Parathyroid hormone-related peptide (PTHrP) regulates fetal-placental calcium transport through a receptor distinct from the PTH/PTHrP receptor. Proc. Natl Acad. Sci. USA 93, 15233–15238 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Kovacs, C. S., Chafe, L. L., Fudge, N. J., Friel, J. K. & Manley, N. R. PTH regulates fetal blood calcium and skeletal mineralization independently of PTHrP. Endocrinology 142, 4983–4993 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Amizuka, N. et al. Haploinsufficiency of parathyroid hormone-related peptide (PTHrP) results in abnormal postnatal bone development. Dev. Biol. 175, 166–176 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Miao, D. et al. Osteoblast-derived PTHrP is a potent endogenous bone anabolic agent that modifies the therapeutic efficacy of administered PTH 1-34. J. Clin. Invest. 115, 2402–2411 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Miao, D. et al. Parathyroid hormone-related peptide is required for increased trabecular bone volume in parathyroid hormone-null mice. Endocrinology 145, 3554–3562 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Kovacs, C. S., Manley, N. R., Moseley, J. M., Martin, T. J. & Kronenberg, H. M. Fetal parathyroids are not required to maintain placental calcium transport. J. Clin. Invest. 107, 1007–1015 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Simmonds, C. S., Karsenty, G., Karaplis, A. C. & Kovacs, C. S. Parathyroid hormone regulates fetal–placental mineral homeostasis. J. Bone Min. Res. 25, 594–605 (2010).

    Article  CAS  Google Scholar 

  34. Kovacs, C. S. Bone development and mineral homeostasis in the fetus and neonate: roles of the calciotropic and phosphotropic hormones. Physiol. Rev. 94, 1143–1218 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Halloran, B. P. & De Luca, H. F. Effect of vitamin D deficiency on skeletal development during early growth in the rat. Arch. Biochem. Biophys. 209, 7–14 (1981).

    Article  CAS  PubMed  Google Scholar 

  36. Miller, S. C., Halloran, B. P., DeLuca, H. F. & Jee, W. S. Studies on the role of vitamin D in early skeletal development, mineralization, and growth in rats. Calcif. Tissue Int. 35, 455–460 (1983).

    Article  CAS  PubMed  Google Scholar 

  37. Brommage, R. & DeLuca, H. F. Placental transport of calcium and phosphorus is not regulated by vitamin D. Am. J. Physiol. 246, F526–F529 (1984).

    CAS  PubMed  Google Scholar 

  38. Glazier, J. D., Mawer, E. B. & Sibley, C. P. Calbindin-D9K gene expression in rat chorioallantoic placenta is not regulated by 1,25-dihydroxyvitamin D3. Pediatr. Res. 37, 720–725 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Kovacs, C. S., Woodland, M. L., Fudge, N. J. & Friel, J. K. The vitamin D receptor is not required for fetal mineral homeostasis or for the regulation of placental calcium transfer in mice. Am. J. Physiol. Endocrinol. Metab. 289, E133–E144 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Lieben, L., Stockmans, I., Moermans, K. & Carmeliet, G. Maternal hypervitaminosis D reduces fetal bone mass and mineral acquisition and leads to neonatal lethality. Bone 57, 123–131 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Ryan, B. A. et al. Mineral homeostasis in murine fetuses is sensitive to maternal calcitriol but not to absence of fetal calcitriol. J. Bone Min. Res. 34, 669–680 (2019).

    Article  CAS  Google Scholar 

  42. Ma, Y. et al. FGF23 is not required to regulate fetal phosphorus metabolism but exerts effects within 12 hours after birth. Endocrinology 158, 252–263 (2017).

    CAS  PubMed  Google Scholar 

  43. Ma, Y. et al. Neither absence nor excess of FGF23 disturbs murine fetal–placental phosphorus homeostasis or prenatal skeletal development and mineralization. Endocrinology 155, 1596–1605 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rebut-Bonneton, C., Garel, J. M. & Delbarre, F. Parathyroid hormone, calcitonin, 1,25-dihydroxycholecalciferol, and basal bone resorption in the rat fetus. Calcif. Tissue Int. 35, 183–189 (1983).

    Article  CAS  PubMed  Google Scholar 

  45. Rebut-Bonneton, C., Demignon, J., Amor, B. & Miravet, L. Effect of calcitonin in pregnant rats on bone resorption in fetuses. J. Endocrinol. 99, 347–353 (1983).

    Article  CAS  PubMed  Google Scholar 

  46. Sinclair, J. G. Fetal rat parathyroids as affected by changes in maternal serum calcium and phosphorus through parathyroidectomy and dietary control. J. Nutr. 23, 141–152 (1942).

    Article  CAS  Google Scholar 

  47. Garel, J. M. & Geloso-Meyer, A. Fetal hyperparathyroidism in rats following maternal hypoparathyroidism [French]. Rev. Eur. Etud. Clin. Biol. 16, 174–178 (1971).

    CAS  PubMed  Google Scholar 

  48. Chalon, S. & Garel, J. M. Plasma calcium control in the rat fetus. I. Influence of maternal hormones. Biol. Neonate 48, 313–322 (1985).

    Article  CAS  PubMed  Google Scholar 

  49. Kovacs, C. S. in Pediatric Bone: Biology and Diseases 2nd edn (eds Glorieux, F. H., Pettifor, J. M., & Jüppner, H.) 247–275 (Elsevier, 2011).

  50. Kovacs, C. S. et al. Regulation of murine fetal–placental calcium metabolism by the calcium-sensing receptor. J. Clin. Invest. 101, 2812–2820 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shin, H. I. et al. Gp130-mediated signaling is necessary for normal osteoblastic function in vivo and in vitro. Endocrinology 145, 1376–1385 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Almonaitiene, R., Balciuniene, I. & Tutkuviene, J. Factors influencing permanent teeth eruption. Part one–general factors. Stomatologija 12, 67–72 (2010).

    PubMed  Google Scholar 

  53. Balic, A. & Thesleff, I. Tissue interactions regulating tooth development and renewal. Curr. Top. Dev. Biol. 115, 157–186 (2015).

    Article  PubMed  Google Scholar 

  54. Jernvall, J. & Thesleff, I. Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech. Dev. 92, 19–29 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Thesleff, I. Epithelial-mesenchymal signalling regulating tooth morphogenesis. J. Cell Sci. 116, 1647–1648 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Chai, Y. et al. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127, 1671–1679 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Balic, A. Concise review: cellular and molecular mechanisms regulation of tooth initiation. Stem Cell 37, 26–32 (2019).

    Article  Google Scholar 

  58. McGonnell, I. M. & Graham, A. Trunk neural crest has skeletogenic potential. Curr. Biol. 12, 767–771 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Yu, T. & Klein, O. D. Molecular and cellular mechanisms of tooth development, homeostasis and repair. Development 147, dev184754 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pandya, M. et al. Posttranslational amelogenin processing and changes in matrix assembly during enamel development. Front. Physiol. 8, 790 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lu, Y. et al. Functions of KLK4 and MMP-20 in dental enamel formation. Biol. Chem. 389, 695–700 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lacruz, R. S., Habelitz, S., Wright, J. T. & Paine, M. L. Dental enamel formation and implications for oral health and disease. Physiol. Rev. 97, 939–993 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Du, C., Falini, G., Fermani, S., Abbott, C. & Moradian-Oldak, J. Supramolecular assembly of amelogenin nanospheres into birefringent microribbons. Science 307, 1450–1454 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Dunglas, C. et al. Ultrastructure of forming enamel in mouse bearing a transgene that disrupts the amelogenin self-assembly domains. Calcif. Tissue Int. 71, 155–166 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Kawashima, N. & Okiji, T. Odontoblasts: specialized hard-tissue-forming cells in the dentin–pulp complex. Congenit. Anom. 56, 144–153 (2016).

    Article  CAS  Google Scholar 

  66. Miletich, I. & Sharpe, P. T. Normal and abnormal dental development. Hum. Mol. Genet. 12 (Suppl. 1), R69–R73 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Goldberg, M., Kulkarni, A. B., Young, M. & Boskey, A. Dentin: structure, composition and mineralization. Front. Biosci. 3, 711–735 (2011).

    Article  Google Scholar 

  68. Kitahara, Y. et al. Disturbed tooth development in parathyroid hormone-related protein (PTHrP)-gene knockout mice. Bone 30, 48–56 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Gonçalves, P. F. et al. Dental cementum reviewed: development, structure, composition, regeneration and potential functions. Braz. J. Oral. Sci. 4, 651–658 (2015).

    Google Scholar 

  70. Philbrick, W. M., Dreyer, B. E., Nakchbandi, I. A. & Karaplis, A. C. Parathyroid hormone-related protein is required for tooth eruption. Proc. Natl Acad. Sci. USA 95, 11846–11851 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Ono, W., Sakagami, N., Nishimori, S., Ono, N. & Kronenberg, H. M. Parathyroid hormone receptor signalling in osterix-expressing mesenchymal progenitors is essential for tooth root formation. Nat. Commun. 7, 11277 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Takahashi, A. et al. Autocrine regulation of mesenchymal progenitor cell fates orchestrates tooth eruption. Proc. Natl Acad. Sci. USA 116, 575–580 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Yang, M. et al. Chemokine and chemokine receptor expression during colony stimulating factor-1-induced osteoclast differentiation in the toothless osteopetrotic rat: a key role for CCL9 (MIP-1γ) in osteoclastogenesis in vivo and in vitro. Blood 107, 2262–2270 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wise, G. E., Que, B. G., Huang, H. & Lumpkin, S. J. Enhancement of gene expression in rat dental follicle cells by parathyroid hormone-related protein. Arch. Oral. Biol. 45, 903–909 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Pilz, P. et al. Differential diagnosis of primary failure of eruption (PFE) with and without evidence of pathogenic mutations in the PTHR1 gene. J. Orofac. Orthop. 75, 226–239 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Izumida, E. et al. Functional analysis of PTH1R variants found in primary failure of eruption. J. Dent. Res. 99, 429–436 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Komori, T. Regulation of osteoblast and odontoblast differentiation by RUNX2. J. Oral. Biosci. 52, 22–25 (2010).

    Article  CAS  Google Scholar 

  78. Miyazaki, T. et al. Inhibition of the terminal differentiation of odontoblasts and their transdifferentiation into osteoblasts in Runx2 transgenic mice. Arch. Histol. Cytol. 71, 131–146 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Merrell, A. J. & Stanger, B. Z. Adult cell plasticity in vivo: de-differentiation and transdifferentiation are back in style. Nat. Rev. Mol. Cell Biol. 17, 413–425 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cao, Y. et al. Pulp-dentin regeneration: current state and future prospects. J. Dent. Res. 94, 1544–1551 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Vijaykumar, A., Dyrkacz, P., Vidovic-Zdrilic, I., Maye, P. & Mina, M. Expression of BSP-GFPtpz transgene during osteogenesis and reparative dentinogenesis. J. Dent. Res. 99, 89–97 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Kovacs, C. S. Maternal mineral and bone metabolism during pregnancy, lactation, and post-weaning recovery. Physiol. Rev. 96, 449–547 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Mortier, G. R. et al. Nosology and classification of genetic skeletal disorders: 2019 revision. Am. J. Med. Genet. A 179, 2393–2419 (2019).

    Article  PubMed  Google Scholar 

  84. McKee, M. D. et al. Extracellular matrix mineralization in periodontal tissues: noncollagenous matrix proteins, enzymes, and relationship to hypophosphatasia and X-linked hypophosphatemia. Periodontol. 63, 102–122 (2013).

    Article  Google Scholar 

  85. Bacchetta, J., Bardet, C. & Prié, D. Physiology of FGF23 and overview of genetic diseases associated with renal phosphate wasting. Metabolism 103s, 153865 (2020).

    Article  PubMed  Google Scholar 

  86. Beck-Nielsen, S. S. et al. FGF23 and its role in X-linked hypophosphatemia-related morbidity. Orphanet J. Rare Dis. 14, 58 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Boukpessi, T. et al. Abnormal presence of the matrix extracellular phosphoglycoprotein-derived acidic serine- and aspartate-rich motif peptide in human hypophosphatemic dentin. Am. J. Pathol. 177, 803–812 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Boukpessi, T. et al. Osteopontin and the dento-osseous pathobiology of X-linked hypophosphatemia. Bone 95, 151–161 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Chaussain-Miller, C. et al. Dental abnormalities in patients with familial hypophosphatemic vitamin D-resistant rickets: prevention by early treatment with 1-hydroxyvitamin D. J. Pediatr. 142, 324–331 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Linglart, A. et al. Therapeutic management of hypophosphatemic rickets from infancy to adulthood. Endocr. Connect. 3, R13–R30 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Biosse Duplan, M. et al. Phosphate and vitamin D prevent periodontitis in X-linked hypophosphatemia. J. Dent. Res. 96, 388–395 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. Thumbigere-Math, V. et al. Hypercementosis associated with ENPP1 mutations and GACI. J. Dent. Res. 97, 432–441 (2018).

    Article  CAS  PubMed  Google Scholar 

  93. Chakhtoura, M. et al. Hyperphosphatemic familial tumoral calcinosis secondary to fibroblast growth factor 23 (FGF23) mutation: a report of two affected families and review of the literature. Osteoporos. Int. 29, 1987–2009 (2018).

    Article  CAS  PubMed  Google Scholar 

  94. Le Norcy, E. et al. Dental and craniofacial features associated with GNAS loss of function mutations. Eur. J. Orthod. 42, 525–533 (2020).

    Article  PubMed  Google Scholar 

  95. Reibel, A. et al. Orodental phenotype and genotype findings in all subtypes of hypophosphatasia. Orphanet J. Rare Dis. 4, 6 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Foster, B. L. et al. Rare bone diseases and their dental, oral, and craniofacial manifestations. J. Dent. Res. 93, 7s–19s (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Linglart, A. & Biosse-Duplan, M. Hypophosphatasia. Curr. Osteoporos. Rep. 14, 95–105 (2016).

    Article  PubMed  Google Scholar 

  98. Smith, C. E. L. et al. Amelogenesis imperfecta; genes, proteins, and pathways. Front. Physiol. 8, 435 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Soliman, A. T., Ramadan, M. A., Sherif, A., Aziz Bedair, E. S. & Rizk, M. M. Pycnodysostosis: clinical, radiologic, and endocrine evaluation and linear growth after growth hormone therapy. Metabolism 50, 905–911 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Prokop, J. W. et al. Genome sequencing in the clinic: the past, present, and future of genomic medicine. Physiol. Genomics 50, 563–579 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Dallas, S. L., Xie, Y., Shiflett, L. A. & Ueki, Y. Mouse Cre models for the study of bone diseases. Curr. Osteoporos. Rep. 16, 466–477 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Klein, O. D. et al. Meeting report: a hard look at the state of enamel research. Int. J. Oral. Sci. 9, e3 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Carnovali, M., Banfi, G. & Mariotti, M. Zebrafish models of human skeletal disorders: embryo and adult swimming together. BioMed. Res. Int. 2019, 1253710 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Bruneel, B. et al. Imaging the zebrafish dentition: from traditional approaches to emerging technologies. Zebrafish 12, 1–10 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Foster, B. L., Nociti, F. H. Jr. & Somerman, M. J. The rachitic tooth. Endocr. Rev. 35, 1–34 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Houari, S., Loiodice, S., Jedeon, K., Berdal, A. & Babajko, S. Expression of steroid receptors in ameloblasts during amelogenesis in rat incisors. Front. Physiol. 7, 503 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Kovacs, C. S. in Genetics of Bone Biology and Skeletal Disease 2nd edn (eds Thakker, R. V., Whyte, M. P., Eisman, J. A., & Igarashi, T.) 329–347 (Elsevier, 2017).

  108. Nakamura, T. et al. Transcription factor epiprofin is essential for tooth morphogenesis by regulating epithelial cell fate and tooth number. J. Biol. Chem. 283, 4825–4833 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Li, J., Parada, C. & Chai, Y. Cellular and molecular mechanisms of tooth root development. Development 144, 374–384 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ramanathan, A., Srijaya, T. C., Sukumaran, P., Zain, R. B. & Abu Kasim, N. H. Homeobox genes and tooth development: understanding the biological pathways and applications in regenerative dental science. Arch. Oral. Biol. 85, 23–39 (2018).

    Article  CAS  PubMed  Google Scholar 

  111. Butler, W. T., Brunn, J. C. & Qin, C. Dentin extracellular matrix (ECM) proteins: comparison to bone ECM and contribution to dynamics of dentinogenesis. Connect. Tissue Res. 44 (Suppl 1), 171–178 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. McKee, M. D. et al. Compounded PHOSPHO1/ALPL deficiencies reduce dentin mineralization. J. Dent. Res. 92, 721–727 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Qin, C., Baba, O. & Butler, W. T. Post-translational modifications of sibling proteins and their roles in osteogenesis and dentinogenesis. Crit. Rev. Oral. Biol. Med. 15, 126–136 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Fisher, L. W. & Fedarko, N. S. Six genes expressed in bones and teeth encode the current members of the SIBLING family of proteins. Connect. Tissue Res. 44 (Suppl 1), 33–40 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Kida, M., Tsutsumi, T., Shindoh, M., Ikeda, H. & Ariga, T. De novo mutation in the DSPP gene associated with dentinogenesis imperfecta type II in a Japanese family. Eur. J. Oral. Sci. 117, 691–694 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Liang, T. et al. Mutant dentin sialophosphoprotein causes dentinogenesis imperfecta. J. Dent. Res. 98, 912–919 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sarnat, B. G. Differential growth and healing of bones and teeth. Clin. Orthop. Relat. Res. 183, 219–237 (1984).

    Article  Google Scholar 

  118. Kato, A., Suzuki, M., Karasawa, Y., Sugimoto, T. & Doi, K. PTHrP and PTH/PTHrP receptor 1 expression in odontogenic cells of normal and HHM model rat incisors. Toxicol. Pathol. 33, 456–464 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Zhang, X., Rahemtulla, F., Zhang, P., Beck, P. & Thomas, H. F. Different enamel and dentin mineralization observed in VDR deficient mouse model. Arch. Oral. Biol. 54, 299–305 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Zhang, X., Rahemtulla, F. G., MacDougall, M. J. & Thomas, H. F. Vitamin D receptor deficiency affects dentin maturation in mice. Arch. Oral. Biol. 52, 1172–1179 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Guimaraes, G. N. et al. Evaluation of the effects of transient or continuous PTH administration to odontoblast-like cells. Arch. Oral. Biol. 58, 638–645 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Liu, J. G. et al. Developmental role of PTHrP in murine molars. Eur. J. Oral. Sci. 106 (Suppl 1), 143–146 (1998).

    Article  CAS  PubMed  Google Scholar 

  123. Ouyang, H. et al. Parathyroid hormone-related protein regulates extracellular matrix gene expression in cementoblasts and inhibits cementoblast-mediated mineralization in vitro. J. Bone Min. Res. 15, 2140–2153 (2000).

    Article  CAS  Google Scholar 

  124. Calvi, L. M. et al. Constitutively active PTH/PTHrP receptor in odontoblasts alters odontoblast and ameloblast function and maturation. Mech. Dev. 121, 397–408 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by Canadian Institutes of Health Research (C.S.K.); Fedération Hospitalo-Universitaire DDS-Paris Net and ANR Hyposkel (C.C.); Fondazione Italiana Ricerca sulle Malattie dell’Osso (M.L.B.); Wellcome Trust Investigator Award (R.V.T.); Wellcome Trust Investigator Award (R.V.T.); National Institute for Health Research (NIHR) Senior Investigator Award (R.V.T.); and NIHR Oxford Biomedical Research Centre Programme (R.V.T.). This article arose out of discussions held at a conference on Biomineralisation in Health and Disease held in Florence, Italy, in 2019 and supported by the Menarini Foundation.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Christopher S. Kovacs.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks M. Somerman, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Dentin

A tissue produced by odontoblasts, which are derived from the neural crest. Under the enamel, dentin is similar to bone but is never remodelled under physiological conditions. Dentin surrounds the central (pulp) chamber, which contains odontoblast bodies at its periphery, and mainly consists of connective tissue, blood vessels and nerves.

Cementum

A tissue produced by cementoblasts, which develop from neural crest-derived mesenchymal cells from the connective tissue of the dental follicle. Cementum is a thin layer of hard dental tissue covering the anatomic roots of the teeth.

Enamel

The hardest material of the organism produced biologically by ameloblasts. It is derived from the epithelium and forms the anatomical crown of the teeth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovacs, C.S., Chaussain, C., Osdoby, P. et al. The role of biomineralization in disorders of skeletal development and tooth formation. Nat Rev Endocrinol 17, 336–349 (2021). https://doi.org/10.1038/s41574-021-00488-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-021-00488-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing