Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolic pathways in obesity-related breast cancer

Abstract

This Review focuses on the mechanistic evidence for a link between obesity, dysregulated cellular metabolism and breast cancer. Strong evidence now links obesity with the development of 13 different types of cancer, including oestrogen receptor-positive breast cancer in postmenopausal women. A number of local and systemic changes are hypothesized to support this relationship, including increased circulating levels of insulin and glucose as well as adipose tissue-derived oestrogens, adipokines and inflammatory mediators. Metabolic pathways of energy production and utilization are dysregulated in tumour cells and this dysregulation is a newly accepted hallmark of cancer. Dysregulated metabolism is also hypothesized to be a feature of non-neoplastic cells in the tumour microenvironment. Obesity-associated factors regulate metabolic pathways in both breast cancer cells and cells in the breast microenvironment, which provides a molecular link between obesity and breast cancer. Consequently, interventions that target these pathways might provide a benefit in postmenopausal women and individuals with obesity, a population at high risk of breast cancer.

Key points

  • Strong evidence links obesity to the development of 13 types of cancer, including oestrogen receptor-positive breast cancer in postmenopausal women.

  • Metabolic pathways involving PI3K–AKT, HIF1α, LKB1–AMPK and p53 are key regulators of breast cancer cell metabolism and growth.

  • Obesity-associated factors drive metabolic alterations in both breast cancer cells and cells of the breast microenvironment that support tumour growth.

  • Therapies that target metabolic pathways might prove effective at treating and preventing breast cancer via effects on cancer cells, the tumour microenvironment and whole-body metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The breast microenvironment and key drivers of breast cancer in obesity.
Fig. 2: Key metabolic pathways in breast cancer.
Fig. 3: Dysregulated metabolic pathways in breast cancer and adipose stromal cells in the context of obesity.

Similar content being viewed by others

References

  1. Smittenaar, C. R., Petersen, K. A., Stewart, K. & Moitt, N. Cancer incidence and mortality projections in the UK until 2035. Br. J. Cancer 115, 1147–1155 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Rosenberg, P. S., Barker, K. A. & Anderson, W. F. Estrogen receptor status and the future burden of invasive and in situ breast cancers in the United States. J. Natl Cancer Inst. 107, djv159 (2015).

    PubMed  PubMed Central  Google Scholar 

  3. Heer, E. et al. Global burden and trends in premenopausal and postmenopausal breast cancer: a population-based study. Lancet Glob. Health 8, e1027–e1037 (2020).

    PubMed  Google Scholar 

  4. WHO. Obesity and Overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (2020).

  5. Hales, C. M., Carroll, M. D., Fryar, C. D. & Ogden, C. L. Prevalence of obesity and severe obesity among adults: United States, 2017–2018. NCHS Data Brief no. 360 (National Center for Health Statistics, 2020).

  6. OECD. The heavy burden of obesity: the economics of prevention. (OECD, 2019).

  7. Lauby-Secretan, B. et al. Body fatness and cancer — viewpoint of the IARC Working Group. N. Engl. J. Med. 375, 794–798 (2016).

    PubMed  PubMed Central  Google Scholar 

  8. Neuhouser, M. L. et al. Overweight, obesity, and postmenopausal invasive breast cancer risk: a secondary analysis of the Women’s Health Initiative randomized clinical trials. JAMA Oncol. 1, 611–621 (2015).

    PubMed  PubMed Central  Google Scholar 

  9. Chan, D. S. M. et al. World Cancer Research Fund International: Continuous Update Project-systematic literature review and meta-analysis of observational cohort studies on physical activity, sedentary behavior, adiposity, and weight change and breast cancer risk. Cancer Causes Control 30, 1183–1200 (2019).

    PubMed  Google Scholar 

  10. Munsell, M. F., Sprague, B. L., Berry, D. A., Chisholm, G. & Trentham-Dietz, A. Body mass index and breast cancer risk according to postmenopausal estrogen-progestin use and hormone receptor status. Epidemiol. Rev. 36, 114–136 (2014).

    PubMed  PubMed Central  Google Scholar 

  11. Corvera, S. & Gealekman, O. Adipose tissue angiogenesis: impact on obesity and type-2 diabetes. Biochim. Biophys. Acta 1842, 463–472 (2014).

    CAS  PubMed  Google Scholar 

  12. Engin, A. The Pathogenesis of obesity-associated adipose tissue inflammation. Adv. Exp. Med. Biol. 960, 221–245 (2017).

    CAS  PubMed  Google Scholar 

  13. Friedman, J. M. Leptin and the endocrine control of energy balance. Nat. Metab. 1, 754–764 (2019).

    CAS  PubMed  Google Scholar 

  14. Howlader, N. et al. SEER Cancer Statistics Review, 1975–2017 https://seer.cancer.gov/csr/1975_2017/ (2020).

  15. Burger, H. G., Hale, G. E., Robertson, D. M. & Dennerstein, L. A review of hormonal changes during the menopausal transition: focus on findings from the Melbourne Women’s Midlife Health Project. Hum. Reprod. Update 13, 559–565 (2007).

    CAS  PubMed  Google Scholar 

  16. Stanczyk, F. Z., Jurow, J. & Hsing, A. W. Limitations of direct immunoassays for measuring circulating estradiol levels in postmenopausal women and men in epidemiologic studies. Cancer Epidemiol. Biomarkers Prev. 19, 903–906 (2010).

    CAS  PubMed  Google Scholar 

  17. McTiernan, A. et al. Relation of BMI and physical activity to sex hormones in postmenopausal women. Obesity 14, 1662–1677 (2006).

    CAS  PubMed  Google Scholar 

  18. Brown, K. A. et al. Menopause Is a determinant of breast aromatase expression and its associations with BMI, inflammation, and systemic markers. J. Clin. Endocrinol. Metab. 102, 1692–1701 (2017).

    PubMed  PubMed Central  Google Scholar 

  19. Zahid, H. et al. Leptin regulation of the p53-HIF1α/PKM2-aromatase axis in breast adipose stromal cells: a novel mechanism for the obesity-breast cancer link. Int. J. Obes. 42, 711–720 (2018).

    CAS  Google Scholar 

  20. Morris, P. G. et al. Inflammation and increased aromatase expression occur in the breast tissue of obese women with breast cancer. Cancer Prev. Res. 4, 1021–1029 (2011).

    CAS  Google Scholar 

  21. Misso, M. L. et al. Adipose aromatase gene expression is greater in older women and is unaffected by postmenopausal estrogen therapy. Menopause 12, 210–215 (2005).

    PubMed  Google Scholar 

  22. Miller, W. R. & O’Neill, J. The importance of local synthesis of estrogen within the breast. Steroids 50, 537–548 (1987).

    CAS  PubMed  Google Scholar 

  23. Docanto, M. M. et al. Ghrelin and des-acyl ghrelin inhibit aromatase expression and activity in human adipose stromal cells: suppression of cAMP as a possible mechanism. Breast Cancer Res. Treat. 147, 193–201 (2014).

    CAS  PubMed  Google Scholar 

  24. Au, C. C. et al. Des-acyl ghrelin inhibits the capacity of macrophages to stimulate the expression of aromatase in breast adipose stromal cells. J. Steroid Biochem. Mol. Biol. 170, 49–53 (2017).

    CAS  PubMed  Google Scholar 

  25. Au, C. C. et al. Three-dimensional growth of breast cancer cells potentiates the anti-tumor effects of unacylated ghrelin and AZP-531. eLife 9, e56913 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Au, C. C., Furness, J. B. & Brown, K. A. Ghrelin and breast cancer: emerging roles in obesity, estrogen regulation, and cancer. Front. Oncol. 6, 265 (2016).

    PubMed  Google Scholar 

  27. Macis, D., Guerrieri-Gonzaga, A. & Gandini, S. Circulating adiponectin and breast cancer risk: a systematic review and meta-analysis. Int. J. Epidemiol. 43, 1226–1236 (2014).

    PubMed  PubMed Central  Google Scholar 

  28. Wairagu, P. M. et al. Insulin priming effect on estradiol-induced breast cancer metabolism and growth. Cancer Biol. Ther. 16, 484–492 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Naimo, G. D., Gelsomino, L., Catalano, S., Mauro, L. & Ando, S. Interfering role of ERα on adiponectin action in breast cancer. Front. Endocrinol. 11, 66 (2020).

    Google Scholar 

  30. Ando, S., Naimo, G. D., Gelsomino, L., Catalano, S. & Mauro, L. Novel insights into adiponectin action in breast cancer: evidence of its mechanistic effects mediated by ERα expression. Obes. Rev. 21, e13004 (2020).

    CAS  PubMed  Google Scholar 

  31. Bhardwaj, P. et al. Estrogens and breast cancer: mechanisms involved in obesity-related development, growth and progression. J. Steroid. Biochem. Mol. Biol. 189, 161–170 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhu, J. & Thompson, C. B. Metabolic regulation of cell growth and proliferation. Nat. Rev. Mol. Cell. Biol. 20, 436–450 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Herzig, S. & Shaw, R. J. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell. Biol. 19, 121–135 (2018).

    CAS  PubMed  Google Scholar 

  34. Hoxhaj, G. & Manning, B. D. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer 20, 74–88 (2020).

    CAS  PubMed  Google Scholar 

  35. Goncalves, M. D., Hopkins, B. D. & Cantley, L. C. Phosphatidylinositol 3-kinase, growth disorders, and cancer. N. Engl. J. Med. 379, 2052–2062 (2018).

    CAS  PubMed  Google Scholar 

  36. Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Elstrom, R. L. et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 64, 3892–3899 (2004).

    CAS  PubMed  Google Scholar 

  38. Jaldin-Fincati, J. R., Pavarotti, M., Frendo-Cumbo, S., Bilan, P. J. & Klip, A. Update on GLUT4 vesicle traffic: a cornerstone of insulin action. Trends Endocrinol. Metab. 28, 597–611 (2017).

    CAS  PubMed  Google Scholar 

  39. Wang, X., Simpson, E. R. & Brown, K. A. p53: protection against tumor growth beyond effects on cell cycle and apoptosis. Cancer Res. 75, 5001–5007 (2015).

    CAS  PubMed  Google Scholar 

  40. Feng, Z. et al. The regulation of AMPK β1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res. 67, 3043–3053 (2007).

    CAS  PubMed  Google Scholar 

  41. Zeng, P. Y. & Berger, S. L. LKB1 is recruited to the p21/WAF1 promoter by p53 to mediate transcriptional activation. Cancer Res. 66, 10701–10708 (2006).

    CAS  PubMed  Google Scholar 

  42. Zhang, Y. et al. LKB1 deficiency-induced metabolic reprogramming in tumorigenesis and non-neoplastic diseases. Mol. Metab. 44, 101131 (2021).

    CAS  PubMed  Google Scholar 

  43. Hardie, D. G. & Alessi, D. R. LKB1 and AMPK and the cancer-metabolism link — ten years after. BMC Biol. 11, 36 (2013).

    PubMed  PubMed Central  Google Scholar 

  44. Hawley, S. A. et al. Complexes between the LKB1 tumor suppressor, STRAD α/β and MO25 α/β are upstream kinases in the AMP-activated protein kinase cascade. J. Biol. 2, 28 (2003).

    PubMed  PubMed Central  Google Scholar 

  45. Woods, A. et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 13, 2004–2008 (2003).

    CAS  PubMed  Google Scholar 

  46. Shaw, R. J. et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl Acad. Sci. USA 101, 3329–3335 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hadad, S. M. et al. Histological evaluation of AMPK signalling in primary breast cancer. BMC Cancer 9, 307 (2009).

    PubMed  PubMed Central  Google Scholar 

  48. Zadra, G., Batista, J. L. & Loda, M. Dissecting the dual role of AMPK in cancer: from experimental to human studies. Mol. Cancer Res. 13, 1059–1072 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hardie, D. G. The LKB1-AMPK pathway — friend or foe in cancer? Cancer Cell 23, 131–132 (2013).

    CAS  PubMed  Google Scholar 

  50. Barthel, A. et al. Regulation of GLUT1 gene transcription by the serine/threonine kinase Akt1. J. Biol. Chem. 274, 20281–20286 (1999).

    CAS  PubMed  Google Scholar 

  51. Adekola, K., Rosen, S. T. & Shanmugam, M. Glucose transporters in cancer metabolism. Curr. Opin. Oncol. 24, 650–654 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Waldhart, A. N. et al. Phosphorylation of TXNIP by AKT mediates acute influx of glucose in response to insulin. Cell Rep. 19, 2005–2013 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wu, N. et al. AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1. Mol. Cell 49, 1167–1175 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Parikh, H. et al. TXNIP regulates peripheral glucose metabolism in humans. PLoS Med. 4, e158 (2007).

    PubMed  PubMed Central  Google Scholar 

  55. Volinsky, N. et al. Signalling mechanisms regulating phenotypic changes in breast cancer cells. Biosci. Rep. 35, e00178 (2015).

    PubMed  PubMed Central  Google Scholar 

  56. Iqbal, M. A. et al. Insulin enhances metabolic capacities of cancer cells by dual regulation of glycolytic enzyme pyruvate kinase M2. Mol. Cancer 12, 72 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Bousquenaud, M., Fico, F., Solinas, G., Ruegg, C. & Santamaria-Martinez, A. Obesity promotes the expansion of metastasis-initiating cells in breast cancer. Breast Cancer Res. 20, 104 (2018).

    PubMed  PubMed Central  Google Scholar 

  58. Lai, Q. et al. Positive correlation between the expression of hEag1 and HIF-1α in breast cancers: an observational study. BMJ Open 4, e005049 (2014).

    PubMed  PubMed Central  Google Scholar 

  59. Drabovich, A. P., Pavlou, M. P., Dimitromanolakis, A. & Diamandis, E. P. Quantitative analysis of energy metabolic pathways in MCF-7 breast cancer cells by selected reaction monitoring assay. Mol. Cell Proteom. 11, 422–434 (2012).

    Google Scholar 

  60. O’Mahony, F., Razandi, M., Pedram, A., Harvey, B. J. & Levin, E. R. Estrogen modulates metabolic pathway adaptation to available glucose in breast cancer cells. Mol. Endocrinol. 26, 2058–2070 (2012).

    PubMed  PubMed Central  Google Scholar 

  61. Imbert-Fernandez, Y. et al. Estradiol stimulates glucose metabolism via 6-phosphofructo-2-kinase (PFKFB3). J. Biol. Chem. 289, 9440–9448 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Brown, K. A. et al. LKB1 expression is inhibited by estradiol-17β in MCF-7 cells. J. Steroid. Biochem. Mol. Biol. 127, 439–443 (2011).

    CAS  PubMed  Google Scholar 

  63. Ko, B. H., Paik, J. Y., Jung, K. H. & Lee, K. H. 17β-estradiol augments 18F-FDG uptake and glycolysis of T47D breast cancer cells via membrane-initiated rapid PI3K-Akt activation. J. Nucl. Med. 51, 1740–174 (2010).

    CAS  PubMed  Google Scholar 

  64. Kim, S., Taylor, J. A., Milne, G. L. & Sandler, D. P. Association between urinary prostaglandin E2 metabolite and breast cancer risk: a prospective, case-cohort study of postmenopausal women. Cancer Prev. Res. 6, 511–518 (2013).

    CAS  Google Scholar 

  65. Heikkila, K. et al. Associations of circulating C-reactive protein and interleukin-6 with cancer risk: findings from two prospective cohorts and a meta-analysis. Cancer Causes Control. 20, 15–26 (2009).

    PubMed  Google Scholar 

  66. Wang, D. & DuBois, R. N. Urinary PGE-M: a promising cancer biomarker. Cancer Prev. Res. 6, 507–510 (2013).

    CAS  Google Scholar 

  67. George, R. J., Sturmoski, M. A., Anant, S. & Houchen, C. W. EP4 mediates PGE2 dependent cell survival through the PI3 kinase/AKT pathway. Prostaglandins Other Lipid Mediat. 83, 112–120 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Badache, A. & Hynes, N. E. Interleukin 6 inhibits proliferation and, in cooperation with an epidermal growth factor receptor autocrine loop, increases migration of T47D breast cancer cells. Cancer Res. 61, 383–391 (2001).

    CAS  PubMed  Google Scholar 

  69. Gui, Y. et al. The association between obesity related adipokines and risk of breast cancer: a meta-analysis. Oncotarget 8, 75389–75399 (2017).

    PubMed  PubMed Central  Google Scholar 

  70. Blanquer-Rossello, M. D. M., Oliver, J., Sastre-Serra, J., Valle, A. & Roca, P. Leptin regulates energy metabolism in MCF-7 breast cancer cells. Int. J. Biochem. Cell Biol. 72, 18–26 (2016).

    CAS  PubMed  Google Scholar 

  71. El-Masry, O. S., Al-Sakkaf, K., Brown, B. L. & Dobson, P. R. Differential crosstalk between the AMPK and PI3K/Akt pathways in breast cancer cells of differing genotypes: leptin inhibits the effectiveness of AMPK activation. Oncol. Rep. 34, 1675–1680 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Frankenberry, K. A., Skinner, H., Somasundar, P., McFadden, D. W. & Vona-Davis, L. C. Leptin receptor expression and cell signaling in breast cancer. Int. J. Oncol. 28, 985–993 (2006).

    CAS  PubMed  Google Scholar 

  73. Wei, L. et al. Leptin promotes epithelial-mesenchymal transition of breast cancer via the upregulation of pyruvate kinase M2. J. Exp. Clin. Cancer Res. 35, 166 (2016).

    PubMed  PubMed Central  Google Scholar 

  74. Gonzalez-Perez, R. R. et al. Leptin upregulates VEGF in breast cancer via canonic and non-canonical signalling pathways and NFκB/HIF-1α activation. Cell Signal 22, 1350–1362 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Bartella, V. et al. Insulin-dependent leptin expression in breast cancer cells. Cancer Res. 68, 4919–4927 (2008).

    CAS  PubMed  Google Scholar 

  76. Cascio, S. et al. Mechanism of leptin expression in breast cancer cells: role of hypoxia-inducible factor-1α. Oncogene 27, 540–547 (2008).

    CAS  PubMed  Google Scholar 

  77. Miyoshi, Y. et al. Association of serum adiponectin levels with breast cancer risk. Clin. Cancer Res. 9, 5699–5704 (2003).

    CAS  PubMed  Google Scholar 

  78. Dos Santos, E. et al. Adiponectin mediates an antiproliferative response in human MDA-MB 231 breast cancer cells. Oncol. Rep. 20, 971–977 (2008).

    PubMed  Google Scholar 

  79. Wang, Y. et al. Adiponectin modulates the glycogen synthase kinase-3β/β-catenin signaling pathway and attenuates mammary tumorigenesis of MDA-MB-231 cells in nude mice. Cancer Res. 66, 11462–11470 (2006).

    CAS  PubMed  Google Scholar 

  80. Dieudonne, M. N. et al. Adiponectin mediates antiproliferative and apoptotic responses in human MCF7 breast cancer cells. Biochem. Biophys. Res. Commun. 345, 271–279 (2006).

    CAS  PubMed  Google Scholar 

  81. Mao, X. et al. APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat. Cell Biol. 8, 516–523 (2006).

    CAS  PubMed  Google Scholar 

  82. Taliaferro-Smith, L. et al. LKB1 is required for adiponectin-mediated modulation of AMPK-S6K axis and inhibition of migration and invasion of breast cancer cells. Oncogene 28, 2621–2633 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wu, Q. et al. Cancer-associated adipocytes: key players in breast cancer progression. J. Hematol. Oncol. 12, 95 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang, Y. Y. et al. Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells. JCI Insight 2, e87489 (2017).

    PubMed  PubMed Central  Google Scholar 

  85. Hoy, A. J., Balaban, S. & Saunders, D. N. Adipocyte-tumor cell metabolic crosstalk in breast cancer. Trends Mol. Med. 23, 381–392 (2017).

    CAS  PubMed  Google Scholar 

  86. Balaban, S. et al. Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer Metab. 5, 1 (2017).

    PubMed  PubMed Central  Google Scholar 

  87. Madak-Erdogan, Z. et al. Free fatty acids rewire cancer metabolism in obesity-associated breast cancer via estrogen receptor and mTOR signaling. Cancer Res. 79, 2494–2510 (2019).

    CAS  PubMed  Google Scholar 

  88. Martinez-Outschoorn, U., Sotgia, F. & Lisanti, M. P. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function. Semin. Oncol. 41, 195–216 (2014).

    CAS  PubMed  Google Scholar 

  89. Docanto, M. M., Ham, S., Corbould, A. & Brown, K. A. Obesity-associated inflammatory cytokines and prostaglandin E2 stimulate glucose transporter mRNA expression and glucose uptake in primary human adipose stromal cells. J. Interferon Cytokine Res. 35, 600–605 (2015).

    CAS  PubMed  Google Scholar 

  90. DeClerck, Y. A. Desmoplasia: a response or a niche? Cancer Discov. 2, 772–774 (2012).

    CAS  PubMed  Google Scholar 

  91. de Kruijf, E. M. et al. Tumor-stroma ratio in the primary tumor is a prognostic factor in early breast cancer patients, especially in triple-negative carcinoma patients. Breast Cancer Res. Treat. 125, 687–696 (2011).

    PubMed  Google Scholar 

  92. Vachon, C. M. et al. Aromatase immunoreactivity is increased in mammographically dense regions of the breast. Breast Cancer Res. Treat. 125, 243–252 (2011).

    CAS  PubMed  Google Scholar 

  93. Huo, C. W. et al. High mammographic density is associated with an increase in stromal collagen and immune cells within the mammary epithelium. Breast Cancer Res. 17, 79 (2015).

    PubMed  PubMed Central  Google Scholar 

  94. van Harmelen, V. et al. Effect of BMI and age on adipose tissue cellularity and differentiation capacity in women. Int. J. Obes. Relat. Metab. Disord. 27, 889–895 (2003).

    PubMed  Google Scholar 

  95. Brown, K. A. et al. Subcellular localization of cyclic AMP-responsive element binding protein-regulated transcription coactivator 2 provides a link between obesity and breast cancer in postmenopausal women. Cancer Res. 69, 5392–5399 (2009).

    CAS  PubMed  Google Scholar 

  96. Samarajeewa, N. U. et al. HIF-1α stimulates aromatase expression driven by prostaglandin E2 in breast adipose stroma. Breast Cancer Res. 15, R30 (2013).

    PubMed  PubMed Central  Google Scholar 

  97. Wang, X. et al. Prostaglandin E2 inhibits p53 in human breast adipose stromal cells: a novel mechanism for the regulation of aromatase in obesity and breast cancer. Cancer Res. 75, 645–655 (2015).

    CAS  PubMed  Google Scholar 

  98. Chow, J. D., Simpson, E. R. & Boon, W. C. Alternative 5´-untranslated first exons of the mouse Cyp19A1 (aromatase) gene. J. Steroid Biochem. Mol. Biol. 115, 115–125 (2009).

    CAS  PubMed  Google Scholar 

  99. Ackerman, G. E., Smith, M. E., Mendelson, C. R., MacDonald, P. C. & Simpson, E. R. Aromatization of androstenedione by human adipose tissue stromal cells in monolayer culture. J. Clin. Endocrinol. Metab. 53, 412–417 (1981).

    CAS  PubMed  Google Scholar 

  100. Zhao, H. et al. A humanized pattern of aromatase expression is associated with mammary hyperplasia in mice. Endocrinology 153, 2701–2713 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Samarajeewa, N. U., Docanto, M. M., Simpson, E. R. & Brown, K. A. CREB-regulated transcription co-activator family stimulates promoter II-driven aromatase expression in preadipocytes. Horm. Cancer 4, 233–241 (2013).

    CAS  PubMed  Google Scholar 

  102. Ham, S. et al. Overexpression of aromatase associated with loss of heterozygosity of the STK11 gene accounts for prepubertal gynecomastia in boys with Peutz-Jeghers syndrome. J. Clin. Endocrinol. Metab. 98, E1979–E1987 (2013).

    CAS  PubMed  Google Scholar 

  103. Shaw, R. J. et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642–1646 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Brown, K. A., Hunger, N. I., Docanto, M. & Simpson, E. R. Metformin inhibits aromatase expression in human breast adipose stromal cells via stimulation of AMP-activated protein kinase. Breast Cancer Res. Treat. 123, 591–596 (2010).

    CAS  PubMed  Google Scholar 

  105. Samarajeewa, N. U., Ham, S., Yang, F., Simpson, E. R. & Brown, K. A. Promoter-specific effects of metformin on aromatase transcript expression. Steroids 76, 768–771 (2011).

    CAS  PubMed  Google Scholar 

  106. O’Neill, L. A., Kishton, R. J. & Rathmell, J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16, 553–565 (2016).

    PubMed  PubMed Central  Google Scholar 

  107. Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    CAS  PubMed  Google Scholar 

  108. Kratz, M. et al. Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metab. 20, 614–625 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Xu, X. et al. Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation. Cell Metab. 18, 816–830 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Yang, H. et al. Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: implications for systemic inflammation and insulin resistance. J. Immunol. 185, 1836–1845 (2010).

    CAS  PubMed  Google Scholar 

  111. Lu, J., Zhao, J., Meng, H. & Zhang, X. Adipose tissue-resident immune cells in obesity and type 2 diabetes. Front. Immunol. 10, 1173 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Wang, Z. et al. Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nat. Med. 25, 141–151 (2019).

    CAS  PubMed  Google Scholar 

  113. O’Neill, L. A. & Hardie, D. G. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 493, 346–355 (2013).

    PubMed  Google Scholar 

  114. Galic, S. et al. Hematopoietic AMPK β1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. J. Clin. Invest. 121, 4903–4915 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Boutens, L. et al. Unique metabolic activation of adipose tissue macrophages in obesity promotes inflammatory responses. Diabetologia 61, 942–953 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Choe, S. S. et al. Macrophage HIF-2α ameliorates adipose tissue inflammation and insulin resistance in obesity. Diabetes 63, 3359–3371 (2014).

    CAS  PubMed  Google Scholar 

  117. Frauwirth, K. A. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777 (2002).

    CAS  PubMed  Google Scholar 

  118. Vasan, K., Werner, M. & Chandel, N. S. Mitochondrial metabolism as a target for cancer therapy. Cell. Metab. 32, 341–352 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Cai, H., Everett, R. S. & Thakker, D. R. Efficacious dose of metformin for breast cancer therapy is determined by cation transporter expression in tumours. Br. J. Pharmacol. 176, 2724–2735 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Wheaton, W. W. et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. eLife 3, e02242 (2014).

    PubMed  PubMed Central  Google Scholar 

  121. Evans, J. M., Donnelly, L. A., Emslie-Smith, A. M., Alessi, D. R. & Morris, A. D. Metformin and reduced risk of cancer in diabetic patients. BMJ 330, 1304–1305 (2005).

    PubMed  PubMed Central  Google Scholar 

  122. Brown, K. A., Samarajeewa, N. U. & Simpson, E. R. Endocrine-related cancers and the role of AMPK. Mol. Cell Endocrinol. 366, 170–179 (2013).

    CAS  PubMed  Google Scholar 

  123. Algire, C. et al. Diet and tumor LKB1 expression interact to determine sensitivity to anti-neoplastic effects of metformin in vivo. Oncogene 30, 1174–1182 (2011).

    CAS  PubMed  Google Scholar 

  124. Grossmann, M. E., Yang, D. Q., Guo, Z., Potter, D. A. & Cleary, M. P. Metformin treatment for the prevention and/or treatment of breast/mammary tumorigenesis. Curr. Pharmacol. Rep. 1, 312–323 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Samuel, S. M., Varghese, E., Kubatka, P., Triggle, C. R. & Busselberg, D. Metformin: the answer to cancer in “a flower? Current knowledge and future prospects of metformin as an anti-cancer agent in breast cancer. Biomolecules 9, 846 (2019).

    CAS  PubMed Central  Google Scholar 

  126. Goodwin, P. J. et al. Effect of metformin vs placebo on and metabolic factors in NCIC CTG MA.32. J. Natl Cancer Inst. 107, djv006 (2015).

    PubMed  PubMed Central  Google Scholar 

  127. Pimentel, I. et al. The effect of metformin vs placebo on sex hormones in CCTG MA.32. J. Natl Cancer Inst. https://doi.org/10.1093/jnci/djaa082 (2020).

    Article  PubMed Central  Google Scholar 

  128. Millis, S. Z., Ikeda, S., Reddy, S., Gatalica, Z. & Kurzrock, R. Landscape of phosphatidylinositol-3-kinase pathway alterations across 19784 diverse solid tumors. JAMA Oncol. 2, 1565–1573 (2016).

    PubMed  Google Scholar 

  129. Hopkins, B. D. et al. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature 560, 499–503 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Garrido-Castro, A. C. et al. Phase 2 study of buparlisib (BKM120), a pan-class I PI3K inhibitor, in patients with metastatic triple-negative breast cancer. Breast Cancer Res. 22, 120 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Eliassen, A. H., Colditz, G. A., Rosner, B., Willett, W. C. & Hankinson, S. E. Adult weight change and risk of postmenopausal breast cancer. JAMA 296, 193–201 (2006).

    CAS  PubMed  Google Scholar 

  132. de Roon, M. et al. Effect of exercise and/or reduced calorie dietary interventions on breast cancer-related endogenous sex hormones in healthy postmenopausal women. Breast Cancer Res. 20, 81 (2018).

    PubMed  PubMed Central  Google Scholar 

  133. Haw, J. S. et al. Long-term sustainability of diabetes prevention approaches: a systematic review and meta-analysis of randomized clinical trials. JAMA Intern. Med. 177, 1808–1817 (2017).

    PubMed  PubMed Central  Google Scholar 

  134. Imayama, I. et al. Effects of a caloric restriction weight loss diet and exercise on inflammatory biomarkers in overweight/obese postmenopausal women: a randomized controlled trial. Cancer Res. 72, 2314–2326 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Iyengar, N. M. & Jones, L. W. Development of exercise as interception therapy for cancer: a review. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2019.2585 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  136. McTiernan, A. et al. Physical activity in cancer prevention and survival: a systematic review. Med. Sci. Sports Exerc. 51, 1252–1261 (2019).

    PubMed  PubMed Central  Google Scholar 

  137. Ligibel, J. A. et al. Randomized phase III trial evaluating the role of weight loss in adjuvant treatment of overweight and obese women with early breast cancer (Alliance A011401): study design. NPJ Breast Cancer 3, 37 (2017).

    PubMed  PubMed Central  Google Scholar 

  138. Ashcraft, K. A., Peace, R. M., Betof, A. S., Dewhirst, M. W. & Jones, L. W. Efficacy and mechanisms of aerobic exercise on cancer initiation, progression, and metastasis: a critical systematic review of in vivo preclinical data. Cancer Res. 76, 4032–4050 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Theriau, C. F., Shpilberg, Y., Riddell, M. C. & Connor, M. K. Voluntary physical activity abolishes the proliferative tumor growth microenvironment created by adipose tissue in animals fed a high fat diet. J. Appl. Physiol. 121, 139–153 (2016).

    PubMed  PubMed Central  Google Scholar 

  140. Qin, Y. et al. Weight loss reduces basal-like breast cancer through kinome reprogramming. Cancer Cell Int. 16, 26 (2016).

    PubMed  PubMed Central  Google Scholar 

  141. Swami, S. et al. Vitamin D mitigates the adverse effects of obesity on breast cancer in mice. Endocr. Relat. Cancer 23, 251–264 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Hanker, A. B., Kaklamani, V. & Arteaga, C. L. Challenges for the clinical development of PI3K inhibitors: strategies to improve their impact in solid tumors. Cancer Discov. 9, 482–491 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Ligibel, J. A. & Winer, E. P. Aromatase inhibition in obese women: how much is enough? J. Clin. Oncol. 30, 2940–2942 (2012).

    CAS  PubMed  Google Scholar 

  144. Brown, K. A., Andreopoulou, E. & Andreopoulou, P. Endocrine therapy-related endocrinopathies - biology, prevalence and implications for the management of breast cancer. Oncol. Hematol. Rev. 16, 17–22 (2020).

    PubMed  PubMed Central  Google Scholar 

  145. van den Berg, M. M. et al. Weight change during chemotherapy in breast cancer patients: a meta-analysis. BMC Cancer 17, 259 (2017).

    PubMed  PubMed Central  Google Scholar 

  146. Brown, J. C. & Ligibel, J. A. Lifestyle interventions for breast cancer prevention. Curr. Breast Cancer Rep. 10, 202–208 (2018).

    PubMed  PubMed Central  Google Scholar 

  147. Tsatsoulis, A. & Paschou, S. A. Metabolically healthy obesity: criteria, epidemiology, controversies, and consequences. Curr. Obes. Rep. 9, 109–120 (2020).

    PubMed  Google Scholar 

  148. Batsis, J. A. et al. Diagnostic accuracy of body mass index to identify obesity in older adults: NHANES 1999-2004. Int. J. Obes. 40, 761–767 (2016).

    CAS  Google Scholar 

  149. Sahakyan, K. R. et al. Normal-weight central obesity: implications for total and cardiovascular mortality. Ann. Intern. Med. 163, 827–835 (2015).

    PubMed  PubMed Central  Google Scholar 

  150. Grier, T., Canham-Chervak, M., Sharp, M. & Jones, B. H. Does body mass index misclassify physically active young men? Prev. Med. Rep. 2, 483–487 (2015).

    PubMed  PubMed Central  Google Scholar 

  151. Heymsfield, S. B., Peterson, C. M., Thomas, D. M., Heo, M. & Schuna, J. M. Jr Why are there race/ethnic differences in adult body mass index-adiposity relationships? A quantitative critical review. Obes. Rev. 17, 262–275 (2016).

    CAS  PubMed  Google Scholar 

  152. Banack, H. R., Wactawski-Wende, J., Hovey, K. M. & Stokes, A. Is BMI a valid measure of obesity in postmenopausal women? Menopause 25, 307–313 (2018).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research work by K.A.B. is supported by NIH grant R01 CA215797 and the Anne Moore Breast Cancer Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristy A. Brown.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks the (anonymous) reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, K.A. Metabolic pathways in obesity-related breast cancer. Nat Rev Endocrinol 17, 350–363 (2021). https://doi.org/10.1038/s41574-021-00487-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-021-00487-0

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer