Abstract
Imaging is an essential tool in research, diagnostics and the management of endocrine disorders. Ultrasonography, nuclear medicine techniques, MRI, CT and optical methods are already used for applications in endocrinology. Optoacoustic imaging, also termed photoacoustic imaging, is emerging as a method for visualizing endocrine physiology and disease at different scales of detail: microscopic, mesoscopic and macroscopic. Optoacoustic contrast arises from endogenous light absorbers, such as oxygenated and deoxygenated haemoglobin, lipids and water, or exogenous contrast agents, and reveals tissue vasculature, perfusion, oxygenation, metabolic activity and inflammation. The development of high-performance optoacoustic scanners for use in humans has given rise to a variety of clinical investigations, which complement the use of the technology in preclinical research. Here, we review key progress with optoacoustic imaging technology as it relates to applications in endocrinology; for example, to visualize thyroid morphology and function, and the microvasculature in diabetes mellitus or adipose tissue metabolism, with particular focus on multispectral optoacoustic tomography and raster-scan optoacoustic mesoscopy. We explain the merits of optoacoustic microscopy and focus on mid-infrared optoacoustic microscopy, which enables label-free imaging of metabolites in cells and tissues. We showcase current optoacoustic applications within endocrinology and discuss the potential of these technologies to advance research and clinical practice.
Key points
-
Optoacoustic technology includes a range of non-invasive, label-free and portable imaging modalities, which provide molecular visualizations at the macroscopic, mesoscopic and microscopic scale.
-
Multi-spectral optoacoustic tomography produces real-time tomographic views of tissue with a resolution of 200–300 μm (macroscopy) at depths of 2–4 cm.
-
Raster-scan optoacoustic mesoscopy provides volumetric images of tissue microvasculature and perfusion with a resolution of <10 μm (mesoscopy) at depths of 1–2 mm.
-
Mid-infrared optoacoustic microscopy provides label-free visualizations of the spatiotemporal dynamics of biomolecules in cellular metabolism.
-
Optoacoustic imaging offers a complete framework for investigating anatomic, functional and molecular aspects of common endocrine disorders.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Change history
27 May 2021
A Correction to this paper has been published: https://doi.org/10.1038/s41574-021-00515-z
References
Chrousos, G. P. Organization and integration of the endocrine system. Sleep. Med. Clin. 2, 125–145 (2007).
Shaw, A. S. & Cheow, H. K. Imaging in endocrinology. Medicine 45, 456–463 (2017).
Golden, S. H., Robinson, K. A., Saldanha, I., Anton, B. & Ladenson, P. W. Clinical review: prevalence and incidence of endocrine and metabolic disorders in the United States: a comprehensive review. J. Clin. Endocrinol. Metab. 94, 1853–1878 (2009).
Kahramangil, B. & Berber, E. The use of near-infrared fluorescence imaging in endocrine surgical procedures. J. Surg. Oncol. 115, 848–855 (2017).
Liu, J. et al. Near-infrared auto-fluorescence spectroscopy combining with Fisher’s linear discriminant analysis improves intraoperative real-time identification of normal parathyroid in thyroidectomy. BMC Surg. 20, 4 (2020).
Barberio, M. et al. Hyperspectral based discrimination of thyroid and parathyroid during surgery. Curr. Dir. Biomed. Eng. 4, 399–402 (2018).
Halicek, M., Fabelo, H., Ortega, S., Callico, G. M. & Fei, B. In-vivo and ex-vivo tissue analysis through hyperspectral imaging techniques: revealing the invisible features of cancer. Cancers 11, 756 (2019).
Kho, E. et al. Imaging depth variations in hyperspectral imaging: development of a method to detect tumor up to the required tumor-free margin width. J. Biophotonics 12, e201900086 (2019).
Fujii, H., Yamada, Y., Kobayashi, K., Watanabe, M. & Hoshi, Y. Modeling of light propagation in the human neck for diagnoses of thyroid cancers by diffuse optical tomography. Int. J. Numer. Method Biomed. Eng. 33, e2826 (2017).
Busse, G. & Rosencwaig, A. Subsurface imaging with photoacoustics. Appl. Phys. Lett. 36, 815–816 (1980).
Rosencwaig, A. Potential clinical applications of photoacoustics. Clin. Chem. 28, 1878–1881 (1982).
Taruttis, A. & Ntziachristos, V. Advances in real-time multispectral optoacoustic imaging and its applications. Nat. Photonics 9, 219–227 (2015). This paper provides a comprehensive overview of the MSOT technology and its applications.
Oraevsky, A., Jacques, S., Esenaliev, R. & Tittel, F. Laser-based optoacoustic imagin gin biological tissues. Proc. SPIE 2134. Laser-Tissue Interaction V; and Ultraviolet Radiation Hazards (eds. Jacques S. L., Sliney D. H. & Belkin M.) 122–128 (SPIE, 1994).
Oraevsky, A. A. et al. Laser optoacoustic imaging of the breast: detection of cancer angiogenesis. Proc. SPIE 3597. Optical Tomography and Spectroscopy of Tissue III (eds. Chance B., Alfano R. R. & Tromberg B. J.) 352–363 (SPIE, 1999).
Esenaliev, R. O. et al. Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study. Appl. Opt. 41, 4722–4731 (2002).
Esenaliev, R. O., Petrov, Y. Y., Hartrumpf, O., Deyo, D. J. & Prough, D. S. Continuous, noninvasive monitoring of total hemoglobin concentration by an optoacoustic technique. Appl. Opt. 43, 3401–3407 (2004).
Knieling, F. et al. Multispectral optoacoustic tomography for assessment of Crohn’s disease activity. N. Engl. J. Med. 376, 1292–1294 (2017). An original research paper on MSOT imaging of inflammatory bowel disease.
Regensburger, A. P. et al. Detection of collagens by multispectral optoacoustic tomography as an imaging biomarker for Duchenne muscular dystrophy. Nat. Med. 25, 1905–1915 (2019). An original research paper on MSOT imaging of collagen in Duchenne muscular dystrophy.
Stoffels, I. et al. Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging. Sci. Transl Med. 7, 317ra199 (2015).
Menezes, G. L. G. et al. Downgrading of breast masses suspicious for cancer by using optoacoustic breast imaging. Radiology 288, 355–365 (2018).
Reber, J. et al. Non-invasive measurement of brown fat metabolism based on optoacoustic imaging of hemoglobin gradients. Cell Metab. 27, 689–701 (2018). An original research paper on MSOT imaging of brown adipose tissue activation based on haemoglobin contrast.
Ntziachristos, V., Pleitez, M. A., Aime, S. & Brindle, K. M. Emerging technologies to image tissue metabolism. Cell Metab. 29, 518–538 (2019). This review provides a comprehensive overview of the novel technologies used in imaging metabolism.
Tzoumas, S. et al. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues. Nat. Commun. 7, 12121 (2016).
Karlas, A. et al. Multispectral optoacoustic tomography of muscle perfusion and oxygenation under arterial and venous occlusion–a human pilot study. J. Biophotonics 13, e201960169 (2020).
Karlas, A. et al. Multispectral optoacoustic tomography of peripheral arterial disease based on muscle hemoglobin gradients–a pilot clinical study. Ann. Transl Med. 9, 36 (2021).
Taruttis, A. et al. Optoacoustic imaging of human vasculature: feasibility by using a handheld probe. Radiology 281, 256–263 (2016).
Masthoff, M. et al. Use of multispectral optoacoustic tomography to diagnose vascular malformations. JAMA Dermatol. 154, 1457–1462 (2018).
Yang, H. et al. Soft ultrasound priors in optoacoustic reconstruction: improving clinical vascular imaging. Photoacoustics 19, 100172 (2020).
Karlas, A. et al. Cardiovascular optoacoustics: from mice to men – a review. Photoacoustics 14, 19–30 (2019).
Diot, G. et al. Multispectral optoacoustic tomography (MSOT) of human breast cancer. Clin. Cancer Res. 23, 6912–6922 (2017). An original research paper on MSOT imaging of human breast cancer.
Karlas, A. et al. Flow-mediated dilatation test using optoacoustic imaging: a proof-of-concept. Biomed. Opt. Express 8, 3395–3403 (2017).
Omar, M., Aguirre, J. & Ntziachristos, V. Optoacoustic mesoscopy for biomedicine. Nat. Biomed. Eng. 3, 354–370 (2019). This paper provides a comprehensive overview of the RSOM technology and its biomedical applications.
Pleitez, M. A. et al. Label-free metabolic imaging by mid-infrared optoacoustic microscopy in living cells. Nat. Biotechnol. 38, 293–296 (2020). An original research paper on MiROM technology and its use in imaging of cellular metabolites.
Steinberg, I. et al. Photoacoustic clinical imaging. Photoacoustics 14, 77–98 (2019).
Beard, P. Biomedical photoacoustic imaging. Interface Focus. 1, 602–631 (2011).
Yao, J. & Wang, L. V. Photoacoustic microscopy. Laser Photon. Rev. 7, 758–778 (2013).
Oraevsky, A. A. et al. Clinical optoacoustic imaging combined with ultrasound for coregistered functional and anatomical mapping of breast tumors. Photoacoustics 12, 30–45 (2018).
Jo, J. et al. A functional study of human inflammatory arthritis using photoacoustic imaging. Sci. Rep. 7, 15026 (2017).
Zhang, H. F., Maslov, K., Stoica, G. & Wang, L. V. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 24, 848–851 (2006).
Cox, B., Laufer, J. G., Arridge, S. R. & Beard, P. C. Quantitative spectroscopic photoacoustic imaging: a review. J. Biomed. Opt. 17, 061202 (2012).
Wang, L. V. & Yao, J. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods 13, 627–638 (2016).
Lutzweiler, C. & Razansky, D. Optoacoustic imaging and tomography: reconstruction approaches and outstanding challenges in image performance and quantification. Sensors 13, 7345–7384 (2013).
Ntziachristos, V. & Razansky, D. Molecular imaging by means of multispectral optoacoustic tomography (MSOT). Chem. Rev. 110, 2783–2794 (2010).
Olefir, I., Tzoumas, S., Yang, H. & Ntziachristos, V. A Bayesian approach to eigenspectra optoacoustic tomography. IEEE Trans. Med. Imaging 37, 2070–2079 (2018).
Aguirre, J. et al. Precision assessment of label-free psoriasis biomarkers with ultra-broadband optoacoustic mesoscopy. Nat. Biomed. Eng. 1, 0068 (2017). An original research paper on RSOM technology and its use in imaging of skin inflammation in psoriasis.
Shaw, A. & Mantsch, H. in Encyclopedia of Analytical Chemistry (eds. Meyers R. A. & Meyers R. A.) https://doi.org/10.1002/9780470027318.a0106.pub2 (Wiley, 2008).
Lindahl, K., Langdahl, B., Ljunggren, O. & Kindmark, A. Treatment of osteogenesis imperfecta in adults. Eur. J. Endocrinol. 171, R79–R90 (2014).
Veilleux, L. N., Trejo, P. & Rauch, F. Muscle abnormalities in osteogenesis imperfecta. J. Musculoskelet. Neuronal Interact. 17, 1–7 (2017).
Gujrati, V., Mishra, A. & Ntziachristos, V. Molecular imaging probes for multi-spectral optoacoustic tomography. Chem. Commun. 53, 4653–4672 (2017).
Weber, J., Beard, P. C. & Bohndiek, S. E. Contrast agents for molecular photoacoustic imaging. Nat. Methods 13, 639–650 (2016).
Beziere, N. et al. Dynamic imaging of PEGylated indocyanine green (ICG) liposomes within the tumor microenvironment using multi-spectral optoacoustic tomography (MSOT). Biomaterials 37, 415–424 (2015).
Li, W. & Chen, X. Gold nanoparticles for photoacoustic imaging. Nanomedicine 10, 299–320 (2015).
Gujrati, V. et al. Bioengineered bacterial vesicles as biological nano-heaters for optoacoustic imaging. Nat. Commun. 10, 1114 (2019).
Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods 7, 603–614 (2010).
Buehler, A., Kacprowicz, M., Taruttis, A. & Ntziachristos, V. Real-time handheld multispectral optoacoustic imaging. Opt. Lett. 38, 1404–1406 (2013).
Li, Y. et al. Secretin-activated brown fat mediates prandial thermogenesis to induce satiation. Cell 175, 1561–1574 (2018).
Park, S. J. et al. Visualizing Alzheimer’s disease mouse brain with multispectral optoacoustic tomography using a fluorescent probe, CDnir7. Sci. Rep. 9, 12052 (2019).
Ermilov, S. et al. 3D laser optoacoustic ultrasonic imaging system for research in mice (LOUIS-3DM). Proc. SPIE 8943. Photons Plus Ultrasound: Imaging and Sensing (eds. Oraevsky A. A. & Wang L. V.) 89430J (SPIE, 2014).
Schwarz, M., Omar, M., Buehler, A., Aguirre, J. & Ntziachristos, V. Implications of ultrasound frequency in optoacoustic mesoscopy of the skin. IEEE Trans. Med. Imaging 34, 672–677 (2015).
Aguirre, J. et al. Broadband mesoscopic optoacoustic tomography reveals skin layers. Opt. Lett. 39, 6297–6300 (2014).
Chekkoury, A. et al. High-resolution multispectral optoacoustic tomography of the vascularization and constitutive hypoxemia of cancerous tumors. Neoplasia 18, 459–467 (2016).
Omar, M., Soliman, D., Gateau, J. & Ntziachristos, V. Ultrawideband reflection-mode optoacoustic mesoscopy. Opt. Lett. 39, 3911–3914 (2014).
Omar, M., Gateau, J. & Ntziachristos, V. Raster-scan optoacoustic mesoscopy in the 25-125 MHz range. Opt. Lett. 38, 2472–2474 (2013).
Schwarz, M. et al. Optoacoustic dermoscopy of the human skin: tuning excitation energy for optimal detection bandwidth with fast and deep imaging in vivo. IEEE Trans. Med. Imaging 36, 1287–1296 (2017).
Berezhnoi, A. et al. Optical features of human skin revealed by optoacoustic mesoscopy in the visible and short-wave infrared regions. Opt. Lett. 44, 4119–4122 (2019).
Schwarz, M., Buehler, A., Aguirre, J. & Ntziachristos, V. Three-dimensional multispectral optoacoustic mesoscopy reveals melanin and blood oxygenation in human skin in vivo. J. Biophotonics 9, 55–60 (2016).
Berezhnoi, A. et al. Assessing hyperthermia-induced vasodilation in human skin in vivo using optoacoustic mesoscopy. J. Biophotonics 11, e201700359 (2018).
Subochev, P. et al. Raster-scan optoacoustic angiography reveals 3D microcirculatory changes during cuffed occlusion. Laser Phys. Lett. 15, 045602 (2018).
Cracowski, J. L., Minson, C. T., Salvat-Melis, M. & Halliwill, J. R. Methodological issues in the assessment of skin microvascular endothelial function in humans. Trends Pharmacol. Sci. 27, 503–508 (2006).
Jathoul, A. P. et al. Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter. Nat. Photonics 9, 239–246 (2015).
Krumholz, A., Shcherbakova, D. M., Xia, J., Wang, L. V. & Verkhusha, V. V. Multicontrast photoacoustic in vivo imaging using near-infrared fluorescent proteins. Sci. Rep. 4, 3939 (2014).
Stiel, A. C. et al. High-contrast imaging of reversibly switchable fluorescent proteins via temporally unmixed multispectral optoacoustic tomography. Opt. Lett. 40, 367–370 (2015).
Shi, J. et al. High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy. Nat. Photonics 13, 609–615 (2019).
Zhao, Z., Shen, Y., Hu, F. & Min, W. Applications of vibrational tags in biological imaging by Raman microscopy. Analyst 142, 4018–4029 (2017).
Walsh, J. P. Managing thyroid disease in general practice. Med. J. Aust. 205, 179–184 (2016).
Dima, A. & Ntziachristos, V. In-vivo handheld optoacoustic tomography of the human thyroid. Photoacoustics 4, 65–69 (2016).
Roll, W. et al. Multispectral optoacoustic tomography of benign and malignant thyroid disorders–a pilot study. J. Nucl. Med. 60, 1461–1466 (2019).
Yang, M. et al. Photoacoustic/ultrasound dual imaging of human thyroid cancers: an initial clinical study. Biomed. Opt. Express 8, 3449–3457 (2017).
Zhang, L. & Thurber, G. in Imaging and Metabolism (eds. Lewis J. S. & Keshari K. R.) 175–197 (Springer, 2018).
Rastogi, R. & Jain, S. K. Imaging in diabetes mellitus. Arch. Clin. Nephrol. 2, 017–025 (2016).
Knieling, F. et al. Raster-scanning optoacoustic mesoscopy for gastrointestinal imaging at high resolution. Gastroenterology 154, 807–809 (2018).
Gotfried, J., Priest, S. & Schey, R. Diabetes and the small intestine. Curr. Treat. Options Gastroenterol. 15, 490–507 (2017).
Hernández-Ochoa, E. O. & Vanegas, C. Diabetic myopathy and mechanisms of disease. Biochem. Pharmacol. 4, 1000e179 (2015).
Sörensen, B. M. et al. Prediabetes and type 2 diabetes are associated with generalized microvascular dysfunction. Circulation 134, 1339–1352 (2016).
McMillan, D. E. Deterioration of the microcirculation in diabetes. Diabetes 24, 944–957 (1975).
Levy, B. I. et al. Impaired tissue perfusion: a pathology common to hypertension, obestiy, and diabetes mellitus. Circulation 118, 968–976 (2008).
Fuchs, D., Dupon, P. P., Schaap, L. A. & Draijer, R. The association between diabetes and dermal microvascular dysfunction non-invasively assessed by laser Doppler with local thermal hyperemia: a systematic review with meta-analysis. Cardiovasc. Diabetol. 16, 11 (2017).
Fasoula, N.-A. et al. Multicompartmental non-invasive sensing of postprandial lipemia in humans with multispectral optoacoustic tomography. Mol. Metab. 47, 101184 (2021).
Diot, G., Dima, A. & Ntziachristos, V. Multispectral opto-acoustic tomography of exercised muscle oxygenation. Opt. Lett. 40, 1496–1499 (2015).
Guerrero-Juarez, C. F. & Plikus, M. V. Emerging nonmetabolic functions of skin fat. Nat. Rev. Endocrinol. 14, 163–173 (2018).
Miranda, J. J., Taype-Rondan, A., Tapia, J. C., Gastanadui-Gonzalez, M. G. & Roman-Carpio, R. Hair follicle characteristics as early marker of type 2 diabetes. Med. Hypotheses 95, 39–44 (2016).
Baltzis, D., Eleftheriadou, I. & Veves, A. Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights. Adv. Ther. 31, 817–836 (2014).
Rindi, G. et al. A common classification framework for neuroendocrine neoplasms: an International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal. Mod. Pathol. 31, 1770–1786 (2018).
Tummers, W. S. et al. Intraoperative pancreatic cancer detection using tumor-specific multimodality molecular imaging. Ann. Surg. Oncol. 25, 1880–1888 (2018).
Lediju Bell, M. A., Ostrowski, A. K., Li, K., Kazanzides, P. & Boctor, E. M. Localization of transcranial targets for photoacoustic-guided endonasal surgeries. Photoacoustics 3, 78–87 (2015).
Padhye, V., Valentine, R. & Wormald, P. J. Management of carotid artery injury in endonasal surgery. Int. Arch. Otorhinolaryngol. 18, S173–S178 (2014).
Levi, J. et al. Molecular photoacoustic imaging of follicular thyroid carcinoma. Clin. Cancer Res. 19, 1494–1502 (2013).
Feng, T. et al. Characterization of bone microstructure using photoacoustic spectrum analysis. Opt. Express 23, 25217–25224 (2015).
Clemmensen, C. et al. Coordinated targeting of cold and nicotinic receptors synergistically improves obesity and type 2 diabetes. Nat. Commun. 9, 4304 (2018).
Lemes, L. C., Caetano Júnior, P. C., Strixino, J. F., Aguiar, J. & Raniero, L. Analysis of serum cortisol levels by Fourier transform infrared spectroscopy for diagnosis of stress in athletes. Res. Biomed. Eng. 32, 293–300 (2016).
Rao, B. et al. Optical resolution photoacoustic microscopy of ovary and fallopian tube. Sci. Rep. 9, 14306 (2019).
Buma, T., Conley, N. C. & Choi, S. W. Multispectral photoacoustic microscopy of lipids using a pulsed supercontinuum laser. Biomed. Opt. Express 9, 276–288 (2018).
Yakovlev, V. V. et al. Stimulated Raman photoacoustic imaging. Proc. Natl Acad. Sci. USA 107, 20335–20339 (2010).
Seeger, M., Karlas, A., Soliman, D., Pelisek, J. & Ntziachristos, V. Multimodal optoacoustic and multiphoton microscopy of human carotid atheroma. Photoacoustics 4, 102–111 (2016).
Tserevelakis, G. J., Soliman, D., Omar, M. & Ntziachristos, V. Hybrid multiphoton and optoacoustic microscope. Opt. Lett. 39, 1819–1822 (2014).
Kellnberger, S. et al. Optoacoustic microscopy at multiple discrete frequencies. Light. Sci. Appl. 7, 109 (2018).
Zhao, H. et al. Motion correction in optical resolution photoacoustic microscopy. IEEE Trans. Med. Imaging 38, 2139–2150 (2019).
Schwarz, M., Garzorz-Stark, N., Eyerich, K., Aguirre, J. & Ntziachristos, V. Motion correction in optoacoustic mesoscopy. Sci. Rep. 7, 10386 (2017).
Ron, A., Davoudi, N., Deán-Ben, X. L. & Razansky, D. Self-gated respiratory motion rejection for optoacoustic tomography. Appl. Sci. 9, 2737 (2019).
Trimboli, P. et al. Ultrasound and ultrasound-related techniques in endocrine diseases. Minerva Endocrinol. 43, 333–340 (2018).
Barsanti, C., Lenzarini, F. & Kusmic, C. Diagnostic and prognostic utility of non-invasive imaging in diabetes management. World J. Diabetes 6, 792–806 (2015).
De Sanctis, V. et al. Hand X-ray in pediatric endocrinology: skeletal age assessment and beyond. Indian. J. Endocrinol. Metab. 18, S63–S71 (2014).
Pisani, P. et al. Screening and early diagnosis of osteoporosis through X-ray and ultrasound based techniques. World J. Radiol. 5, 398–410 (2013).
Piciucchi, S., Poletti, V., Sverzellati, N., Gavelli, G. & Carloni, A. Primary and secondary hyperparathyroidism: findings on chest X-rays and high resolution CT. Eur. J. Radiol. Extra 70, e107–e110 (2009).
Marmin, C. et al. Computed tomography of the parathyroids: the value of density measurements to distinguish between parathyroid adenomas of the lymph nodes and the thyroid parenchyma. Diagn. Interv. Imaging 93, 597–603 (2012).
Wang, F. et al. CT and MRI of adrenal gland pathologies. Quant. Imaging Med. Surg. 8, 853–875 (2018).
Stein, A. L., Levenick, M. N. & Kletzky, O. A. Computed tomography versus magnetic resonance imaging for the evaluation of suspected pituitary adenomas. Obstet. Gynecol. 73, 996–999 (1989).
Huh, J. et al. Optimal phase of dynamic computed tomography for reliable size measurement of metastatic neuroendocrine tumors of the liver: comparison between pre- and post-contrast phases. Korean J. Radiol. 19, 1066–1076 (2018).
Gausden, E. B., Nwachukwu, B. U., Schreiber, J. J., Lorich, D. G. & Lane, J. M. Opportunistic use of CT imaging for osteoporosis screening and bone density assessment: a qualitative systematic review. J. Bone Jt. Surg. Am. 99, 1580–1590 (2017).
Nael, K. et al. Dynamic 4D MRI for characterization of parathyroid adenomas: multiparametric analysis. AJNR 36, 2147–2152 (2015).
Chang, G. et al. MRI assessment of bone structure and microarchitecture. JMRI 46, 323–337 (2017).
Takatsu, Y., Okada, T., Miyati, T. & Koyama, T. Magnetic resonance imaging relaxation times of female reproductive organs. Acta Radiol. 56, 997–1001 (2015).
Reznek, R. H. CT/MRI of neuroendocrine tumours. Cancer Imaging 6, S163–S177 (2006).
Davidson, C. Q., Phenix, C. P., Tai, T., Khaper, N. & Lees, S. J. Searching for novel PET radiotracers: imaging cardiac perfusion, metabolism and inflammation. Am. J. Nucl. Med. Mol. Imaging 8, 200–227 (2018).
Pacak, K., Eisenhofer, G. & Goldstein, D. S. Functional imaging of endocrine tumors: role of positron emission tomography. Endocr. Rev. 25, 568–580 (2004).
Lu, F. M. & Yuan, Z. PET/SPECT molecular imaging in clinical neuroscience: recent advances in the investigation of CNS diseases. Quant. Imaging Med. Surg. 5, 433–447 (2015).
Ichise, M. & Harris, P. E. Imaging of β-cell mass and function. J. Nucl. Med. 51, 1001–1004 (2010).
Bernardo-Filho, M., Santos-Filho, S. D., Fonseca, A. D. S. D., Carter, K. & Missailidis, S. Nuclear medicine procedures for the evaluation of male sexual organs: a brief review. Braz. Arch. Biol. Technol. 51, 13–21 (2008).
Hopkins, C. R. & Reading, C. C. Thyroid and parathyroid imaging. Semin. Ultrasound CT MR 16, 279–295 (1995).
Brabander, T., Kwekkeboom, D. J., Feelders, R. A., Brouwers, A. H. & Teunissen, J. J. Nuclear medicine imaging of neuroendocrine tumors. Front. Horm. Res. 44, 73–87 (2015).
Avram, A. M., Fig, L. M. & Gross, M. D. Adrenal gland scintigraphy. Semin. Nucl. Med. 36, 212–227 (2006).
Yao, A., Balchandani, P. & Shrivastava, R. K. Metabolic in vivo visualization of pituitary adenomas: a systematic review of imaging modalities. World Neurosurg. 104, 489–498 (2017).
Karlas, A., Reber, J., Liapis, E., Paul-Yuan, K. & Ntziachristos, V. Multispectral optoacoustic tomography of brown adipose tissue. Handb. Exp. Pharmacol. 251, 325–336 (2019).
Acknowledgements
The authors acknowledge the support of funding from European Union’s Horizon 2020 research and innovation programme under grant agreement no. 871763 (WINTHER) and from the European Research Council (ERC) under grant agreement no. 694968 (PREMSOT) and from the Deutsche Forschungsgemeinschaft (DFG), Germany (Gottfried Wilhelm Leibniz Prize 2013; NT 3/10-1).
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
V.N. has stock and stock options in iThera Medical. All other authors declare no competing interests.
Additional information
Peer reviewer information
Nature Reviews Endocrinology thanks the anonymous reviewers for their contribution to the peer review of this work
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Multi-spectral optoacoustic tomography
-
(MSOT). Macroscopic imaging technology that generates real-time images of tissues in clinical and preclinical applications.
- Raster-scan optoacoustic mesoscopy
-
(RSOM). Mesoscopic imaging technology that produces volumetric images of tissues and is mainly used for skin and microvascular applications.
- Chromophores
-
The parts of a molecule that absorb light at a particular frequency to give a molecule a specific colour.
- Tyrosinase
-
An enzyme that facilitates the production of the pigment eumelanin and can be permanently expressed in engineered cells to provide strong optoacoustic contrast.
- Mid-infrared optoacoustic microscopy
-
(MiROM). Label-free microscopic technology that provides endogenous biomolecular contrast images of cellular metabolites and their dynamics.
Rights and permissions
About this article
Cite this article
Karlas, A., Pleitez, M.A., Aguirre, J. et al. Optoacoustic imaging in endocrinology and metabolism. Nat Rev Endocrinol 17, 323–335 (2021). https://doi.org/10.1038/s41574-021-00482-5
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41574-021-00482-5
This article is cited by
-
Advances in secondary prevention mechanisms of macrovascular complications in type 2 diabetes mellitus patients: a comprehensive review
European Journal of Medical Research (2024)
-
Controlling the sound of light: photoswitching optoacoustic imaging
Nature Methods (2024)
-
Clinical translation of photoacoustic imaging
Nature Reviews Bioengineering (2024)
-
Addressing unmet clinical need with optoacoustic imaging
Nature Reviews Bioengineering (2024)
-
Advances in photoacoustic imaging aided by nano contrast agents: special focus on role of lymphatic system imaging for cancer theranostics
Journal of Nanobiotechnology (2023)