Abstract
Biomineralization is the process by which organisms produce mineralized tissues. This crucial process makes possible the rigidity and flexibility that the skeleton needs for ambulation and protection of vital organs, and the hardness that teeth require to tear and grind food. The skeleton also serves as a source of mineral in times of short supply, and the intestines absorb and the kidneys reclaim or excrete minerals as needed. This Review focuses on physiological and pathological aspects of the hormonal regulation of biomineralization. We discuss the roles of calcium and inorganic phosphate, dietary intake of minerals and the delicate balance between activators and inhibitors of mineralization. We also highlight the importance of tight regulation of serum concentrations of calcium and phosphate, and the major regulators of biomineralization: parathyroid hormone (PTH), the vitamin D system, vitamin K, fibroblast growth factor 23 (FGF23) and phosphatase enzymes. Finally, we summarize how developmental stresses in the fetus and neonate, and in the mother during pregnancy and lactation, invoke alternative hormonal regulatory pathways to control mineral delivery, skeletal metabolism and biomineralization.
Key points
-
Biomineralization is the process by which organisms produce mineralized tissues, such as tooth enamel and bone.
-
In land-based vertebrates, the skeleton also serves as a source of mineral in times of short supply, and the intestines absorb and the kidneys reclaim or excrete minerals as needed.
-
Tight regulation of serum concentrations of calcium and inorganic phosphate are required for appropriate biomineralization.
-
The major regulators of biomineralization are parathyroid hormone, the vitamin D system, vitamin K, fibroblast growth factor 23 and phosphatase enzymes.
-
Pregnancy and development cause unique stresses to the fetus, neonate and mother; these conditions invoke alternative hormonal regulatory pathways to control mineral delivery, skeletal metabolism and biomineralization.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Vannucci, L. et al. Calcium intake in bone health: a focus on calcium-rich mineral waters. Nutrients 10, 1930 (2018).
Boivin, G. & Meunier, P. J. The degree of mineralization of bone tissue measured by computerized quantitative contact microradiography. Calcif. Tissue Int. 70, 503–511 (2002).
Millan, J. L. The role of phosphatases in the initiation of skeletal mineralization. Calcif. Tissue Int. 93, 299–306 (2013).
Michigami, T. & Ozono, K. Roles of phosphate in skeleton. Front. Endocrinol. 10, 180 (2019).
Solomon, D. H., Browning, J. A. & Wilkins, R. J. Inorganic phosphate transport in matrix vesicles from bovine articular cartilage. Acta Physiol. 190, 119–125 (2007).
Yadav, M. C. et al. Skeletal mineralization deficits and impaired biogenesis and function of chondrocyte-derived matrix vesicles in phospho1(-/-) and phospho1/Pit1 double-knockout mice. J. Bone Min. Res. 31, 1275–1286 (2016).
Yadav, M. C. et al. Loss of skeletal mineralization by the simultaneous ablation of PHOSPHO1 and alkaline phosphatase function: a unified model of the mechanisms of initiation of skeletal calcification. J. Bone Min. Res. 26, 286–297 (2011).
Roschger, A. et al. Newly formed and remodeled human bone exhibits differences in the mineralization process. Acta Biomater. 104, 221–230 (2020).
Moreira, C. A., Dempster, D. W. & Baron, R. Anatomy and ultrastructure of bone - histogenesis, growth and remodeling. Endotext [Internet] https://pubmed.ncbi.nlm.nih.gov/25905372/ (updated 5 Jun 2019).
Winzenberg, T., Shaw, K., Fryer, J. & Jones, G. Effects of calcium supplementation on bone density in healthy children: meta-analysis of randomised controlled trials. Br. Med. J. 333, 775 (2006).
Harvey, N. C. et al. The role of calcium supplementation in healthy musculoskeletal ageing: An expert consensus meeting of the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) and the International Foundation for Osteoporosis (IOF). Osteoporos. Int. 28, 447–462 (2017).
Tai, V., Leung, W., Grey, A., Reid, I. R. & Bolland, M. J. Calcium intake and bone mineral density: systematic review and meta-analysis. Br. Med. J. 351, h4183 (2015).
Ziegler, E. E., O’Donnell, A. M., Nelson, S. E. & Fomon, S. J. Body composition of the reference fetus. Growth 40, 329–341 (1976).
Widdowson, E. M. & Dickerson, J. W. in Mineral Metabolism: An Advanced Treatise, Volume II, The Elements, Part A (eds Comar, C. L. & Bronner, F.) 1–247 (Academic Press, 1964).
Widdowson, E. M. & McCance, R. A. The metabolism of calcium, phosphorus, magnesium and strontium. Pediatr. Clin. North Am. 12, 595–614 (1965).
Sparks, J. W. Human intrauterine growth and nutrient accretion. Semin. Perinatol. 8, 74–93 (1984).
Givens, M. H. & Macy, I. C. The chemical composition of the human fetus. J. Biol. Chem. 102, 7–17 (1933).
Trotter, M. & Hixon, B. B. Sequential changes in weight, density, and percentage ash weight of human skeletons from an early fetal period through old age. Anat. Rec. 179, 1–18 (1974).
Comar, C. L. Radiocalcium studies in pregnancy. Ann. NY Acad. Sci. 64, 281–298 (1956).
Fomon, S. J. & Nelson, S. E. In Nutrition of Normal Infants (ed. Fomon, S. J.) 192–211 (Mosby, 1993).
Widdowson, E. M. Metabolic relationship of calcium, magnesium and phosphorus in the foetus and newly born. Voeding 23, 62–71 (1962).
Best, C. H. & Taylor, N. B. In The Physiological Basis of Medical Practice, 3rd Edition (eds Best, C. H. & Taylor, N. B.) 1124–1159 (Williams and Wilkins, 1940).
Widdowson, E. M. in Scientific Foundations of Paediatrics (eds Davis, J. A. & Dobbing, J.) 330–342 (William Heinemann, 1981).
Bozzetti, V. & Tagliabue, P. Metabolic bone disease in preterm newborn: an update on nutritional issues. Ital. J. Pediatr. 35, 20 (2009).
Kovacs, C. S. & Kronenberg, H. M. Maternal-fetal calcium and bone metabolism during pregnancy, puerperium, and lactation. Endocr. Rev. 18, 832–872 (1997).
Care, A. D. The placental transfer of calcium. J. Dev. Physiol. 15, 253–257 (1991).
Weisman, Y. et al. 1α, 25-Dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 in vitro synthesis by human decidua and placenta. Nature 281, 317–319 (1979).
Rigo, J. & Senterre, J. Nutritional needs of premature infants: current issues. J. Pediatrics 149, S80–S88 (2006).
Ryan, S., Congdon, P. J., James, J., Truscott, J. & Horsman, A. Mineral accretion in the human fetus. Arch. Dis. Child. 63, 799–808 (1988).
Glimcher, M. J., Hodge, A. J. & Schmitt, F. O. Macromolecular aggregation states in relation to mineralization: the collagen-hydroxyapatite system as studied in vitro. Proc. Natl Acad. Sci. USA 43, 860–867 (1957).
Fleisch, H. & Bisaz, S. Mechanism of calcification: inhibitory role of pyrophosphate. Nature 195, 911 (1962).
Block, G. A., Hulbert-Shearon, T. E., Levin, N. W. & Port, F. K. Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am. J. Kidney Dis. 31, 607–617 (1998).
Gutierrez, O. M. et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N. Engl. J. Med. 359, 584–592 (2008).
Dhingra, R. et al. Relations of serum phosphorus and calcium levels to the incidence of cardiovascular disease in the community. Arch. Intern. Med. 167, 879–885 (2007).
Chang, A. R. & Grams, M. E. Serum phosphorus and mortality in the Third National Health and Nutrition Examination Survey (NHANES III): effect modification by fasting. Am. J. Kidney Dis. 64, 567–573 (2014).
Levi, M. et al. Mechanisms of phosphate transport. Nat. Rev. Nephrol. 15, 482–500 (2019).
Christov, M. & Juppner, H. Phosphate homeostasis disorders. Best. Pract. Res. Clin. Endocrinol. Metab. 32, 685–706 (2018).
Karim, Z. et al. NHERF1 mutations and responsiveness of renal parathyroid hormone. N. Engl. J. Med. 359, 1128–1135 (2008).
Gattineni, J. & Friedman, P. A. Regulation of hormone-sensitive renal phosphate transport. Vitam. Horm. 98, 249–306 (2015).
Wheeler, J. A. & Clinkenbeard, E. L. Regulation of fibroblast growth factor 23 by iron, EPO, and HIF. Curr. Mol. Biol. Rep. 5, 8–17 (2019).
David, V. et al. Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney Int. 89, 135–146 (2016).
Hanudel, M. R. et al. Effects of erythropoietin on fibroblast growth factor 23 in mice and humans. Nephrol. Dia. Transplant. 34, 2057–2065 (2019).
Villa-Bellosta, R. et al. The Na+-Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary Pi. Am. J. Physiol. Ren. Physiol. 296, F691–F699 (2009).
Beck-Cormier, S. et al. Slc20a2, encoding the phosphate transporter PiT2, is an important genetic determinant of bone quality and strength. J. Bone Min. Res. 34, 1101–1114 (2019).
Giovannini, D., Touhami, J., Charnet, P., Sitbon, M. & Battini, J. L. Inorganic phosphate export by the retrovirus receptor XPR1 in metazoans. Cell Rep. 3, 1866–1873 (2013).
Ansermet, C. et al. Renal Fanconi syndrome and hypophosphatemic rickets in the absence of xenotropic and polytropic retroviral receptor in the nephron. J. Am. Soc. Nephrol. 28, 1073–1078 (2017).
Yao, X. P. et al. Analysis of gene expression and functional characterization of XPR1: a pathogenic gene for primary familial brain calcification. Cell Tissue Res. 370, 267–273 (2017).
Legati, A. et al. Mutations in XPR1 cause primary familial brain calcification associated with altered phosphate export. Nat. Genet. 47, 579–581 (2015).
Xu, X. et al. Murine placental-fetal phosphate dyshomeostasis caused by an Xpr1 deficiency accelerates placental calcification and restricts fetal growth in late gestation. J. Bone Min. Res. 35, 116–129 (2020).
Li, X. et al. Control of XPR1-dependent cellular phosphate efflux by InsP8 is an exemplar for functionally-exclusive inositol pyrophosphate signaling. Proc. Natl Acad. Sci. USA 117, 3568–3574 (2020).
Wilson, M. S., Jessen, H. J. & Saiardi, A. The inositol hexakisphosphate kinases IP6K1 and -2 regulate human cellular phosphate homeostasis, including XPR1-mediated phosphate export. J. Biol. Chem. 294, 11597–11608 (2019).
Burnett, S. M. et al. Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women. J. Bone Min. Res. 21, 1187–1196 (2006).
Chande, S. & Bergwitz, C. Role of phosphate sensing in bone and mineral metabolism. Nat. Rev. Endocrinol. 14, 637–655 (2018).
Fukumoto, S., Takashi, Y., Tsoumpra, M. K., Sawatsubashi, S. & Matsumoto, T. How do we sense phosphate to regulate serum phosphate level? J. Bone Min. Metab. 38, 1–6 (2020).
Simic, P. et al. Glycerol-3-phosphate is an FGF23 regulator derived from the injured kidney. J. Clin. Invest. 130, 1513–1526 (2020).
Centeno, P. P. et al. Phosphate acts directly on the calcium-sensing receptor to stimulate parathyroid hormone secretion. Nat. Commun. 10, 4693 (2019).
Prie, D. et al. Nephrolithiasis and osteoporosis associated with hypophosphatemia caused by mutations in the type 2a sodium-phosphate cotransporter. N. Engl. J. Med. 347, 983–991 (2002).
Bergwitz, C. et al. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am. J. Hum. Genet. 78, 179–192 (2006).
Mannstadt, M. et al. Hypoparathyroidism. Nat. Rev. Dis. Prim. 3, 17080 (2017).
Minisola, S. et al. Tumour-induced osteomalacia. Nat. Rev. Dis. Prim. 3, 17044 (2017).
Orriss, I. R., Arnett, T. R. & Russell, R. G. Pyrophosphate: a key inhibitor of mineralisation. Curr. Opin. Pharmacol. 28, 57–68 (2016).
Rutsch, F. et al. Mutations in ENPP1 are associated with ‘idiopathic’ infantile arterial calcification. Nat. Genet. 34, 379–381 (2003).
Lomashvili, K. A., Narisawa, S., Millan, J. L. & O’Neill, W. C. Vascular calcification is dependent on plasma levels of pyrophosphate. Kidney Int. 85, 1351–1356 (2014).
Whyte, M. P. Hypophosphatasia — aetiology, nosology, pathogenesis, diagnosis and treatment. Nat. Rev. Endocrinol. 12, 233–246 (2016).
Thomas, L. et al. Pharmacological Npt2a inhibition causes phosphaturia and reduces plasma phosphate in mice with normal and reduced kidney function. J. Am. Soc. Nephrol. 30, 2128–2139 (2019).
Christakos, S., Dhawan, P., Verstuyf, A., Verlinden, L. & Carmeliet, G. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol. Rev. 96, 365–408 (2016).
Goltzman, D. Functions of vitamin D in bone. Histochem. Cell Biol. 149, 305–312 (2018).
Munns, C. F. et al. Global consensus recommendations on prevention and management of nutritional rickets. J. Clin. Endocrinol. Metab. 101, 394–415 (2016).
Christakos, S. et al. Vitamin D and the intestine: review and update. J. Steroid Biochem. Mol. Biol. 196, 105501 (2020).
Ammann, P., Rizzoli, R. & Fleisch, H. Calcium absorption in rat large intestine in vivo: availability of dietary calcium. Am. J. Physiol. 251, G14–G18 (1986).
Rizzoli, R. Nutritional influence on bone: role of gut microbiota. Aging Clin. Exp. Res. 31, 743–751 (2019).
Rizzoli, R., Fleisch, H. & Bonjour, J. P. Role of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) on intestinal inorganic phosphate (Pi) absorption in rats with normal vitamin D supply. Calcif. Tissue Res. 22 (Suppl.), 561–562 (1977).
Dhawan, P. et al. Transgenic expression of the vitamin D receptor restricted to the ileum, cecum, and colon of vitamin D receptor knockout mice rescues vitamin D receptor-dependent rickets. Endocrinology 158, 3792–3804 (2017).
McCollum, E. V., Simmonds, N., Shipley, P. G. & Park, E. A. Studies on experimental rickets. XV. The effect of starvation on the healing of rickets. Bull. Johns Hopkins Hosp. 33, 31–33 (1922).
Sabbagh, Y., Carpenter, T. O. & Demay, M. B. Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proc. Natl Acad. Sci. USA 102, 9637–9642 (2005).
Underwood, J. L. & DeLuca, H. F. Vitamin D is not directly necessary for bone growth and mineralization. Am. J. Physiol. 246, E493–498 (1984).
Amling, M. et al. Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses. Endocrinology 140, 4982–4987 (1999).
Dardenne, O., Prud’homme, J., Hacking, S. A., Glorieux, F. H. & St-Arnaud, R. Correction of the abnormal mineral ion homeostasis with a high-calcium, high-phosphorus, high-lactose diet rescues the PDDR phenotype of mice deficient for the 25-hydroxyvitamin D-1α-hydroxylase (CYP27B1). Bone 32, 332–340 (2003).
Panda, D. K. et al. Inactivation of the 25-hydroxyvitamin D 1α-hydroxylase and vitamin D receptor demonstrates independent and interdependent effects of calcium and vitamin D on skeletal and mineral homeostasis. J. Biol. Chem. 279, 16754–16766 (2004).
Rizzoli, R., Fleisch, H. & Bonjour, J. P. Effect of thyroparathyroidectomy of calcium metabolism in rats: role of 1,25-dihydroxyvitamin D3. Am. J. Physiol. 233, E160–E164 (1977).
Pike, J. W. & Christakos, S. Biology and mechanisms of action of the vitamin D hormone. Endocrinol. Metab. Clin. North. Am. 46, 815–843 (2017).
Haussler, M. R. et al. Molecular mechanisms of vitamin D action. Calcif. Tissue Int. 92, 77–98 (2013).
van Driel, M. & van Leeuwen, J. Vitamin D endocrinology of bone mineralization. Mol. Cell Endocrinol. 453, 46–51 (2017).
Woeckel, V. J. et al. 1α,25-(OH)2D3 acts in the early phase of osteoblast differentiation to enhance mineralization via accelerated production of mature matrix vesicles. J. Cell. Physiol. 225, 593–600 (2010).
Lin, E. L. et al. Healing of vitamin D deficiency rickets complicating hypophosphatasia suggests a role beyond circulating mineral sufficiency for vitamin D in musculoskeletal health. Bone 136, 115322 (2020).
Willems, B. A., Vermeer, C., Reutelingsperger, C. P. & Schurgers, L. J. The realm of vitamin K dependent proteins: shifting from coagulation toward calcification. Mol. Nutr. Food Res. 58, 1620–1635 (2014).
Zoch, M. L., Clemens, T. L. & Riddle, R. C. New insights into the biology of osteocalcin. Bone 82, 42–49 (2016).
Schurgers, L. J., Uitto, J. & Reutelingsperger, C. P. Vitamin K-dependent carboxylation of matrix Gla-protein: a crucial switch to control ectopic mineralization. Trends Mol. Med. 19, 217–226 (2013).
Theuwissen, E., Smit, E. & Vermeer, C. The role of vitamin K in soft-tissue calcification. Adv. Nutr. 3, 166–173 (2012).
Barrett, H., O’Keeffe, M., Kavanagh, E., Walsh, M. & O’Connor, E. M. Is matrix gla protein associated with vascular calcification? A systematic review. Nutrients 10, 415 (2018).
Nigwekar, S. U. et al. Vitamin K-dependent carboxylation of matrix gla protein influences the risk of calciphylaxis. J. Am. Soc. Nephrol. 28, 1717–1722 (2017).
Siltari, A. & Vapaatalo, H. Vascular calcification, vitamin K and warfarin therapy - possible or plausible connection? Basic. Clin. Pharmacol. Toxicol. 122, 19–24 (2018).
Tantisattamo, E., Han, K. H. & O’Neill, W. C. Increased vascular calcification in patients receiving warfarin. Arterioscler. Thromb. Vasc. Biol. 35, 237–242 (2015).
Win, T. T. et al. Apixaban versus warfarin in evaluation of progression of atherosclerotic and calcified plaques (prospective randomized trial). Am. Heart J. 212, 129–133 (2019).
Brandenburg, V. M. et al. Slower progress of aortic valve calcification with vitamin K supplementation: results from a prospective interventional proof-of-concept study. Circulation 135, 2081–2083 (2017).
Graham, A. & Richardson, J. Developmental and evolutionary origins of the pharyngeal apparatus. Evodevo 3, 24 (2012).
Peissig, K., Condie, B. G. & Manley, N. R. Embryology of the parathyroid glands. Endocrinol. Metab. Clin. North Am. 47, 733–742 (2018).
Günther, T. et al. Genetic ablation of parathyroid glands reveals another source of parathyroid hormone. Nature 406, 199–203 (2000).
Ding, C., Buckingham, B. & Levine, M. A. Familial isolated hypoparathyroidism caused by a mutation in the gene for the transcription factor GCMB. J. Clin. Invest. 108, 1215–1220 (2001).
Mannstadt, M. et al. Dominant-negative GCMB mutations cause an autosomal dominant form of hypoparathyroidism. J. Clin. Endocrinol. Metab. 93, 3568–3576 (2008).
Bowl, M. R. et al. Identification and characterization of novel parathyroid-specific transcription factor Glial Cells Missing Homolog B (GCMB) mutations in eight families with autosomal recessive hypoparathyroidism. Hum. Mol. Genet. 19, 2028–2038 (2010).
Hannan, F. M., Kallay, E., Chang, W., Brandi, M. L. & Thakker, R. V. The calcium-sensing receptor in physiology and in calcitropic and noncalcitropic diseases. Nat. Rev. Endocrinol. 15, 33–51 (2018).
Walker, M. D. & Silverberg, S. J. Primary hyperparathyroidism. Nat. Rev. Endocrinol. 14, 115–125 (2018).
Brewer, K., Costa-Guda, J. & Arnold, A. Molecular genetic insights into sporadic primary hyperparathyroidism. Endocr. Relat. Cancer 26, R53–R72 (2019).
Chandrasekharappa, S. C. et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 276, 404–407 (1997).
Imanishi, Y. et al. Primary hyperparathyroidism caused by parathyroid-targeted overexpression of cyclin D1 in transgenic mice. J. Clin. Invest. 107, 1093–1102 (2001).
Mallya, S. M. et al. Abnormal parathyroid cell proliferation precedes biochemical abnormalities in a mouse model of primary hyperparathyroidism. Mol. Endocrinol. 19, 2603–2609 (2005).
Thakker, R. V. et al. Clinical practice guidelines for multiple endocrine neoplasia type 1 (MEN1). J. Clin. Endocrinol. Metab. 97, 2990–3011 (2012).
El-Hajj Fuleihan, G.& Arnold, A. Parathyroid carcinoma. UpToDate 14.0 (eds Drezner, M.K. & Mulder, J.E.) https://www.uptodate.com/contents/parathyroid-carcinoma (2021).
Insogna, K. L. Primary hyperparathyroidism. N. Engl. J. Med. 379, 1050–1059 (2018).
Bilezikian, J. P., Bandeira, L., Khan, A. & Cusano, N. E. Hyperparathyroidism. Lancet 391, 168–178 (2018).
Minisola, S., Gianotti, L., Bhadada, S. & Silverberg, S. J. Classical complications of primary hyperparathyroidism. Best Pract. Res. Clin. Endocrinol. Metab. 32, 791–803 (2018).
Khan, A. A. et al. Primary hyperparathyroidism: review and recommendations on evaluation, diagnosis, and management. A Canadian and international consensus. Osteoporos. Int. 28, 1–19 (2017).
Clarke, B. L. et al. Epidemiology and diagnosis of hypoparathyroidism. J. Clin. Endocrinol. Metab. 101, 2284–2299 (2016).
Hoogendam, J. et al. Novel mutations in the parathyroid hormone (PTH)/PTH-related peptide receptor type 1 causing Blomstrand osteochondrodysplasia types I and II. J. Clin. Endocrinol. Metab. 92, 1088–1095 (2007).
Langdahl, B. L., Mortensen, L., Vesterby, A., Eriksen, E. F. & Charles, P. Bone histomorphometry in hypoparathyroid patients treated with vitamin D. Bone 18, 103–108 (1996).
Rubin, M. R. et al. Dynamic and structural properties of the skeleton in hypoparathyroidism. J. Bone Min. Res. 23, 2018–2024 (2008).
Rubin, M. R. et al. PTH(1-84) administration reverses abnormal bone-remodeling dynamics and structure in hypoparathyroidism. J. Bone Min. Res. 26, 2727–2736 (2011).
Cusano, N. E. et al. Changes in skeletal microstructure through four continuous years of rhPTH(1-84) therapy in hypoparathyroidism. J. Bone Min. Res. 35, 1274–1281 (2020).
Kovacs, C. S. Bone development and mineral homeostasis in the fetus and neonate: roles of the calciotropic and phosphotropic hormones. Physiol. Rev. 94, 1143–1218 (2014).
Kovacs, C. S. & Ward, L. E. In Maternal-Fetal and Neonatal Endocrinology: Physiology, Pathophysiology, and Clinical Management (eds Kovacs, C. S. & Deal, C. L.) 573–586 (Academic Press, 2019).
Kovacs, C. S. et al. Regulation of murine fetal-placental calcium metabolism by the calcium-sensing receptor. J. Clin. Invest. 101, 2812–2820 (1998).
Kovacs, C. S., Manley, N. R., Moseley, J. M., Martin, T. J. & Kronenberg, H. M. Fetal parathyroids are not required to maintain placental calcium transport. J. Clin. Invest. 107, 1007–1015 (2001).
Kovacs, C. S., Chafe, L. L., Fudge, N. J., Friel, J. K. & Manley, N. R. PTH regulates fetal blood calcium and skeletal mineralization independently of PTHrP. Endocrinology 142, 4983–4993 (2001).
Simmonds, C. S., Karsenty, G., Karaplis, A. C. & Kovacs, C. S. Parathyroid hormone regulates fetal-placental mineral homeostasis. J. Bone Min. Res. 25, 594–605 (2010).
Miao, D., He, B., Karaplis, A. C. & Goltzman, D. Parathyroid hormone is essential for normal fetal bone formation. J. Clin. Invest. 109, 1173–1182 (2002).
Halloran, B. P. & De Luca, H. F. Effect of vitamin D deficiency on skeletal development during early growth in the rat. Arch. Biochem. Biophys. 209, 7–14 (1981).
Miller, S. C., Halloran, B. P., DeLuca, H. F. & Jee, W. S. Studies on the role of vitamin D in early skeletal development, mineralization, and growth in rats. Calcif. Tissue Int. 35, 455–460 (1983).
Brommage, R. & DeLuca, H. F. Placental transport of calcium and phosphorus is not regulated by vitamin D. Am. J. Physiol. 246, F526–529 (1984).
Glazier, J. D., Mawer, E. B. & Sibley, C. P. Calbindin-D9K gene expression in rat chorioallantoic placenta is not regulated by 1,25-dihydroxyvitamin D3. Pediatr. Res. 37, 720–725 (1995).
Kovacs, C. S. Maternal mineral and bone metabolism during pregnancy, lactation, and post-weaning recovery. Physiol. Rev. 96, 449–547 (2016).
Roth, D. E. et al. Vitamin D supplementation in pregnancy and lactation and infant growth. N. Engl. J. Med. 379, 535–546 (2018).
Roth, D. E. et al. Vitamin D supplementation during pregnancy: state of the evidence from a systematic review of randomised trials. Br. Med. J. 359, j5237 (2017).
Ryan, B. A. et al. Complete absence of calcitriol in Cyp27b1 null fetal mice does not disturb mineral metabolism or skeletal development. J. Bone Min. Res. 32, S320 (2017).
Lachenmaier-Currle, U., Breves, G. & Harmeyer, J. Role of 1,25-(OH)2D3 during pregnancy; studies with pigs suffering from pseudo-vitamin D-deficiency rickets, type I. Q. J. Exp. Physiol. 74, 875–881 (1989).
Lachenmaier-Currle, U. & Harmeyer, J. Placental transport of calcium and phosphorus in pigs. J. Perinat. Med. 17, 127–136 (1989).
Kovacs, C. S., Woodland, M. L., Fudge, N. J. & Friel, J. K. The vitamin D receptor is not required for fetal mineral homeostasis or for the regulation of placental calcium transfer in mice. Am. J. Physiol. Endocrinol. Metab. 289, E133–E144 (2005).
Lieben, L., Stockmans, I., Moermans, K. & Carmeliet, G. Maternal hypervitaminosis D reduces fetal bone mass and mineral acquisition and leads to neonatal lethality. Bone 57, 123–131 (2013).
Ma, Y. et al. Neither absence nor excess of FGF23 disturbs murine fetal-placental phosphorus homeostasis or prenatal skeletal development and mineralization. Endocrinology 155, 1596–1605 (2014).
Ma, Y. et al. FGF23 is not required to regulate fetal phosphorus metabolism but exerts effects within 12 hours after birth. Endocrinology 158, 252–263 (2017).
Ohata, Y. et al. Elevated fibroblast growth factor 23 exerts its effects on placenta and regulates vitamin D metabolism in pregnancy of Hyp mice. J. Bone Min. Res. 29, 1627–1638 (2014).
Karaplis, A. C. et al. Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev. 8, 277–289 (1994).
Kovacs, C. S. et al. Parathyroid hormone-related peptide (PTHrP) regulates fetal-placental calcium transport through a receptor distinct from the PTH/PTHrP receptor. Proc. Natl Acad. Sci. USA 93, 15233–15238 (1996).
Lanske, B. et al. PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science 273, 663–666 (1996).
Abbas, S. K. et al. Stimulation of ovine placental calcium transport by purified natural and recombinant parathyroid hormone-related protein (PTHrP) preparations. Q. J. Exp. Physiol. 74, 549–552 (1989).
Wu, T. L. et al. Structural and physiologic characterization of the mid-region secretory species of parathyroid hormone-related protein. J. Biol. Chem. 271, 24371–24381 (1996).
Loughead, J. L., Mimouni, F. & Tsang, R. C. Serum ionized calcium concentrations in normal neonates. Am. J. Dis. Child. 142, 516–518 (1988).
David, L. & Anast, C. S. Calcium metabolism in newborn infants. The interrelationship of parathyroid function and calcium, magnesium, and phosphorus metabolism in normal, “sick,” and hypocalcemic newborns. J. Clin. Invest. 54, 287–296 (1974).
Schauberger, C. W. & Pitkin, R. M. Maternal-perinatal calcium relationships. Obstet. Gynecol. 53, 74–76 (1979).
Kovacs, C. S. & Ward, L. E. in Maternal-Fetal and Neonatal Endocrinology: Physiology, Pathophysiology, and Clinical Management (eds Kovacs, C. S. & Deal, C. S.) 755–782 (Academic Press, 2019).
Kovacs, C. S. Bone metabolism in the fetus and neonate. Pediatr. Nephrol. 29, 793–803 (2014).
Suzuki, Y. et al. Calcium channel TRPV6 is involved in murine maternal-fetal calcium transport. J. Bone Min. Res. 23, 1249–1256 (2008).
Hunt, C. D. & Johnson, L. K. Calcium requirements: new estimations for men and women by cross-sectional statistical analyses of calcium balance data from metabolic studies. Am. J. Clin. Nutr. 86, 1054–1063 (2007).
Kovacs, C. S. In Maternal-Fetal and Neonatal Endocrinology: Physiology, Pathophysiology, and Clinical Management (eds Kovacs, C.S. & Deal, C.S.) 61–73 (Academic Press, 2019).
Gillies, B. R. et al. Absence of calcitriol causes increased lactational bone loss and lower milk calcium but does not impair post-lactation bone recovery in Cyp27b1 null mice. J. Bone Min. Res. 33, 16–26 (2018).
Fudge, N. J. & Kovacs, C. S. Pregnancy up-regulates intestinal calcium absorption and skeletal mineralization independently of the vitamin D receptor. Endocrinology 151, 886–895 (2010).
Halloran, B. P. & DeLuca, H. F. Calcium transport in small intestine during pregnancy and lactation. Am. J. Physiol. 239, E64–68 (1980).
Brommage, R., Baxter, D. C. & Gierke, L. W. Vitamin D-independent intestinal calcium and phosphorus absorption during reproduction. Am. J. Physiol. 259, G631–G638 (1990).
Purdie, D. W., Aaron, J. E. & Selby, P. L. Bone histology and mineral homeostasis in human pregnancy. Br. J. Obstet. Gynaecol. 95, 849–854 (1988).
Moller, U. K., Vieth Streym, S., Mosekilde, L. & Rejnmark, L. Changes in bone mineral density and body composition during pregnancy and postpartum. A controlled cohort study. Osteoporos. Int. 23, 1213–1223 (2012).
Ó Breasail, M., Prentice, A. & Ward, K. Pregnancy-related bone mineral and microarchitecture changes in women aged 30 to 45 years. J. Bone Min. Res. 35, 1253–1262 (2020).
Kovacs, C. S. & Ralston, S. H. Presentation and management of osteoporosis presenting in association with pregnancy or lactation. Osteoporos. Int. 26, 2223–2241 (2015).
Kalkwarf, H. J., Specker, B. L., Bianchi, D. C., Ranz, J. & Ho, M. The effect of calcium supplementation on bone density during lactation and after weaning. N. Engl. J. Med. 337, 523–528 (1997).
Cross, N. A., Hillman, L. S., Allen, S. H. & Krause, G. F. Changes in bone mineral density and markers of bone remodeling during lactation and postweaning in women consuming high amounts of calcium. J. Bone Min. Res. 10, 1312–1320 (1995).
Polatti, F., Capuzzo, E., Viazzo, F., Colleoni, R. & Klersy, C. Bone mineral changes during and after lactation. Obstet. Gynecol. 94, 52–56 (1999).
Kovacs, C. S., Chakhtoura, M. & El-Hajj Fuleihan, G. In Maternal-Fetal and Neonatal Endocrinology Physiology, Pathophysiology, and Clinical Management (eds Kovacs, C. S. & Deal, C. S.) 329–370 (Academic Press, 2019).
Brembeck, P., Lorentzon, M., Ohlsson, C., Winkvist, A. & Augustin, H. Changes in cortical volumetric bone mineral density and thickness, and trabecular thickness in lactating women postpartum. J. Clin. Endocrinol. Metab. 100, 535–543 (2015).
Bjornerem, A. et al. Irreversible deterioration of cortical and trabecular microstructure associated with breastfeeding. J. Bone Min. Res. 32, 681–687 (2017).
Ryan, B. A. & Kovacs, C. S. The puzzle of lactational bone physiology: osteocytes masquerade as osteoclasts and osteoblasts. J. Clin. Invest. 129, 3041–3044 (2019).
Institute of Medicine. Dietary Reference Intakes for Calcium and Vitamin D (National Academies Press, 2011).
Ross, A. C. et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J. Clin. Endocrinol. Metab. 96, 53–58 (2011).
Kovacs, C. S. In Principles of Endocrinology and Hormone Action (eds Belfiore, A. & Le Roith, D.) 367–386 (Springer, 2016).
Ryan, B. A. & Kovacs, C. S. Calciotropic and phosphotropic hormones in fetal and neonatal bone development. Semin. Fetal Neonatal Med. 25, 101062 (2020).
Acknowledgements
The Menarini Foundation (Fondazione Internazionale Menarini) supported the conference in Florence, Italy, on Biomineralization in Health and Disease, which served as impetus and inspiration for this article. The authors acknowledge the support of the Murray–Heilig Fund in Molecular Medicine (A.A.); Canadian Institutes of Health Research (C.S.K.); Fondazione Italiana Ricerca sulle Malattie dell’Osso (M.L.B.); Wellcome Trust Investigator Award, National Institute for Health Research (NIHR) Senior Investigator Award, and NIHR Oxford Biomedical Research Centre Programme (R.V.T.).
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
R.R. has received fees for advisory board or lectures from Abiogen, CNIEL, Danone, Echolight, EMF, Mithra, Mylan, Nestlé, ObsEva, Pfizer Consumer Health, Radius Health, Rejuvenate, Sandoz and Theramex. The other authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Endocrinology thanks R. Kuma, J. Lian and A. Martin for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Tetrapod transition
-
The water-to-land transition, involving evolutionary adaptations such as four legs and joints that enabled walking on land.
- Calcium–PTH setpoint
-
Refers to the relationship between extracellular calcium concentration and parathyroid hormone (PTH) release. Setpoint is the calcium concentration at which PTH release (or circulating concentration) is mid-way between its maximum and minimum values.
- Multiple endocrine neoplasia type 1
-
(MEN1). A disorder characterized by predisposition to primary hyperparathyroidism in association with neuroendocrine tumours of the pancreas, pituitary adenomas and adrenal tumours.
- Albright’s hereditary osteodystrophy
-
(AHO). A genetic syndrome characterized by short stature, obesity, subcutaneous calcification, mental retardation, round face, dental hypoplasia and brachydactyly.
Rights and permissions
About this article
Cite this article
Arnold, A., Dennison, E., Kovacs, C.S. et al. Hormonal regulation of biomineralization. Nat Rev Endocrinol 17, 261–275 (2021). https://doi.org/10.1038/s41574-021-00477-2
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41574-021-00477-2