Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics

Abstract

In mammals, the white adipocyte is a cell type that is specialized for storage of energy (in the form of triacylglycerols) and for energy mobilization (as fatty acids). White adipocyte metabolism confers an essential role to adipose tissue in whole-body homeostasis. Dysfunction in white adipocyte metabolism is a cardinal event in the development of insulin resistance and associated disorders. This Review focuses on our current understanding of lipid and glucose metabolic pathways in the white adipocyte. We survey recent advances in humans on the importance of adipocyte hypertrophy and on the in vivo turnover of adipocytes and stored lipids. At the molecular level, the identification of novel regulators and of the interplay between metabolic pathways explains the fine-tuning between the anabolic and catabolic fates of fatty acids and glucose in different physiological states. We also examine the metabolic alterations involved in the genesis of obesity-associated metabolic disorders, lipodystrophic states, cancers and cancer-associated cachexia. New challenges include defining the heterogeneity of white adipocytes in different anatomical locations throughout the lifespan and investigating the importance of rhythmic processes. Targeting white fat metabolism offers opportunities for improved patient stratification and a wide, yet unexploited, range of therapeutic opportunities.

Key points

  • White adipocyte size and turnover are determinants of systemic insulin sensitivity and cardiometabolic phenotype in humans.

  • White adipocytes are specialized in fat storage and mobilization; the underlying lipid metabolic pathways are tightly connected with those governing the intracellular fate of glucose.

  • In some fat depots, there is a bidirectional switch between white and beige adipocytes, which display an oxidative phenotype with energy dissipation through uncoupling protein 1 (UCP1)-dependent and UCP1-independent pathways.

  • White adipocyte metabolic pathways control the secretion of proteins and lipids with local and systemic effects on inflammation and insulin sensitivity.

  • Adipocyte metabolism offers promising targets for the treatment of cardiometabolic diseases and cancer-associated disorders.

  • Future research will include the in-depth characterization of adipocyte diversity associated with anatomical location, age, sex and physiological rhythms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of important advances and promising discoveries in white adipose tissue research.
Fig. 2: Turnover of human white adipose tissue.
Fig. 3: Fat storage and glucose metabolism in white adipocytes.
Fig. 4: Fat mobilization in white adipocytes.
Fig. 5: Energy dissipation in adipocytes.
Fig. 6: Crosstalk between metabolic pathways in the white adipocyte.
Fig. 7: Systemic impact of adipocyte metabolism and therapeutic perspectives.

Similar content being viewed by others

References

  1. Pond, C. M. An evolutionary and functional view of mammalian adipose tissue. Proc. Nutr. Soc. 51, 367–377 (1992).

    CAS  PubMed  Google Scholar 

  2. Thiam, A. R. & Beller, M. The why, when and how of lipid droplet diversity. J. Cell Sci. 130, 315–324 (2017).

    CAS  PubMed  Google Scholar 

  3. Rodbell, M. Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis. J. Biol. Chem. 239, 375–380 (1964).

    CAS  PubMed  Google Scholar 

  4. Czech, M. P. Cellular basis of insulin insensitivity in large rat adipocytes. J. Clin. Invest. 57, 1523–1532 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Cushman, S. W. & Wardzala, L. J. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. J. Biol. Chem. 255, 4758–4762 (1980).

    CAS  PubMed  Google Scholar 

  6. Suzuki, K. & Kono, T. Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site. Proc. Natl Acad. Sci. USA 77, 2542–2545 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993).

    CAS  PubMed  Google Scholar 

  8. Hu, E., Liang, P. & Spiegelman, B. M. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem. 271, 10697–10703 (1996).

    CAS  PubMed  Google Scholar 

  9. Maeda, K. et al. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem. Biophys. Res. Commun. 221, 286–289 (1996).

    CAS  PubMed  Google Scholar 

  10. Scherer, P. E., Williams, S., Fogliano, M., Baldini, G. & Lodish, H. F. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 270, 26746–26749 (1995).

    CAS  PubMed  Google Scholar 

  11. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    CAS  PubMed  Google Scholar 

  12. Lafontan, M. Historical perspectives in fat cell biology: the fat cell as a model for the investigation of hormonal and metabolic pathways. Am. J. Physiol. Cell Physiol. 302, C327–C359 (2012).

    CAS  PubMed  Google Scholar 

  13. Guilherme, A., Henriques, F., Bedard, A. H. & Czech, M. P. Molecular pathways linking adipose innervation to insulin action in obesity and diabetes mellitus. Nat. Rev. Endocrinol. 15, 207–225 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chouchani, E. T. & Kajimura, S. Metabolic adaptation and maladaptation in adipose tissue. Nat. Metab. 1, 189–200 (2019).

    PubMed  PubMed Central  Google Scholar 

  15. Scheja, L. & Heeren, J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat. Rev. Endocrinol. 15, 507–524 (2019).

    CAS  PubMed  Google Scholar 

  16. Vishvanath, L. & Gupta, R. K. Contribution of adipogenesis to healthy adipose tissue expansion in obesity. J. Clin. Invest. 129, 4022–4031 (2019).

    PubMed  PubMed Central  Google Scholar 

  17. Ghaben, A. L. & Scherer, P. E. Adipogenesis and metabolic health. Nat. Rev. Mol. Cell Biol. 20, 242–258 (2019).

    CAS  PubMed  Google Scholar 

  18. Stenkula, K. G. & Erlanson-Albertsson, C. Adipose cell size: importance in health and disease. Am. J. Physiol. Regul. Integr. Comp. Physiol 315, R284–R295 (2018).

    CAS  PubMed  Google Scholar 

  19. Engfeldt, P. & Arner, P. Lipolysis in human adipocytes, effects of cell size, age and of regional differences. Horm. Metab. Res. Suppl. 19, 26–29 (1988).

    CAS  PubMed  Google Scholar 

  20. Laforest, S., Labrecque, J., Michaud, A., Cianflone, K. & Tchernof, A. Adipocyte size as a determinant of metabolic disease and adipose tissue dysfunction. Crit. Rev. Clin. Lab. Sci. 52, 301–313 (2015).

    CAS  PubMed  Google Scholar 

  21. Pausova, Z. From big fat cells to high blood pressure: a pathway to obesity-associated hypertension. Curr. Opin. Nephrol. Hypertens. 15, 173–178 (2006).

    PubMed  Google Scholar 

  22. Arner, P. & Spalding, K. L. Fat cell turnover in humans. Biochem. Biophys. Res. Commun. 396, 101–104 (2010).

    CAS  PubMed  Google Scholar 

  23. Tandon, P., Wafer, R. & Minchin, J. E. N. Adipose morphology and metabolic disease. J. Exp. Biol. 221 (Pt Suppl. 1), jeb164970 (2018).

    PubMed  Google Scholar 

  24. Rutkowski, J. M., Stern, J. H. & Scherer, P. E. The cell biology of fat expansion. J. Cell Biol. 208, 501–512 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Berry, R., Jeffery, E. & Rodeheffer, M. S. Weighing in on adipocyte precursors. Cell Metab. 19, 8–20 (2014).

    CAS  PubMed  Google Scholar 

  26. Christodoulides, C., Lagathu, C., Sethi, J. K. & Vidal-Puig, A. Adipogenesis and WNT signalling. Trends Endocrinol. Metab. 20, 16–24 (2009).

    CAS  PubMed  Google Scholar 

  27. Ma, X., Wang, D., Zhao, W. & Xu, L. Deciphering the roles of PPARγ in adipocytes via dynamic change of transcription complex. Front. Endocrinol. 9, 473 (2018).

    Google Scholar 

  28. Shan, T., Liu, J., Wu, W., Xu, Z. & Wang, Y. Roles of notch signaling in adipocyte progenitor cells and mature adipocytes. J. Cell Physiol. 232, 1258–1261 (2017).

    CAS  PubMed  Google Scholar 

  29. Fernando, R. et al. Low steady-state oxidative stress inhibits adipogenesis by altering mitochondrial dynamics and decreasing cellular respiration. Redox Biol. 32, 101507 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, S. et al. Adipocyte Piezo1 mediates obesogenic adipogenesis through the FGF1/FGFR1 signaling pathway in mice. Nat. Commun. 11, 2303 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sakaguchi, M. et al. Adipocyte dynamics and reversible metabolic syndrome in mice with an inducible adipocyte-specific deletion of the insulin receptor. Cell Metab. 25, 448–462 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, Q. A. et al. Reversible de-differentiation of mature white adipocytes into preadipocyte-like precursors during lactation. Cell Metab. 28, 282–288.e3 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sebo, Z. L. & Rodeheffer, M. S. Assembling the adipose organ: adipocyte lineage segregation and adipogenesis in vivo. Development 146, dev172098 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Raajendiran, A. et al. Identification of metabolically distinct adipocyte progenitor cells in human adipose tissues. Cell Rep. 27, 1528–1540.e7 (2019).

    CAS  PubMed  Google Scholar 

  35. Gavin, K. M. et al. De novo generation of adipocytes from circulating progenitor cells in mouse and human adipose tissue. FASEB J. 30, 1096–1108 (2016).

    CAS  PubMed  Google Scholar 

  36. Ryden, M., Andersson, D. P., Bernard, S., Spalding, K. & Arner, P. Adipocyte triglyceride turnover and lipolysis in lean and overweight subjects. J. Lipid Res. 54, 2909–2913 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Walker, G. E., Marzullo, P., Ricotti, R., Bona, G. & Prodam, F. The pathophysiology of abdominal adipose tissue depots in health and disease. Horm. Mol. Biol. Clin. Investig. 19, 57–74 (2014).

    CAS  PubMed  Google Scholar 

  38. Hoffstedt, J. et al. Regional impact of adipose tissue morphology on the metabolic profile in morbid obesity. Diabetologia 53, 2496–2503 (2010).

    CAS  PubMed  Google Scholar 

  39. Veilleux, A., Caron-Jobin, M., Noel, S., Laberge, P. Y. & Tchernof, A. Visceral adipocyte hypertrophy is associated with dyslipidemia independent of body composition and fat distribution in women. Diabetes 60, 1504–1511 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Verboven, K. et al. Abdominal subcutaneous and visceral adipocyte size, lipolysis and inflammation relate to insulin resistance in male obese humans. Sci. Rep. 8, 4677 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lonn, M., Mehlig, K., Bengtsson, C. & Lissner, L. Adipocyte size predicts incidence of type 2 diabetes in women. FASEB J. 24, 326–331 (2010).

    PubMed  Google Scholar 

  42. Weyer, C., Foley, J. E., Bogardus, C., Tataranni, P. A. & Pratley, R. E. Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts type II diabetes independent of insulin resistance. Diabetologia 43, 1498–1506 (2000).

    CAS  PubMed  Google Scholar 

  43. White, U. & Ravussin, E. Dynamics of adipose tissue turnover in human metabolic health and disease. Diabetologia 62, 17–23 (2019).

    PubMed  Google Scholar 

  44. Spalding, K. L., Bhardwaj, R. D., Buchholz, B. A., Druid, H. & Frisen, J. Retrospective birth dating of cells in humans. Cell 122, 133–143 (2005).

    CAS  PubMed  Google Scholar 

  45. Spalding, K. L. et al. Dynamics of fat cell turnover in humans. Nature 453, 783–787 (2008).

    CAS  PubMed  Google Scholar 

  46. Arner, E. et al. Adipocyte turnover: relevance to human adipose tissue morphology. Diabetes 59, 105–109 (2010).

    CAS  PubMed  Google Scholar 

  47. Arner, P. et al. Dynamics of human adipose lipid turnover in health and metabolic disease. Nature 478, 110–113 (2011). This study provides the first in vivo estimation of TAG renewal rate in adult human adipose tissue.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Guillermier, C. et al. Imaging mass spectrometry demonstrates age-related decline in human adipose plasticity. JCI Insight 2, e90349 (2017).

    PubMed  PubMed Central  Google Scholar 

  49. Spalding, K. L. et al. Impact of fat mass and distribution on lipid turnover in human adipose tissue. Nat. Commun. 8, 15253 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Ibrahim, M. M. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes. Rev. 11, 11–18 (2010).

    PubMed  Google Scholar 

  51. Lee, M. J., Wu, Y. & Fried, S. K. Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications. Mol. Asp. Med. 34, 1–11 (2013).

    CAS  Google Scholar 

  52. Arner, P. et al. Adipose lipid turnover and long-term changes in body weight. Nat. Med. 25, 1385–1389 (2019).

    CAS  PubMed  Google Scholar 

  53. Kersten, S. Physiological regulation of lipoprotein lipase. Biochim. Biophys. Acta 1841, 919–933 (2014).

    CAS  PubMed  Google Scholar 

  54. Thompson, B. R., Lobo, S. & Bernlohr, D. A. Fatty acid flux in adipocytes: the in’s and out’s of fat cell lipid trafficking. Mol. Cell Endocrinol. 318, 24–33 (2010).

    CAS  PubMed  Google Scholar 

  55. Coleman, R. A. & Mashek, D. G. Mammalian triacylglycerol metabolism: synthesis, lipolysis, and signaling. Chem. Rev. 111, 6359–6386 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Coleman, R. A. It takes a village: channeling fatty acid metabolism and triacylglycerol formation via protein interactomes. J. Lipid Res. 60, 490–497 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Chitraju, C., Walther, T. C. & Farese, R. V. Jr. The triglyceride synthesis enzymes DGAT1 and DGAT2 have distinct and overlapping functions in adipocytes. J. Lipid Res. 60, 1112–1120 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Chitraju, C. et al. Triglyceride synthesis by DGAT1 protects adipocytes from lipid-induced ER Stress during lipolysis. Cell Metab. 26, 407–418.e3 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Solinas, G., Boren, J. & Dulloo, A. G. De novo lipogenesis in metabolic homeostasis: More friend than foe? Mol. Metab. 4, 367–377 (2015). This review questions the classical view of de novo lipogenesis as a detrimental pathway.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Wallace, M. & Metallo, C. M. Tracing insights into de novo lipogenesis in liver and adipose tissues. Semin. Cell Dev. Biol. 108, 65–71 (2020).

    CAS  PubMed  Google Scholar 

  61. Zhao, S. et al. ATP-citrate lyase controls a glucose-to-acetate metabolic switch. Cell Rep. 17, 1037–1052 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Guillou, H., Zadravec, D., Martin, P. G. & Jacobsson, A. The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice. Prog. Lipid Res. 49, 186–199 (2010).

    CAS  PubMed  Google Scholar 

  63. Aarsland, A., Chinkes, D. & Wolfe, R. R. Hepatic and whole-body fat synthesis in humans during carbohydrate overfeeding. Am. J. Clin. Nutr. 65, 1774–1782 (1997).

    CAS  PubMed  Google Scholar 

  64. Diraison, F. et al. Differences in the regulation of adipose tissue and liver lipogenesis by carbohydrates in humans. J. Lipid Res. 44, 846–853 (2003).

    CAS  PubMed  Google Scholar 

  65. Smith, G. I. et al. Insulin resistance drives hepatic de novo lipogenesis in nonalcoholic fatty liver disease. J. Clin. Invest. 130, 1453–1460 (2019).

    Google Scholar 

  66. Lafontan, M. & Langin, D. Lipolysis and lipid mobilization in human adipose tissue. Prog. Lipid Res. 48, 275–297 (2009).

    CAS  PubMed  Google Scholar 

  67. Morigny, P., Houssier, M., Mouisel, E. & Langin, D. Adipocyte lipolysis and insulin resistance. Biochimie 125, 259–266 (2016).

    CAS  PubMed  Google Scholar 

  68. Langin, D. & Arner, P. Importance of TNFα and neutral lipases in human adipose tissue lipolysis. Trends Endocrinol. Metab. 17, 314–320 (2006).

    CAS  PubMed  Google Scholar 

  69. Haemmerle, G. et al. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312, 734–737 (2006).

    CAS  PubMed  Google Scholar 

  70. Ahmadian, M. et al. Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype. Cell Metab. 13, 739–748 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Schoiswohl, G. et al. Impact of reduced ATGL-mediated adipocyte lipolysis on obesity-associated insulin resistance and inflammation in male mice. Endocrinology 156, 3610–3624 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Bezaire, V. et al. Contribution of adipose triglyceride lipase and hormone-sensitive lipase to lipolysis in hMADS adipocytes. J. Biol. Chem. 284, 18282–18291 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Fischer, J. et al. The gene encoding adipose triglyceride lipase (PNPLA2) is mutated in neutral lipid storage disease with myopathy. Nat. Genet. 39, 28–30 (2007).

    CAS  PubMed  Google Scholar 

  74. Natali, A. et al. Metabolic consequences of adipose triglyceride lipase deficiency in humans: an in vivo study in patients with neutral lipid storage disease with myopathy. J. Clin. Endocrinol. Metab. 98, E1540–E1548 (2013).

    CAS  PubMed  Google Scholar 

  75. Haemmerle, G. et al. Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J. Biol. Chem. 277, 4806–4815 (2002).

    CAS  PubMed  Google Scholar 

  76. Albert, J. S. et al. Null mutation in hormone-sensitive lipase gene and risk of type 2 diabetes. N. Engl. J. Med. 370, 2307–2315 (2014).

    PubMed  PubMed Central  Google Scholar 

  77. Taschler, U. et al. Monoglyceride lipase deficiency in mice impairs lipolysis and attenuates diet-induced insulin resistance. J. Biol. Chem. 286, 17467–17477 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Lass, A. et al. Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman syndrome. Cell Metab. 3, 309–319 (2006).

    CAS  PubMed  Google Scholar 

  79. Radner, F. P. et al. Growth retardation, impaired triacylglycerol catabolism, hepatic steatosis, and lethal skin barrier defect in mice lacking comparative gene identification-58 (CGI-58). J. Biol. Chem. 285, 7300–7311 (2010).

    CAS  PubMed  Google Scholar 

  80. El-Assaad, W. et al. Deletion of the gene encoding G0/G 1 switch protein 2 (G0s2) alleviates high-fat-diet-induced weight gain and insulin resistance, and promotes browning of white adipose tissue in mice. Diabetologia 58, 149–157 (2015).

    CAS  PubMed  Google Scholar 

  81. Yang, X. et al. The G(0)/G(1) switch gene 2 regulates adipose lipolysis through association with adipose triglyceride lipase. Cell Metab. 11, 194–205 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Grahn, T. H. et al. Fat-specific protein 27 (FSP27) interacts with adipose triglyceride lipase (ATGL) to regulate lipolysis and insulin sensitivity in human adipocytes. J. Biol. Chem. 289, 12029–12039 (2014).

    PubMed  PubMed Central  Google Scholar 

  83. Nishino, N. et al. FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. J. Clin. Invest. 118, 2808–2821 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Granneman, J. G., Moore, H. P., Krishnamoorthy, R. & Rathod, M. Perilipin controls lipolysis by regulating the interactions of AB-hydrolase containing 5 (Abhd5) and adipose triglyceride lipase (Atgl). J. Biol. Chem. 284, 34538–34544 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang, H. et al. Activation of hormone-sensitive lipase requires two steps, protein phosphorylation and binding to the PAT-1 domain of lipid droplet coat proteins. J. Biol. Chem. 284, 32116–32125 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Shen, W. J. et al. Characterization of the functional interaction of adipocyte lipid-binding protein with hormone-sensitive lipase. J. Biol. Chem. 276, 49443–49448 (2001).

    CAS  PubMed  Google Scholar 

  87. Smith, A. J. et al. Physical association between the adipocyte fatty acid-binding protein and hormone-sensitive lipase: a fluorescence resonance energy transfer analysis. J. Biol. Chem. 279, 52399–52405 (2004).

    CAS  PubMed  Google Scholar 

  88. Aboulaich, N., Ortegren, U., Vener, A. V. & Stralfors, P. Association and insulin regulated translocation of hormone-sensitive lipase with PTRF. Biochem. Biophys. Res. Commun. 350, 657–661 (2006).

    CAS  PubMed  Google Scholar 

  89. Zhou, S. R. et al. Acetylation of cavin-1 promotes lipolysis in white adipose tissue. Mol. Cell Biol. 37, e00058–17 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Nordstrom, E. A. et al. A human-specific role of cell death-inducing DFFA (DNA fragmentation factor-alpha)-like effector A (CIDEA) in adipocyte lipolysis and obesity. Diabetes 54, 1726–1734 (2005).

    PubMed  Google Scholar 

  91. Puri, V. et al. Cidea is associated with lipid droplets and insulin sensitivity in humans. Proc. Natl Acad. Sci. USA 105, 7833–7838 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Jash, S., Banerjee, S., Lee, M. J., Farmer, S. R. & Puri, V. CIDEA transcriptionally regulates UCP1 for britening and thermogenesis in human fat cells. iScience 20, 73–89 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Kulyte, A. et al. CIDEA interacts with liver X receptors in white fat cells. FEBS Lett. 585, 744–748 (2011).

    CAS  PubMed  Google Scholar 

  94. Wang, W. et al. Cidea is an essential transcriptional coactivator regulating mammary gland secretion of milk lipids. Nat. Med. 18, 235–243 (2012).

    PubMed  Google Scholar 

  95. Zhang, C. & Liu, P. The new face of the lipid droplet: lipid droplet proteins. Proteomics 19, e1700223 (2019).

    PubMed  Google Scholar 

  96. Lizaso, A., Tan, K. T. & Lee, Y. H. beta-adrenergic receptor-stimulated lipolysis requires the RAB7-mediated autolysosomal lipid degradation. Autophagy 9, 1228–1243 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Singh, R. et al. Autophagy regulates adipose mass and differentiation in mice. J. Clin. Invest. 119, 3329–3339 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang, Y. et al. Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc. Natl Acad. Sci. USA 106, 19860–19865 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Flaherty, S. E. 3rd et al. A lipase-independent pathway of lipid release and immune modulation by adipocytes. Science 363, 989–993 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Eissing, L. et al. De novo lipogenesis in human fat and liver is linked to ChREBP-β and metabolic health. Nat. Commun. 4, 1528 (2013).

    PubMed  Google Scholar 

  101. Herman, M. A. et al. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 484, 333–338 (2012). This study describes a new adipose isoform of the transcription factor ChREBP that is positively associated with insulin sensitivity.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kursawe, R. et al. Decreased transcription of ChREBP-alpha/beta isoforms in abdominal subcutaneous adipose tissue of obese adolescents with prediabetes or early type 2 diabetes: associations with insulin resistance and hyperglycemia. Diabetes 62, 837–844 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Morigny, P. et al. Interaction between hormone-sensitive lipase and ChREBP in fat cells controls insulin sensitivity. Nat. Metab. 1, 133–146 (2019). This study shows the unexpected role of an adipocyte metabolic enzyme as a modulator of transcription factor activity.

    CAS  PubMed  Google Scholar 

  104. Collins, J. M., Neville, M. J., Hoppa, M. B. & Frayn, K. N. De novo lipogenesis and stearoyl-CoA desaturase are coordinately regulated in the human adipocyte and protect against palmitate-induced cell injury. J. Biol. Chem. 285, 6044–6052 (2010).

    CAS  PubMed  Google Scholar 

  105. Guilherme, A. et al. Adipocyte lipid synthesis coupled to neuronal control of thermogenic programming. Mol. Metab. 6, 781–796 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Guilherme, A. et al. Neuronal modulation of brown adipose activity through perturbation of white adipocyte lipogenesis. Mol. Metab. 16, 116–125 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Sukonina, V. et al. FOXK1 and FOXK2 regulate aerobic glycolysis. Nature 566, 279–283 (2019).

    CAS  PubMed  Google Scholar 

  108. DiGirolamo, M., Newby, F. D. & Lovejoy, J. Lactate production in adipose tissue: a regulated function with extra-adipose implications. FASEB J. 6, 2405–2412 (1992).

    CAS  PubMed  Google Scholar 

  109. Jansson, P. A., Larsson, A., Smith, U. & Lonnroth, P. Lactate release from the subcutaneous tissue in lean and obese men. J. Clin. Invest. 93, 240–246 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Krycer, J. R. et al. Lactate production is a prioritized feature of adipocyte metabolism. J. Biol. Chem. 295, 83–98 (2020).

    CAS  PubMed  Google Scholar 

  111. Hui, S. et al. Glucose feeds the TCA cycle via circulating lactate. Nature 551, 115–118 (2017).

    PubMed  PubMed Central  Google Scholar 

  112. Rabinowitz, J. D. & Enerbäck, S. Lactate: the ugly duckling of energy metabolism. Nat. Metab. 2, 566–571 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Lee, K. Y. et al. Developmental and functional heterogeneity of white adipocytes within a single fat depot. EMBO J. 38, e99291 (2019).

    PubMed  Google Scholar 

  114. Lee, K. Y. et al. Tbx15 defines a glycolytic subpopulation and white adipocyte heterogeneity. Diabetes 66, 2822–2829 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Luong, Q., Huang, J. & Lee, K. Y. Deciphering white adipose tissue heterogeneity. Biology 8, 23 (2019).

    CAS  PubMed Central  Google Scholar 

  116. Lynes, M. D. & Tseng, Y. H. Deciphering adipose tissue heterogeneity. Ann. N. Y. Acad. Sci. 1411, 5–20 (2018).

    PubMed  Google Scholar 

  117. Newsholme, E. A. & Crabtree, B. Substrate cycles in metabolic regulation and in heat generation. Biochem. Soc. Symp. 41, 61–109 (1976).

    CAS  Google Scholar 

  118. Sanchez-Gurmaches, J., Hung, C. M. & Guertin, D. A. Emerging complexities in adipocyte origins and identity. Trends Cell Biol. 26, 313–326 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Harms, M. J. et al. Mature human white adipocytes cultured under membranes maintain identity, function, and can transdifferentiate into brown-like adipocytes. Cell Rep. 27, 213–225.e5 (2019).

    CAS  PubMed  Google Scholar 

  120. Kroon, T. et al. PPARγ and PPARα synergize to induce robust browning of white fat in vivo. Mol. Metab. 36, 100964 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Tiraby, C. et al. Acquirement of brown fat cell features by human white adipocytes. J. Biol. Chem. 278, 33370–33376 (2003).

    CAS  PubMed  Google Scholar 

  122. Wang, W. & Seale, P. Control of brown and beige fat development. Nat. Rev. Mol. Cell Biol. 17, 691–702 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Pisani, D. F. et al. Mitochondrial fission is associated with UCP1 activity in human brite/beige adipocytes. Mol. Metab. 7, 35–44 (2018).

    CAS  PubMed  Google Scholar 

  124. Barquissau, V. et al. White-to-brite conversion in human adipocytes promotes metabolic reprogramming towards fatty acid anabolic and catabolic pathways. Mol. Metab. 5, 352–365 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Mills, E. L. et al. Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature 560, 102–106 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Murphy, M. P. & O’Neill, L. A. J. Krebs cycle reimagined: the emerging roles of succinate and itaconate as signal transducers. Cell 174, 780–784 (2018).

    CAS  PubMed  Google Scholar 

  127. Kotzbeck, P. et al. Brown adipose tissue whitening leads to brown adipocyte death and adipose tissue inflammation. J. Lipid Res. 59, 784–794 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Roh, H. C. et al. Warming induces significant reprogramming of beige, but not brown, adipocyte cellular identity. Cell Metab. 27, 1121–1137.e5 (2018). This study describes the epigenomic control of the interconversion between beige and white adipocytes.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Inagaki, T. Histone demethylases regulate adipocyte thermogenesis. Diabetol. Int. 9, 215–223 (2018).

    PubMed  PubMed Central  Google Scholar 

  130. Duteil, D. et al. LSD1 promotes oxidative metabolism of white adipose tissue. Nat. Commun. 5, 4093 (2014).

    CAS  PubMed  Google Scholar 

  131. Sambeat, A. et al. LSD1 Interacts with Zfp516 to promote UCP1 transcription and brown fat program. Cell Rep. 15, 2536–2549 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Zeng, X. et al. Lysine-specific demethylase 1 promotes brown adipose tissue thermogenesis via repressing glucocorticoid activation. Genes Dev. 30, 1822–1836 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Guan, H. P. et al. A futile metabolic cycle activated in adipocytes by antidiabetic agents. Nat. Med. 8, 1122–1128 (2002).

    CAS  PubMed  Google Scholar 

  134. Mazzucotelli, A. et al. The transcriptional coactivator peroxisome proliferator activated receptor (PPAR)γ coactivator-1α and the nuclear receptor PPARα control the expression of glycerol kinase and metabolism genes independently of PPARγ activation in human white adipocytes. Diabetes 56, 2467–2475 (2007).

    CAS  PubMed  Google Scholar 

  135. Flachs, P. et al. Induction of lipogenesis in white fat during cold exposure in mice: link to lean phenotype. Int. J. Obes. 41, 372–380 (2017).

    CAS  Google Scholar 

  136. Ikeda, K. et al. UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat. Med. 23, 1454–1465 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Chouchani, E. T., Kazak, L. & Spiegelman, B. M. New advances in adaptive thermogenesis: UCP1 and beyond. Cell Metab. 29, 27–37 (2019).

    CAS  PubMed  Google Scholar 

  138. Kazak, L. et al. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163, 643–655 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Bertholet, A. M. et al. Mitochondrial Patch clamp of beige adipocytes reveals UCP1-positive and UCP1-negative cells both exhibiting futile creatine cycling. Cell Metab. 25, 811–822.e4 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Kazak, L. et al. Ablation of adipocyte creatine transport impairs thermogenesis and causes diet-induced obesity. Nat. Metab. 1, 360–370 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Pollard, A. E. et al. AMPK activation protects against diet induced obesity through Ucp1-independent thermogenesis in subcutaneous white adipose tissue. Nat. Metab. 1, 340–349 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Mottillo, E. P. et al. Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic β3-adrenergic receptor activation. J. Lipid Res. 55, 2276–2286 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Girousse, A. et al. Partial inhibition of adipose tissue lipolysis improves glucose metabolism and insulin sensitivity without alteration of fat mass. PLoS Biol. 11, e1001485 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Newgard, C. B. et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 9, 311–326 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. White, P. J. & Newgard, C. B. Branched-chain amino acids in disease. Science 363, 582–583 (2019).

    CAS  PubMed  Google Scholar 

  146. Lotta, L. A. et al. Genetic predisposition to an impaired metabolism of the branched-chain amino acids and risk of type 2 diabetes: a mendelian randomisation analysis. PLoS Med. 13, e1002179 (2016).

    PubMed  PubMed Central  Google Scholar 

  147. Klimcakova, E. et al. Worsening of obesity and metabolic status yields similar molecular adaptations in human subcutaneous and visceral adipose tissue: decreased metabolism and increased immune response. J. Clin. Endocrinol. Metab. 96, E73–E82 (2011).

    CAS  PubMed  Google Scholar 

  148. Pietilainen, K. H. et al. Global transcript profiles of fat in monozygotic twins discordant for BMI: pathways behind acquired obesity. PLoS Med. 5, e51 (2008).

    PubMed  PubMed Central  Google Scholar 

  149. Green, C. R. et al. Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis. Nat. Chem. Biol. 12, 15–21 (2016).

    CAS  PubMed  Google Scholar 

  150. Wallace, M. et al. Enzyme promiscuity drives branched-chain fatty acid synthesis in adipose tissues. Nat. Chem. Biol. 14, 1021–1031 (2018). This study shows how enzyme promiscuity connects amino acid and fatty acid metabolism.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Herman, M. A., She, P., Peroni, O. D., Lynch, C. J. & Kahn, B. B. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels. J. Biol. Chem. 285, 11348–11356 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Mardinoglu, A. et al. Integration of clinical data with a genome-scale metabolic model of the human adipocyte. Mol. Syst. Biol. 9, 649 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Ramirez, A. K. et al. Integrating extracellular flux measurements and genome-scale modeling reveals differences between brown and white adipocytes. Cell Rep. 21, 3040–3048 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Patni, N. & Garg, A. Congenital generalized lipodystrophies–new insights into metabolic dysfunction. Nat. Rev. Endocrinol. 11, 522–534 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Mann, J. P. & Savage, D. B. What lipodystrophies teach us about the metabolic syndrome. J. Clin. Invest. 130, 4009–4021 (2019).

    Google Scholar 

  156. Agarwal, A. K. et al. AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat. Genet. 31, 21–23 (2002).

    CAS  PubMed  Google Scholar 

  157. Hayashi, Y. K. et al. Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. J. Clin. Invest. 119, 2623–2633 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Gandotra, S. et al. Perilipin deficiency and autosomal dominant partial lipodystrophy. N. Engl. J. Med. 364, 740–748 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Rubio-Cabezas, O. et al. Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC. EMBO Mol. Med. 1, 280–287 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Lotta, L. A. et al. Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. Nat. Genet. 49, 17–26 (2017).

    CAS  PubMed  Google Scholar 

  161. Arner, P., Andersson, D. P., Backdahl, J., Dahlman, I. & Ryden, M. Weight gain and impaired glucose metabolism in women are predicted by inefficient subcutaneous fat cell lipolysis. Cell Metab. 28, 45–54.e3 (2018).

    CAS  PubMed  Google Scholar 

  162. Perry, R. J. et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 160, 745–758 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Titchenell, P. M., Lazar, M. A. & Birnbaum, M. J. Unraveling the regulation of hepatic metabolism by insulin. Trends Endocrinol. Metab. 28, 497–505 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Edgerton, D. S. et al. Targeting insulin to the liver corrects defects in glucose metabolism caused by peripheral insulin delivery. JCI Insight 5, e126974 (2019).

    Google Scholar 

  165. Hodson, L. & Karpe, F. Hyperinsulinaemia: does it tip the balance toward intrahepatic fat accumulation? Endocr. Connect. 8, R157–R168 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Karpe, F., Dickmann, J. R. & Frayn, K. N. Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes 60, 2441–2449 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Rohm, M., Zeigerer, A., Machado, J. & Herzig, S. Energy metabolism in cachexia. EMBO Rep. 20, e47258 (2019).

    PubMed  PubMed Central  Google Scholar 

  168. Duong, M. N. et al. The fat and the bad: mature adipocytes, key actors in tumor progression and resistance. Oncotarget 8, 57622–57641 (2017).

    PubMed  PubMed Central  Google Scholar 

  169. Fouladiun, M. et al. Body composition and time course changes in regional distribution of fat and lean tissue in unselected cancer patients on palliative care–correlations with food intake, metabolism, exercise capacity, and hormones. Cancer 103, 2189–2198 (2005).

    PubMed  Google Scholar 

  170. Agustsson, T. et al. Mechanism of increased lipolysis in cancer cachexia. Cancer Res. 67, 5531–5537 (2007).

    CAS  PubMed  Google Scholar 

  171. Das, S. K. et al. Adipose triglyceride lipase contributes to cancer-associated cachexia. Science 333, 233–238 (2011).

    CAS  PubMed  Google Scholar 

  172. Rohm, M. et al. An AMP-activated protein kinase-stabilizing peptide ameliorates adipose tissue wasting in cancer cachexia in mice. Nat. Med. 22, 1120–1130 (2016). This study provides molecular clues about the role of white adipocyte metabolism in cancer-associated cachexia.

    CAS  PubMed  Google Scholar 

  173. Lipina, C. & Hundal, H. S. Lipid modulation of skeletal muscle mass and function. J. Cachexia Sarcopenia Muscle 8, 190–201 (2017).

    PubMed  Google Scholar 

  174. Stephens, N. A. et al. Intramyocellular lipid droplets increase with progression of cachexia in cancer patients. J. Cachexia Sarcopenia Muscle 2, 111–117 (2011).

    PubMed  PubMed Central  Google Scholar 

  175. Caspar-Bauguil, S. et al. Fatty acids from fat cell lipolysis do not activate an inflammatory response but are stored as triacylglycerols in adipose tissue macrophages. Diabetologia 58, 2627–2636 (2015).

    CAS  PubMed  Google Scholar 

  176. Kosteli, A. et al. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J. Clin. Invest. 120, 3466–3479 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Xu, X. et al. Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation. Cell Metab. 18, 816–830 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Sun, K., Kusminski, C. M. & Scherer, P. E. Adipose tissue remodeling and obesity. J. Clin. Invest. 121, 2094–2101 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Giordano, A. et al. Obese adipocytes show ultrastructural features of stressed cells and die of pyroptosis. J. Lipid Res. 54, 2423–2436 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Cancello, R. et al. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes 54, 2277–2286 (2005).

    CAS  PubMed  Google Scholar 

  181. Cinti, S. et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 46, 2347–2355 (2005).

    CAS  PubMed  Google Scholar 

  182. Zatterale, F. et al. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes. Front. Physiol. 10, 1607 (2019).

    PubMed  Google Scholar 

  183. Shimobayashi, M. et al. Insulin resistance causes inflammation in adipose tissue. J. Clin. Invest. 128, 1538–1550 (2018). This study reveals that impaired insulin sensitivity in fat cells induces adipose tissue inflammation, suggesting that adipose tissue inflammation is a consequence rather than a cause during the development of insulin resistance.

    PubMed  PubMed Central  Google Scholar 

  184. Zhou, L. et al. Insulin resistance and white adipose tissue inflammation are uncoupled in energetically challenged Fsp27-deficient mice. Nat. Commun. 6, 5949 (2015). This study shows that dysfunction of fat cell metabolism may result in insulin resistance independently of adipose tissue inflammation.

    PubMed  Google Scholar 

  185. Hodson, L., Skeaff, C. M. & Fielding, B. A. Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog. Lipid Res. 47, 348–380 (2008).

    CAS  PubMed  Google Scholar 

  186. Cao, H. et al. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 134, 933–944 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Frigolet, M. E. & Gutierrez-Aguilar, R. The role of the novel lipokine palmitoleic acid in health and disease. Adv. Nutr. 8, 173S–181S (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Trico, D. et al. Circulating palmitoleic acid is an independent determinant of insulin sensitivity, beta cell function and glucose tolerance in non-diabetic individuals: a longitudinal analysis. Diabetologia 63, 206–218 (2020).

    PubMed  Google Scholar 

  189. Yore, M. M. et al. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 159, 318–332 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Tan, D. et al. Discovery of FAHFA-containing triacylglycerols and their metabolic regulation. J. Am. Chem. Soc. 141, 8798–8806 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Hammarstedt, A. et al. Adipose tissue dysfunction is associated with low levels of the novel palmitic acid hydroxystearic acids. Sci. Rep. 8, 15757 (2018).

    PubMed  PubMed Central  Google Scholar 

  192. Syed, I. et al. Palmitic acid hydroxystearic acids activate GPR40, which is involved in their beneficial effects on glucose homeostasis. Cell Metab. 27, 419–427.e4 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Zhou, P. et al. PAHSAs enhance hepatic and systemic insulin sensitivity through direct and indirect mechanisms. J. Clin. Invest. 129, 4138–4150 (2019).

    PubMed  PubMed Central  Google Scholar 

  194. Pflimlin, E. et al. Acute and repeated treatment with 5-PAHSA or 9-PAHSA isomers does not improve glucose control in mice. Cell Metab. 28, 217–227.e13 (2018).

    CAS  PubMed  Google Scholar 

  195. Syed, I. et al. Methodological issues in studying PAHSA biology: masking PAHSA effects. Cell Metab. 28, 543–546 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Vijayakumar, A. et al. Absence of carbohydrate response element binding protein in adipocytes causes systemic insulin resistance and impairs glucose transport. Cell Rep. 21, 1021–1035 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Erikci Ertunc, M. et al. AIG1 and ADTRP are endogenous hydrolases of fatty acid esters of hydroxy fatty acids (FAHFAs) in mice. J. Biol. Chem. 295, 5891–5905 (2020).

    PubMed  PubMed Central  Google Scholar 

  198. Lynes, M. D. et al. The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue. Nat. Med. 23, 631–637 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Vasan, S. K. et al. The proposed systemic thermogenic metabolites succinate and 12,13-diHOME are inversely associated with adiposity and related metabolic traits: evidence from a large human cross-sectional study. Diabetologia 62, 2079–2087 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Stanford, K. I. et al. 12,13-diHOME: an exercise-induced lipokine that increases skeletal muscle fatty acid uptake. Cell Metab. 27, 1111–1120.e3 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Funcke, J. B. & Scherer, P. E. Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. J. Lipid Res. 60, 1648–1684 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Xia, J. Y. et al. Targeted induction of ceramide degradation leads to improved systemic metabolism and reduced hepatic steatosis. Cell Metab. 22, 266–278 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Chaurasia, B. et al. Targeting a ceramide double bond improves insulin resistance and hepatic steatosis. Science 365, 386–392 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Ertunc, M. E. et al. Secretion of fatty acid binding protein aP2 from adipocytes through a nonclassical pathway in response to adipocyte lipase activity. J. Lipid Res. 56, 423–434 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Cao, H. et al. Adipocyte lipid chaperone AP2 is a secreted adipokine regulating hepatic glucose production. Cell Metab. 17, 768–778 (2013).

    PubMed  PubMed Central  Google Scholar 

  206. Oikonomou, E. K. & Antoniades, C. The role of adipose tissue in cardiovascular health and disease. Nat. Rev. Cardiol. 16, 83–99 (2019).

    PubMed  Google Scholar 

  207. Yang, Q. et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436, 356–362 (2005).

    CAS  PubMed  Google Scholar 

  208. Moraes-Vieira, P. M. et al. RBP4 activates antigen-presenting cells, leading to adipose tissue inflammation and systemic insulin resistance. Cell Metab. 19, 512–526 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Hallenborg, P. et al. The elusive endogenous adipogenic PPARγ agonists: lining up the suspects. Prog. Lipid Res. 61, 149–162 (2016).

    CAS  PubMed  Google Scholar 

  210. Soccio, R. E., Chen, E. R. & Lazar, M. A. Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab. 20, 573–591 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Cusi, K. et al. Long-term pioglitazone treatment for patients with nonalcoholic steatohepatitis and prediabetes or type 2 diabetes mellitus: a randomized trial. Ann. Intern. Med. 165, 305–315 (2016).

    PubMed  Google Scholar 

  212. DeFronzo, R. A., Inzucchi, S., Abdul-Ghani, M. & Nissen, S. E. Pioglitazone: the forgotten, cost-effective cardioprotective drug for type 2 diabetes. Diab Vasc. Dis. Res. 16, 133–143 (2019).

    CAS  PubMed  Google Scholar 

  213. Schweiger, M. et al. Pharmacological inhibition of adipose triglyceride lipase corrects high-fat diet-induced insulin resistance and hepatosteatosis in mice. Nat. Commun. 8, 14859 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Lauring, B. et al. Niacin lipid efficacy is independent of both the niacin receptor GPR109A and free fatty acid suppression. Sci. Transl Med. 4, 148ra115 (2012).

    PubMed  Google Scholar 

  215. Romani, M., Hofer, D. C., Katsyuba, E. & Auwerx, J. Niacin: an old lipid drug in a new NAD+ dress. J. Lipid Res. 60, 741–746 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Goldie, C. et al. Niacin therapy and the risk of new-onset diabetes: a meta-analysis of randomised controlled trials. Heart 102, 198–203 (2016).

    CAS  PubMed  Google Scholar 

  217. Kroon, T., Baccega, T., Olsen, A., Gabrielsson, J. & Oakes, N. D. Nicotinic acid timed to feeding reverses tissue lipid accumulation and improves glucose control in obese Zucker rats[S]. J. Lipid Res. 58, 31–41 (2017).

    CAS  PubMed  Google Scholar 

  218. Kroon, T., Kjellstedt, A., Thalen, P., Gabrielsson, J. & Oakes, N. D. Dosing profile profoundly influences nicotinic acid’s ability to improve metabolic control in rats. J. Lipid Res. 56, 1679–1690 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Wallenius, K. et al. Involvement of the metabolic sensor GPR81 in cardiovascular control. JCI Insight 2, e92564 (2017).

    PubMed Central  Google Scholar 

  220. Manini, T. M. Energy expenditure and aging. Ageing Res. Rev. 9, 1–11 (2010).

    CAS  PubMed  Google Scholar 

  221. Ryden, M., Gao, H. & Arner, P. Influence of ageing and menstrual status on subcutaneous fat cell lipolysis. J. Clin. Endocrinol. Metab. 105, dgz245 (2020).

    PubMed  Google Scholar 

  222. Reitman, M. L. Of mice and men - environmental temperature, body temperature, and treatment of obesity. FEBS Lett. 592, 2098–2107 (2018).

    CAS  PubMed  Google Scholar 

  223. Maurer, S., Harms, M. & Boucher, J. The colorful versatility of adipocytes: white-to-brown transdifferentiation and its therapeutic potential in man. FEBS J. https://doi.org/10.1111/febs.15470 (2020).

    Article  PubMed  Google Scholar 

  224. Hoehn, K. L. et al. Acute or chronic upregulation of mitochondrial fatty acid oxidation has no net effect on whole-body energy expenditure or adiposity. Cell Metab. 11, 70–76 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Ryaboshapkina, M. & Hammar, M. Tissue-specific genes as an underutilized resource in drug discovery. Sci. Rep. 9, 7233 (2019).

    PubMed  PubMed Central  Google Scholar 

  226. Schoettl, T., Fischer, I. P. & Ussar, S. Heterogeneity of adipose tissue in development and metabolic function. J. Exp. Biol. 221, jeb162958 (2018).

    PubMed  Google Scholar 

  227. Zwick, R. K., Guerrero-Juarez, C. F., Horsley, V. & Plikus, M. V. Anatomical, physiological, and functional diversity of adipose tissue. Cell Metab. 27, 68–83 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Macotela, Y., Boucher, J., Tran, T. T. & Kahn, C. R. Sex and depot differences in adipocyte insulin sensitivity and glucose metabolism. Diabetes 58, 803–812 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Palmer, B. F. & Clegg, D. J. The sexual dimorphism of obesity. Mol. Cell Endocrinol. 402, 113–119 (2015).

    CAS  PubMed  Google Scholar 

  230. Stout, M. B., Justice, J. N., Nicklas, B. J. & Kirkland, J. L. Physiological aging: links among adipose tissue dysfunction, diabetes, and frailty. Physiology 32, 9–19 (2017).

    CAS  PubMed  Google Scholar 

  231. Hagberg, C. E. et al. Flow cytometry of mouse and human adipocytes for the analysis of browning and cellular heterogeneity. Cell Rep. 24, 2746–2756.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Chen, Y. et al. Thermal stress induces glycolytic beige fat formation via a myogenic state. Nature 565, 180–185 (2019).

    CAS  PubMed  Google Scholar 

  233. Sun, W. et al. snRNA-seq reveals a subpopulation of adipocytes that regulates thermogenesis. Nature 587, 98–102 (2020). This large-scale, single-cell analysis identifies a new subpopulation of adipocytes controlling thermogenic activity in other adipocytes.

    CAS  PubMed  Google Scholar 

  234. Panda, S. Circadian physiology of metabolism. Science 354, 1008–1015 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Stenvers, D. J., Scheer, F., Schrauwen, P., la Fleur, S. E. & Kalsbeek, A. Circadian clocks and insulin resistance. Nat. Rev. Endocrinol. 15, 75–89 (2019).

    PubMed  Google Scholar 

  236. Goodpaster, B. H. & Sparks, L. M. Metabolic flexibility in health and disease. Cell Metab. 25, 1027–1036 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Chaix, A., Manoogian, E. N. C., Melkani, G. C. & Panda, S. Time-restricted eating to prevent and manage chronic metabolic diseases. Annu. Rev. Nutr. 39, 291–315 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Sears, D. D. et al. Mechanisms of human insulin resistance and thiazolidinedione-mediated insulin sensitization. Proc. Natl Acad. Sci. USA 106, 18745–18750 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Ahlqvist, E. et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 6, 361–369 (2018).

    PubMed  Google Scholar 

  240. Zaharia, O. P. et al. Risk of diabetes-associated diseases in subgroups of patients with recent-onset diabetes: a 5-year follow-up study. Lancet Diabetes Endocrinol. 7, 684–694 (2019).

    PubMed  Google Scholar 

  241. Cao, Y. Adipocyte and lipid metabolism in cancer drug resistance. J. Clin. Invest. 129, 3006–3017 (2019).

    PubMed  PubMed Central  Google Scholar 

  242. Shapiro, B. & Wertheimer, E. The synthesis of fatty acids in adipose tissue in vitro. J. Biol. Chem. 173, 725–728 (1948).

    CAS  PubMed  Google Scholar 

  243. Wertheimer, E. & Shapiro, B. The physiology of adipose tissue. Physiol. Rev. 28, 451–464 (1948).

    CAS  PubMed  Google Scholar 

  244. Hausberger, F. X., Milstein, S. W. & Rutman, R. J. The influence of insulin on glucose utilization in adipose and hepatic tissues in vitro. J. Biol. Chem. 208, 431–438 (1954).

    CAS  PubMed  Google Scholar 

  245. Korn, E. D. & Quigley, T. W. Jr. Studies on lipoprotein lipase of rat heart and adipose tissue. Biochim. Biophys. Acta 18, 143–145 (1955).

    CAS  PubMed  Google Scholar 

  246. Wadstrom, L. B. Lipolytic effect of the injection of adrenaline on fat depots. Nature 179, 259–260 (1957).

    CAS  PubMed  Google Scholar 

  247. Vaughan, M., Berger, J. E. & Steinberg, D. Hormone-sensitive lipase and monoglyceride lipase activities in adipose tissue. J. Biol. Chem. 239, 401–409 (1964).

    CAS  PubMed  Google Scholar 

  248. Fain, J. N., Kovacev, V. P. & Scow, R. O. Antilipolytic effect of insulin in isolated fat cells of the rat. Endocrinology 78, 773–778 (1966).

    CAS  PubMed  Google Scholar 

  249. Hirsch, J. & Gallian, E. Methods for the determination of adipose cell size in man and animals. J. Lipid Res. 9, 110–119 (1968).

    CAS  PubMed  Google Scholar 

  250. Fujita, T. et al. Reduction of insulin resistance in obese and/or diabetic animals by 5-[4-(1-methylcyclohexylmethoxy)benzyl]-thiazolidine-2,4-dione (ADD-3878, U-63,287, ciglitazone), a new antidiabetic agent. Diabetes 32, 804–810 (1983).

    CAS  PubMed  Google Scholar 

  251. Loncar, D. Convertible adipose tissue in mice. Cell Tissue Res. 266, 149–161 (1991).

    CAS  PubMed  Google Scholar 

  252. Tontonoz, P., Hu, E. & Spiegelman, B. M. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79, 1147–1156 (1994).

    CAS  PubMed  Google Scholar 

  253. Lehmann, J. M. et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPARγ). J. Biol. Chem. 270, 12953–12956 (1995).

    CAS  PubMed  Google Scholar 

  254. Montague, C. T. et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387, 903–908 (1997).

    CAS  PubMed  Google Scholar 

  255. Sengenes, C., Berlan, M., De Glisezinski, I., Lafontan, M. & Galitzky, J. Natriuretic peptides: a new lipolytic pathway in human adipocytes. FASEB J. 14, 1345–1351 (2000).

    CAS  PubMed  Google Scholar 

  256. Abel, E. D. et al. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409, 729–733 (2001).

    CAS  PubMed  Google Scholar 

  257. Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Jenkins, C. M. et al. Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J. Biol. Chem. 279, 48968–48975 (2004).

    CAS  PubMed  Google Scholar 

  259. Villena, J. A., Roy, S., Sarkadi-Nagy, E., Kim, K. H. & Sul, H. S. Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis. J. Biol. Chem. 279, 47066–47075 (2004).

    CAS  PubMed  Google Scholar 

  260. Zimmermann, R. et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306, 1383–1386 (2004).

    CAS  PubMed  Google Scholar 

  261. Wu, J. et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366–376 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  262. Rosenwald, M., Perdikari, A., Rulicke, T. & Wolfrum, C. Bi-directional interconversion of brite and white adipocytes. Nat. Cell Biol. 15, 659–667 (2013).

    CAS  PubMed  Google Scholar 

  263. Thomou, T. et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature 542, 450–455 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Ying, W. et al. Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity. Cell 171, 372–384.e12 (2017).

    CAS  PubMed  Google Scholar 

  265. Crewe, C. et al. An endothelial-to-adipocyte extracellular vesicle axis governed by metabolic state. Cell 175, 695–708.e13 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  266. Muller, S., Kulenkampff, E. & Wolfrum, C. Adipose tissue stem cells. Handb. Exp. Pharmacol. 233, 251–263 (2016).

    CAS  PubMed  Google Scholar 

  267. Caslin, H. L., Bhanot, M., Bolus, W. R. & Hasty, A. H. Adipose tissue macrophages: Unique polarization and bioenergetics in obesity. Immunol. Rev. 295, 101–113 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  268. Sun, K., Tordjman, J., Clement, K. & Scherer, P. E. Fibrosis and adipose tissue dysfunction. Cell Metab. 18, 470–477 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  269. Roden, M. & Shulman, G. I. The integrative biology of type 2 diabetes. Nature 576, 51–60 (2019). This review proposes a unifying concept of insulin resistance in humans.

    CAS  PubMed  Google Scholar 

  270. Canfora, E. E., Meex, R. C. R., Venema, K. & Blaak, E. E. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat. Rev. Endocrinol. 15, 261–273 (2019).

    CAS  PubMed  Google Scholar 

  271. Schlaich, M., Straznicky, N., Lambert, E. & Lambert, G. Metabolic syndrome: a sympathetic disease? Lancet Diabetes Endocrinol. 3, 148–157 (2015).

    PubMed  Google Scholar 

  272. Ulrich-Lai, Y. M. & Ryan, K. K. Neuroendocrine circuits governing energy balance and stress regulation: functional overlap and therapeutic implications. Cell Metab. 19, 910–925 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The rapid growth of research in adipocyte metabolism made it impossible to cite a large number of excellent studies relevant to the topic of this review. D.L. is supported by Inserm, Paul Sabatier University, European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (SPHERES, ERC Synergy Grant agreement No. 856404), Fondation pour la Recherche Médicale (DEQ20170336720), Agence Nationale de la Recherche (ANR-17-CE14-0015Hepadialogue), Région Occitanie (DIALOGUE projects), FORCE/F-CRIN and AstraZeneca France. D.L. is a member of Institut Universitaire de France.

Author information

Authors and Affiliations

Authors

Contributions

D.L. conceived the initial version of the article. All authors wrote the article. P.M. and P.A. prepared the figures. D.L. integrated contributions and produced the submitted version with input from P.M., J.B. and P.A. All authors approved the final version of the article.

Corresponding author

Correspondence to Dominique Langin.

Ethics declarations

Competing interests

J.B. is an employee of AstraZeneca. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks J.-H. Chen, who co-reviewed with S. O’Rahilly; M. Czech; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Adipose tissue hypertrophy

Adipose tissue expansion through an increase in adipocyte size.

Adipose tissue hyperplasia

Adipose tissue expansion through the generation of new adipocytes.

M1-like macrophage

Subtype of macrophages characterized by the secretion of pro-inflammatory cytokines and chemokines, such as IL-6 and tumour necrosis factor.

Lipophagy

Triacylglycerol hydrolysis by lysosomal acid lipases after engulfment of a lipid droplet by an autophagosome, which fuses with lysosomes.

Beige adipocytes

Also known as brown-in-white (brite) adipocytes. A subtype of thermogenic adipocytes located in white fat depots and uniquely equipped to dissipate energy as heat.

Pyroptotic cell death

Cell death triggered by pro-inflammatory signals and subsequent activation of the NLRP3 inflammasome.

Lipocalins

Small extracellular proteins that are responsible for the transport of hydrophobic molecules, such as lipids, steroids and retinoids, in the circulation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morigny, P., Boucher, J., Arner, P. et al. Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics. Nat Rev Endocrinol 17, 276–295 (2021). https://doi.org/10.1038/s41574-021-00471-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-021-00471-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing