Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The importance of the RET gene in thyroid cancer and therapeutic implications

Abstract

Since the discovery of the RET receptor tyrosine kinase in 1985, alterations of this protein have been found in diverse thyroid cancer subtypes. RET gene rearrangements are observed in papillary thyroid carcinoma, which result in RET fusion products. By contrast, single amino acid substitutions and small insertions and/or deletions are typical of hereditary and sporadic medullary thyroid carcinoma. RET rearrangements and mutations of extracellular cysteines facilitate dimerization and kinase activation, whereas mutations in the RET kinase coding domain drive dimerization-independent kinase activation. Thus, RET kinase inhibition is an attractive therapeutic target in patients with RET alterations. This approach was initially achieved using multikinase inhibitors, which affect multiple deregulated pathways that include RET kinase. In clinical practice, use of multikinase inhibitors in patients with advanced thyroid cancer resulted in therapeutic efficacy, which was associated with frequent and sometimes severe adverse effects. However, remarkable progress has been achieved with the identification of novel potent and selective RET kinase inhibitors for the treatment of advanced thyroid cancer. Although expanded clinical validation in future trials is needed, the sustained antitumoural activity and the improved safety profile of these novel compounds is opening a new exciting era in precision oncology for RET-driven cancers.

Key points

  • Alterations in RET are frequent key events in thyroid tumorigenesis.

  • Single amino acid mutations and small deletions and/or insertions, or gene fusions involving RET represent oncogenic driving forces in medullary thyroid carcinoma and papillary thyroid carcinoma, respectively.

  • Multitargeted tyrosine kinase inhibitors (TKIs) currently represent the mainstay of treatment for advanced radioiodine-refractory thyroid cancer and advanced medullary thyroid carcinoma.

  • Novel RET TKIs that target RET kinase potently with increased selectivity might be effective and better tolerated than the drugs already in clinical practice for the treatment of advanced thyroid cancer.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Timeline of key discoveries for RET as a driver oncogene and its therapeutic targeting.
Fig. 2: Structure of RET protein and of major RET fusion partners.

References

  1. 1.

    Schlumberger, M., Carlomagno, F., Baudin, E., Bidart, J. M. & Santoro, M. New therapeutic approaches to treat medullary thyroid carcinoma. Nat. Clin. Pract. Endocrinol. Metab. 4, 22–32 (2008).

    CAS  PubMed  Google Scholar 

  2. 2.

    Markham, A. Selpercatinib: first approval. Drugs 80, 1119–1124 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    [No authors listed] FDA approves selpercatinib; pralsetinib may soon follow. Cancer Discov. 10, OF1 (2020).

  4. 4.

    Takahashi, M., Ritz, J. & Cooper, G. M. Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell 42, 581–588 (1985). This article describes the first isolation of RET as well as the first demonstration of its oncogenic activity.

    CAS  PubMed  Google Scholar 

  5. 5.

    Ishizaka, Y. et al. Human ret proto-oncogene mapped to chromosome 10q11.2. Oncogene 4, 1519–1521 (1989).

    CAS  PubMed  Google Scholar 

  6. 6.

    Simpson, N. E. et al. Assignment of multiple endocrine neoplasia type 2A to chromosome 10 by linkage. Nature 328, 528–530 (1987).

    CAS  PubMed  Google Scholar 

  7. 7.

    Takahashi, M., Buma, Y. & Hiai, H. Isolation of ret proto-oncogene cDNA with an amino-terminal signal sequence. Oncogene 4, 805–806 (1989).

    CAS  PubMed  Google Scholar 

  8. 8.

    Grieco, M. et al. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 60, 557–563 (1990).

    CAS  PubMed  Google Scholar 

  9. 9.

    Mulligan, L. M. et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 363, 458–460 (1993).

    CAS  PubMed  Google Scholar 

  10. 10.

    Kohno, T. et al. KIF5B-RET fusions in lung adenocarcinoma. Nat. Med. 18, 375–377 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Lipson, D. et al. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat. Med. 18, 382–384 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Takeuchi, K. et al. RET, ROS1 and ALK fusions in lung cancer. Nat. Med. 18, 378–381 (2012).

    CAS  PubMed  Google Scholar 

  13. 13.

    Mulligan, L. M. 65 years of the double helix: exploiting insights on the RET receptor for personalized cancer medicine. Endocr. Relat. Cancer 25, T189–T200 (2018).

    CAS  PubMed  Google Scholar 

  14. 14.

    Plaza-Menacho, I. Structure and function of RET in multiple endocrine neoplasia type 2. Endocr. Relat. Cancer 25, T79–T90 (2018).

    CAS  PubMed  Google Scholar 

  15. 15.

    Subbiah, V. & Cote, G. J. Advances in targeting RET-dependent cancers. Cancer Discov. 10, 498–505 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Knowles, P. P. et al. Structure and chemical inhibition of the RET tyrosine kinase domain. J. Biol. Chem. 281, 33577–33587 (2006). This article describes the crystal structure of the RET kinase domain as well as of it in complex with ATP-competitive kinase inhibitors.

    CAS  PubMed  Google Scholar 

  17. 17.

    Plaza-Menacho, I. et al. Oncogenic RET kinase domain mutations perturb the autophosphorylation trajectory by enhancing substrate presentation in trans. Mol. Cell 53, 738–751 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Redaelli, S., Plaza-Menacho, I. & Mologni, L. Novel targeted therapeutics for MEN2. Endocr. Relat. Cancer 25, T53–T68 (2018).

    CAS  PubMed  Google Scholar 

  19. 19.

    Ibanez, C. F. Structure and physiology of the RET receptor tyrosine kinase. Cold Spring Harb. Perspect. Biol. 5, a009134 (2013).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Meng, X. et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287, 1489–1493 (2000).

    CAS  PubMed  Google Scholar 

  21. 21.

    Lindfors, P. H., Lindahl, M., Rossi, J., Saarma, M. & Airaksinen, M. S. Ablation of persephin receptor glial cell line-derived neurotrophic factor family receptor α4 impairs thyroid calcitonin production in young mice. Endocrinology 147, 2237–2244 (2006).

    CAS  PubMed  Google Scholar 

  22. 22.

    Canibano, C. et al. The dependence receptor Ret induces apoptosis in somatotrophs through a Pit-1/p53 pathway, preventing tumor growth. EMBO J. 26, 2015–2028 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Veiga-Fernandes, H. et al. Tyrosine kinase receptor RET is a key regulator of Peyer’s patch organogenesis. Nature 446, 547–551 (2007).

    CAS  PubMed  Google Scholar 

  24. 24.

    Ohgami, N. et al. c-Ret-mediated hearing loss in mice with Hirschsprung disease. Proc. Natl Acad. Sci. USA 107, 13051–13056 (2010).

    CAS  PubMed  Google Scholar 

  25. 25.

    Fonseca-Pereira, D. et al. The neurotrophic factor receptor RET drives haematopoietic stem cell survival and function. Nature 514, 98–101 (2014).

    CAS  PubMed  Google Scholar 

  26. 26.

    Goodman, K. M. et al. RET recognition of GDNF-GFRα1 ligand by a composite binding site promotes membrane-proximal self-association. Cell Rep. 8, 1894–1904 (2014).

    CAS  PubMed  Google Scholar 

  27. 27.

    Breit, S. N., Tsai, V. W. & Brown, D. A. Targeting obesity and cachexia: identification of the GFRAL receptor-MIC-1/GDF15 pathway. Trends Mol. Med. 23, 1065–1067 (2017).

    CAS  PubMed  Google Scholar 

  28. 28.

    Tsai, V. W. W., Husaini, Y., Sainsbury, A., Brown, D. A. & Breit, S. N. The MIC-1/GDF15-GFRAL pathway in energy homeostasis: implications for obesity, cachexia, and other associated diseases. Cell Metab. 28, 353–368 (2018).

    CAS  PubMed  Google Scholar 

  29. 29.

    Yang, L. et al. GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand. Nat. Med. 23, 1158–1166 (2017).

    CAS  PubMed  Google Scholar 

  30. 30.

    Bordeaux, M. C. et al. The RET proto-oncogene induces apoptosis: a novel mechanism for Hirschsprung disease. EMBO J. 19, 4056–4063 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Plaza-Menacho, I. et al. RET functions as a dual-specificity kinase that requires allosteric inputs from juxtamembrane elements. Cell Rep. 17, 3319–3332 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Heanue, T. A. & Pachnis, V. Enteric nervous system development and Hirschsprung’s disease: advances in genetic and stem cell studies. Nat. Rev. Neurosci. 8, 466–479 (2007).

    CAS  PubMed  Google Scholar 

  33. 33.

    Amiel, J. et al. Hirschsprung disease, associated syndromes and genetics: a review. J. Med. Genet. 45, 1–14 (2008).

    CAS  PubMed  Google Scholar 

  34. 34.

    Carlomagno, F. et al. Molecular heterogeneity of RET loss of function in Hirschsprung’s disease. EMBO J. 15, 2717–2725 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Mulligan, L. M. GDNF and the RET receptor in cancer: new insights and therapeutic potential. Front. Physiol. 9, 1873 (2018).

    PubMed  Google Scholar 

  36. 36.

    Wells, S. A. Jr., Pacini, F., Robinson, B. G. & Santoro, M. Multiple endocrine neoplasia type 2 and familial medullary thyroid carcinoma: an update. J. Clin. Endocrinol. Metab. 98, 3149–3164 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Landsvater, R. M. et al. The clinical implications of a positive calcitonin test for C-cell hyperplasia in genetically unaffected members of an MEN2A kindred. Am. J. Hum. Genet. 52, 335–342 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Machens, A. & Dralle, H. Long-term outcome after DNA-based prophylactic neck surgery in children at risk of hereditary medullary thyroid cancer. Best Pract. Res. Clin. Endocrinol. Metab. 33, 101274 (2019).

    PubMed  Google Scholar 

  39. 39.

    Mathiesen, J. S. et al. Incidence and prevalence of sporadic and hereditary MTC in Denmark 1960-2014: a nationwide study. Endocr. Connect. 7, 829–839 (2018).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Eng, C. et al. Low frequency of germline mutations in the RET proto-oncogene in patients with apparently sporadic medullary thyroid carcinoma. Clin. Endocrinol. 43, 123–127 (1995).

    CAS  Google Scholar 

  41. 41.

    Romei, C. et al. Low prevalence of the somatic M918T RET mutation in micro-medullary thyroid cancer. Thyroid 22, 476–481 (2012).

    CAS  PubMed  Google Scholar 

  42. 42.

    Elisei, R. et al. Twenty-five years experience on RET genetic screening on hereditary MTC: an update on the prevalence of germline RET mutations. Genes 10, 698 (2019).

    CAS  PubMed Central  Google Scholar 

  43. 43.

    Wells, S. A. Jr. Advances in the management of MEN2: from improved surgical and medical treatment to novel kinase inhibitors. Endocr. Relat. Cancer 25, T1–T13 (2018).

    PubMed  Google Scholar 

  44. 44.

    Eng, C. et al. The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET Mutation Consortium analysis. JAMA 276, 1575–1579 (1996).

    CAS  PubMed  Google Scholar 

  45. 45.

    Mulligan, L. M. et al. Specific mutations of the RET proto-oncogene are related to disease phenotype in MEN 2A and FMTC. Nat. Genet. 6, 70–74 (1994).

    CAS  PubMed  Google Scholar 

  46. 46.

    Santoro, M. et al. Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science 267, 381–383 (1995).

    CAS  PubMed  Google Scholar 

  47. 47.

    Kloos, R. T. et al. Medullary thyroid cancer: management guidelines of the American Thyroid Association. Thyroid 19, 565–612 (2009).

    PubMed  Google Scholar 

  48. 48.

    Romei, C. et al. RET genetic screening of sporadic medullary thyroid cancer (MTC) allows the preclinical diagnosis of unsuspected gene carriers and the identification of a relevant percentage of hidden familial MTC (FMTC). Clin. Endocrinol. 74, 241–247 (2011).

    CAS  Google Scholar 

  49. 49.

    Castinetti, F., Moley, J., Mulligan, L. & Waguespack, S. G. A comprehensive review on MEN2B. Endocr. Relat. Cancer 25, T29–T39 (2018).

    CAS  PubMed  Google Scholar 

  50. 50.

    Castinetti, F. et al. Natural history, treatment, and long-term follow up of patients with multiple endocrine neoplasia type 2B: an international, multicentre, retrospective study. Lancet Diabetes Endocrinol. 7, 213–220 (2019).

    PubMed  Google Scholar 

  51. 51.

    Gujral, T. S., Singh, V. K., Jia, Z. & Mulligan, L. M. Molecular mechanisms of RET receptor-mediated oncogenesis in multiple endocrine neoplasia 2B. Cancer Res. 66, 10741–10749 (2006).

    CAS  PubMed  Google Scholar 

  52. 52.

    Miyauchi, A. et al. Two germline missense mutations at codons 804 and 806 of the RET proto-oncogene in the same allele in a patient with multiple endocrine neoplasia type 2B without codon 918 mutation. Jpn. J. Cancer Res. 90, 1–5 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Menko, F. H. et al. Atypical MEN type 2B associated with two germline RET mutations on the same allele not involving codon 918. J. Clin. Endocrinol. Metab. 87, 393–397 (2002).

    CAS  PubMed  Google Scholar 

  54. 54.

    Cranston, A. N. et al. RET is constitutively activated by novel tandem mutations that alter the active site resulting in multiple endocrine neoplasia type 2B. Cancer Res. 66, 10179–10187 (2006).

    CAS  PubMed  Google Scholar 

  55. 55.

    Nakao, K. T. et al. Novel tandem germline RET proto-oncogene mutations in a patient with multiple endocrine neoplasia type 2B: report of a case and a literature review of tandem RET mutations with in silico analysis. Head Neck 35, E363–E368 (2013).

    PubMed  Google Scholar 

  56. 56.

    Ciampi, R. et al. Genetic landscape of somatic mutations in a large cohort of sporadic medullary thyroid carcinomas studied by next-generation targeted sequencing. iScience 20, 324–336 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Heilmann, A. M. et al. Comprehensive genomic profiling of clinically advanced medullary thyroid carcinoma. Oncology 90, 339–346 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Elisei, R. et al. Prognostic significance of somatic RET oncogene mutations in sporadic medullary thyroid cancer: a 10-year follow-up study. J. Clin. Endocrinol. Metab. 93, 682–687 (2008).

    CAS  PubMed  Google Scholar 

  59. 59.

    Grubbs, E. G. et al. RET fusion as a novel driver of medullary thyroid carcinoma. J. Clin. Endocrinol. Metab. 100, 788–793 (2015).

    CAS  PubMed  Google Scholar 

  60. 60.

    Moura, M. M., Cavaco, B. M. & Leite, V. RAS proto-oncogene in medullary thyroid carcinoma. Endocr. Relat. Cancer 22, R235–R252 (2015).

    CAS  PubMed  Google Scholar 

  61. 61.

    Agrawal, N. et al. Exomic sequencing of medullary thyroid cancer reveals dominant and mutually exclusive oncogenic mutations in RET and RAS. J. Clin. Endocrinol. Metab. 98, E364–E369 (2013).

    CAS  PubMed  Google Scholar 

  62. 62.

    Boichard, A. et al. Somatic RAS mutations occur in a large proportion of sporadic RET-negative medullary thyroid carcinomas and extend to a previously unidentified exon. J. Clin. Endocrinol. Metab. 97, E2031–E2035 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Santoro, M., Moccia, M., Federico, G. & Carlomagno, F. RET gene fusions in malignancies of the thyroid and other tissues. Genes 11, 424 (2020).

    CAS  PubMed Central  Google Scholar 

  64. 64.

    Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell 159, 676–690 (2014). This article describes the comprehensive characterization of the genetic lesions associated with human PTC and the identification of molecularly defined PTC subgroups.

    Google Scholar 

  65. 65.

    Caudill, C. M., Zhu, Z., Ciampi, R., Stringer, J. R. & Nikiforov, Y. E. Dose-dependent generation of RET/PTC in human thyroid cells after in vitro exposure to γ-radiation: a model of carcinogenic chromosomal rearrangement induced by ionizing radiation. J. Clin. Endocrinol. Metab. 90, 2364–2369 (2005).

    CAS  PubMed  Google Scholar 

  66. 66.

    Alzahrani, A. S. et al. Genetic alterations in pediatric thyroid cancer using a comprehensive childhood cancer gene panel. J. Clin. Endocrinol. Metab. 105, 3324–3334 (2020).

    Google Scholar 

  67. 67.

    Pekova, B. et al. RET, NTRK, ALK, BRAF, and MET fusions in a large cohort of pediatric papillary thyroid carcinomas. Thyroid 30, 1771–1780 (2020).

    CAS  PubMed  Google Scholar 

  68. 68.

    Dias-Santagata, D. et al. Response to RET-specific therapy in RET fusion-positive anaplastic thyroid carcinoma. Thyroid 30, 1384–1389 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Landa, I. et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J. Clin. Invest. 126, 1052–1066 (2016).

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Drilon, A., Hu, Z. I., Lai, G. G. Y. & Tan, D. S. W. Targeting RET-driven cancers: lessons from evolving preclinical and clinical landscapes. Nat. Rev. Clin. Oncol. 15, 151–167 (2018).

    CAS  PubMed  Google Scholar 

  71. 71.

    Paratala, B. S. et al. RET rearrangements are actionable alterations in breast cancer. Nat. Commun. 9, 4821 (2018).

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Pietrantonio, F. et al. RET fusions in a small subset of advanced colorectal cancers at risk of being neglected. Ann. Oncol. 29, 1394–1401 (2018).

    CAS  PubMed  Google Scholar 

  73. 73.

    Wiesner, T. et al. Kinase fusions are frequent in Spitz tumours and spitzoid melanomas. Nat. Commun. 5, 3116 (2014).

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Antonescu, C. R. et al. Spindle cell tumors with RET gene fusions exhibit a morphologic spectrum akin to tumors with NTRK gene fusions. Am. J. Surg. Pathol. 43, 1384–1391 (2019).

    PubMed  PubMed Central  Google Scholar 

  75. 75.

    Guilmette, J., Dias-Santagata, D., Nose, V., Lennerz, J. K. & Sadow, P. M. Novel gene fusions in secretory carcinoma of the salivary glands: enlarging the ETV6 family. Hum. Pathol. 83, 50–58 (2019).

    CAS  PubMed  Google Scholar 

  76. 76.

    Skalova, A. et al. NCOA4-RET and TRIM27-RET are characteristic gene fusions in salivary intraductal carcinoma, including invasive and metastatic tumors: is “intraductal” correct? Am. J. Surg. Pathol. 43, 1303–1313 (2019).

    PubMed  Google Scholar 

  77. 77.

    Ballerini, P. et al. RET fusion genes are associated with chronic myelomonocytic leukemia and enhance monocytic differentiation. Leukemia 26, 2384–2389 (2012).

    CAS  PubMed  Google Scholar 

  78. 78.

    Mizukami, T. et al. Molecular mechanisms underlying oncogenic RET fusion in lung adenocarcinoma. J. Thorac. Oncol. 9, 622–630 (2014).

    CAS  PubMed  Google Scholar 

  79. 79.

    Ricarte-Filho, J. C. et al. Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers. J. Clin. Invest. 123, 4935–4944 (2013). This article describes the systematic characterization of gene fusion events driving the formation of post-Chernobyl PTC.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Ameziane-El-Hassani, R. et al. Role of H2O2 in RET/PTC1 chromosomal rearrangement produced by ionizing radiation in human thyroid cells. Cancer Res. 70, 4123–4132 (2010).

    CAS  PubMed  Google Scholar 

  81. 81.

    Wells, S. A. Jr. et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J. Clin. Oncol. 30, 134–141 (2012). This article describes the clinical study that led to the registration of the first targeted therapy for advanced MTC.

    CAS  PubMed  Google Scholar 

  82. 82.

    Subbiah, V., Yang, D., Velcheti, V., Drilon, A. & Meric-Bernstam, F. State-of-the-art strategies for targeting RET-dependent cancers. J. Clin. Oncol. 38, 1209–1221 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Wirth, L. J. et al. Efficacy of selpercatinib in RET-altered thyroid cancers. N. Engl. J. Med. 383, 825–835 (2020). This article describes the prospective trial that led to the first registration of a RET-specific TKI in patients with advanced thyroid carcinoma who have a RET mutation.

    CAS  PubMed  Google Scholar 

  84. 84.

    Drilon, A. et al. Efficacy of selpercatinib in RET fusion-positive non-small-cell lung cancer. N. Engl. J. Med. 383, 813–824 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Kurzrock, R. Selpercatinib aimed at RET-altered cancers. N. Engl. J. Med. 383, 868–869 (2020).

    CAS  PubMed  Google Scholar 

  86. 86.

    Subbiah, V. et al. Selective RET kinase inhibition for patients with RET-altered cancers. Ann. Oncol. 29, 1869–1876 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Carlomagno, F. et al. ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res. 62, 7284–7290 (2002).

    CAS  PubMed  Google Scholar 

  88. 88.

    Zhao, Z. et al. Exploration of type II binding mode: a privileged approach for kinase inhibitor focused drug discovery? ACS Chem. Biol. 9, 1230–1241 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    De Falco, V., Carlomagno, F., Li, H. Y. & Santoro, M. The molecular basis for RET tyrosine-kinase inhibitors in thyroid cancer. Best Pract. Res. Clin. Endocrinol. Metab. 31, 307–318 (2017).

    PubMed  PubMed Central  Google Scholar 

  90. 90.

    Frett, B. et al. Fragment-based discovery of a dual pan-RET/VEGFR2 kinase inhibitor optimized for single-agent polypharmacology. Angew. Chem. Int. Ed. Engl. 54, 8717–8721 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Subbiah, V. et al. Precision targeted therapy with BLU-667 for RET-driven cancers. Cancer Discov. 8, 836–849 (2018).

    CAS  PubMed  Google Scholar 

  92. 92.

    Schoffski, P. et al. A phase I study of BOS172738 in patients with advanced solid tumors with RET gene alterations including non-small cell lung cancer and medullary thyroid cancer [abstract]. J. Clin. Oncol. 37 (Suppl. 15), TPS3162 (2019).

    Google Scholar 

  93. 93.

    Drilon, A. et al. TPX-0046 is a novel and potent RET/SRC inhibitor for RET-driven cancers [abstract 506P]. Ann. Oncol. 30 (Suppl. 5), v190–v191 (2019).

    Google Scholar 

  94. 94.

    Carlomagno, F. et al. Disease associated mutations at valine 804 in the RET receptor tyrosine kinase confer resistance to selective kinase inhibitors. Oncogene 23, 6056–6063 (2004).

    CAS  PubMed  Google Scholar 

  95. 95.

    Mologni, L., Redaelli, S., Morandi, A., Plaza-Menacho, I. & Gambacorti-Passerini, C. Ponatinib is a potent inhibitor of wild-type and drug-resistant gatekeeper mutant RET kinase. Mol. Cell Endocrinol. 377, 1–6 (2013).

    CAS  PubMed  Google Scholar 

  96. 96.

    Carlomagno, F. et al. Identification of tyrosine 806 as a molecular determinant of RET kinase sensitivity to ZD6474. Endocr. Relat. Cancer 16, 233–241 (2009).

    CAS  PubMed  Google Scholar 

  97. 97.

    Liu, X., Shen, T., Mooers, B. H. M., Hilberg, F. & Wu, J. Drug resistance profiles of mutations in the RET kinase domain. Br. J. Pharmacol. 175, 3504–3515 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Busaidy, N. L. et al. Emergence of V804M resistance gatekeeper mutation in sporadic medullary thyroid carcinoma patients treated with TKI tyrosine kinase inhibitors. Thyroid 27, A166–A188 (2017).

    Google Scholar 

  99. 99.

    Wirth, L. J. et al. Emergence and targeting of acquired and hereditary resistance to multikinase RET inhibition in patients with RET-altered cancer. JCO Precis. Oncol. 3, 1–7 (2019).

    Google Scholar 

  100. 100.

    Valerio, L. et al. V804M RET mutation and vandetanib response in metastatic medullary thyroid cancer. Eur. Thyroid J. 6, 23–118 (2017).

    Google Scholar 

  101. 101.

    Solomon, B. J. et al. RET solvent front mutations mediate acquired resistance to selective RET inhibition in RET-driven malignancies. J. Thorac. Oncol. 15, 541–549 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Huang, Q. et al. Preclinical modeling of KIF5B-RET fusion lung adenocarcinoma. Mol. Cancer Ther. 15, 2521–2529 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Terzyan, S. S. et al. Structural basis of resistance of mutant RET protein-tyrosine kinase to its inhibitors nintedanib and vandetanib. J. Biol. Chem. 294, 10428–10437 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Nakaoku, T. et al. A secondary RET mutation in the activation loop conferring resistance to vandetanib. Nat. Commun. 9, 625 (2018).

    PubMed  PubMed Central  Google Scholar 

  105. 105.

    Rich, T. A. et al. Analysis of cell-free DNA from 32,989 advanced cancers reveals novel co-occurring activating RET alterations and oncogenic signaling pathway aberrations. Clin. Cancer Res. 25, 5832–5842 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Brose, M. S. et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet 384, 319–328 (2014). This article describes the clinical study that led to the registration of the first targeted therapy for advanced DTC.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Schlumberger, M. et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N. Engl. J. Med. 372, 621–630 (2015). This article describes the clinical study that led to the registration of lenvatinib therapy for advanced DTC.

    PubMed  Google Scholar 

  108. 108.

    Cabanillas, M. E. et al. Cabozantinib as salvage therapy for patients with tyrosine kinase inhibitor-refractory differentiated thyroid cancer: results of a multicenter phase II international thyroid oncology group trial. J. Clin. Oncol. 35, 3315–3321 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Bible, K. C. et al. A multicenter phase 2 trial of pazopanib in metastatic and progressive medullary thyroid carcinoma: MC057H. J. Clin. Endocrinol. Metab. 99, 1687–1693 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Ravaud, A. et al. A multicenter phase II study of sunitinib in patients with locally advanced or metastatic differentiated, anaplastic or medullary thyroid carcinomas: mature data from the THYSU study. Eur. J. Cancer 76, 110–117 (2017).

    CAS  PubMed  Google Scholar 

  111. 111.

    Locati, L. D. et al. Treatment of advanced thyroid cancer with axitinib: phase 2 study with pharmacokinetic/pharmacodynamic and quality-of-life assessments. Cancer 120, 2694–2703 (2014).

    CAS  PubMed  Google Scholar 

  112. 112.

    Elisei, R. et al. Cabozantinib in progressive medullary thyroid cancer. J. Clin. Oncol. 31, 3639–3646 (2013). This article describes the clinical study that led to the registration of cabozantinib therapy for advanced MTC.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Kreissl, M. C. et al. Efficacy and safety of vandetanib in progressive and symptomatic medullary thyroid cancer – post hoc analysis from the ZETA trial. J. Clin. Oncol. 38, 2773–2781 (2020).

    CAS  PubMed  Google Scholar 

  114. 114.

    Valerio, L. et al. Medullary thyroid cancer treated with vandetanib: predictors of a longer and durable response. Endocr. Relat. Cancer 27, 97–110 (2020).

    CAS  PubMed  Google Scholar 

  115. 115.

    Chougnet, C. N. et al. Vandetanib for the treatment of advanced medullary thyroid cancer outside a clinical trial: results from a French cohort. Thyroid 25, 386–391 (2015).

    CAS  PubMed  Google Scholar 

  116. 116.

    Schlumberger, M. et al. A phase II trial of the multitargeted tyrosine kinase inhibitor lenvatinib (E7080) in advanced medullary thyroid cancer. Clin. Cancer Res. 22, 44–53 (2016).

    CAS  PubMed  Google Scholar 

  117. 117.

    Schlumberger, M. et al. Overall survival analysis of EXAM, a phase III trial of cabozantinib in patients with radiographically progressive medullary thyroid carcinoma. Ann. Oncol. 28, 2813–2819 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Verrienti, A. et al. RET mutation and increased angiogenesis in medullary thyroid carcinomas. Endocr. Relat. Cancer 23, 665–676 (2016).

    CAS  PubMed  Google Scholar 

  119. 119.

    Akeno-Stuart, N. et al. The RET kinase inhibitor NVP-AST487 blocks growth and calcitonin gene expression through distinct mechanisms in medullary thyroid cancer cells. Cancer Res. 67, 6956–6964 (2007).

    CAS  PubMed  Google Scholar 

  120. 120.

    Brose, M. S., Worden, F. P., Newbold, K. L., Guo, M. & Hurria, A. Effect of age on the efficacy and safety of lenvatinib in radioiodine-refractory differentiated thyroid cancer in the phase III SELECT trial. J. Clin. Oncol. 35, 2692–2699 (2017).

    CAS  PubMed  Google Scholar 

  121. 121.

    Subbiah, V. et al. Clinical activity of the RET inhibitor pralsetinib (BLU-667) in patients with RET fusion+solid tumors. J. Clin. Oncol. 38, 109 (2020).

    Google Scholar 

  122. 122.

    Herbst, R. S., Heymach, J. V., O’Reilly, M. S., Onn, A. & Ryan, A. J. Vandetanib (ZD6474): an orally available receptor tyrosine kinase inhibitor that selectively targets pathways critical for tumor growth and angiogenesis. Expert. Opin. Investig. Drugs 16, 239–249 (2007).

    CAS  PubMed  Google Scholar 

  123. 123.

    Yakes, F. M. et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol. Cancer Ther. 10, 2298–2308 (2011).

    CAS  PubMed  Google Scholar 

  124. 124.

    Wilhelm, S. M. et al. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol. Cancer Ther. 7, 3129–3140 (2008).

    CAS  PubMed  Google Scholar 

  125. 125.

    Wilhelm, S. et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat. Rev. Drug Discov. 5, 835–844 (2006).

    CAS  PubMed  Google Scholar 

  126. 126.

    Plaza-Menacho, I. et al. Sorafenib functions to potently suppress RET tyrosine kinase activity by direct enzymatic inhibition and promoting RET lysosomal degradation independent of proteasomal targeting. J. Biol. Chem. 282, 29230–29240 (2007).

    CAS  PubMed  Google Scholar 

  127. 127.

    Matsui, J. et al. Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin. Cancer Res. 14, 5459–5465 (2008).

    CAS  PubMed  Google Scholar 

  128. 128.

    Matsui, J. et al. E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int. J. Cancer 122, 664–671 (2008).

    CAS  PubMed  Google Scholar 

  129. 129.

    Okamoto, K. et al. Antitumor activities of the targeted multi-tyrosine kinase inhibitor lenvatinib (E7080) against RET gene fusion-driven tumor models. Cancer Lett. 340, 97–103 (2013).

    CAS  PubMed  Google Scholar 

  130. 130.

    Keegan, M., Wilcoxen, K. & Ho, P. T. BOS172738: a novel highly potent and selective RET kinase inhibitor in phase 1 clinical development [abstract]. Cancer Res. 79 (Suppl. 13), 2199 (2019).

    Google Scholar 

  131. 131.

    El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432 (2019).

    CAS  PubMed  Google Scholar 

  132. 132.

    Wells, S. A. Jr. et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 25, 567–610 (2015). Comprehensive guidelines for all aspects of the diagnosis, classification and management of MTC.

    PubMed  PubMed Central  Google Scholar 

  133. 133.

    Li, A. Y. et al. RET fusions in solid tumors. Cancer Treat. Rev. 81, 101911 (2019).

    PubMed  Google Scholar 

  134. 134.

    Cote, G. J. et al. Prognostic significance of circulating RET M918T mutated tumor DNA in patients with advanced medullary thyroid carcinoma. J. Clin. Endocrinol. Metab. 102, 3591–3599 (2017).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of a grant under the European Union’s Horizon 2020 Programme – EU FP7 contract Thyrage (grant number 666869) awarded to D.S. and the POR Campania FESR 2014-2020 “SATIN” grant awarded to M. Santoro. The authors gratefully acknowledge F. Carlomagno for critically reading the manuscript.

Author information

Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Martin Schlumberger.

Ethics declarations

Competing interests

M. Santoro is inventor of patent WO/2015/187818. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks L. Mulligan, C. Romei and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

cBioPortal for Cancer Genomics: https://www.cbioportal.org

FMTC: https://www.omim.org/entry/155240

MEN2A: https://www.omim.org/entry/171400

MEN2B: https://www.omim.org/entry/162300

National Cancer Institute Drug Dictionary: https://www.cancer.gov/publications/dictionaries/cancer-drug

Pfam database: https://pfam.xfam.org/

PubChem database: https://pubchem.ncbi.nlm.nih.gov/

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salvatore, D., Santoro, M. & Schlumberger, M. The importance of the RET gene in thyroid cancer and therapeutic implications. Nat Rev Endocrinol 17, 296–306 (2021). https://doi.org/10.1038/s41574-021-00470-9

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing