Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Diet and exercise in the prevention and treatment of type 2 diabetes mellitus

Abstract

Evidence from observational studies and randomized trials suggests that prediabetes and type 2 diabetes mellitus (T2DM) can develop in genetically susceptible individuals in parallel with weight (that is, fat) gain. Accordingly, studies show that weight loss can produce remission of T2DM in a dose-dependent manner. A weight loss of ~15 kg, achieved by calorie restriction as part of an intensive management programme, can lead to remission of T2DM in ~80% of patients with obesity and T2DM. However, long-term weight loss maintenance is challenging. Obesity and T2DM are associated with diminished glucose uptake in the brain that impairs the satiating effect of dietary carbohydrate; therefore, carbohydrate restriction might help maintain weight loss and maximize metabolic benefits. Likewise, increases in physical activity and fitness are an important contributor to T2DM remission when combined with calorie restriction and weight loss. Preliminary studies suggest that a precision dietary management approach that uses pretreatment glycaemic status to stratify patients can help optimize dietary recommendations with respect to carbohydrate, fat and dietary fibre. This approach might lead to improved weight loss maintenance and glycaemic control. Future research should focus on better understanding the individual response to dietary treatment and translating these findings into clinical practice.

Key points

  • Studies show that weight loss can produce remission of type 2 diabetes mellitus (T2DM) in a dose-dependent manner.

  • In patients with T2DM and obesity, weight loss of ~15 kg, achieved by an intensive management programme involving calorie restriction, can lead to remission of T2DM in ~80% of individuals.

  • Long-term maintenance of weight loss and metabolic health in people who have undergone intensive lifestyle intervention is challenging.

  • Carbohydrate restriction might help maintain weight loss and maximize metabolic benefits.

  • When combined with calorie restriction and weight loss, increases in physical activity and fitness are an important contributor to T2DM remission.

  • Preliminary work suggests that pretreatment glycaemic status could be used to stratify patients in order to optimize dietary recommendations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Weight gain and risk of T2DM.
Fig. 2: Natural history of prediabetes and T2DM.
Fig. 3: Weight loss and remission of T2DM.
Fig. 4: Long-term changes induced by intensive lifestyle intervention in patients with T2DM.
Fig. 5: Differences in diet-induced changes in body weight according to baseline fasting plasma glucose concentrations.

References

  1. 1.

    International Diabetes Federation. IDF Diabetes Atlas 9th edn (International Diabetes Federation, 2019).

  2. 2.

    Zhu, Y. et al. Racial/ethnic disparities in the prevalence of diabetes and prediabetes by BMI: patient outcomes research to advance learning (PORTAL) multisite cohort of adults in the U.S. Diabetes Care 42, 2211–2219 (2019).

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Magkos, F. Metabolically healthy obesity: what’s in a name? Am. J. Clin. Nutr. 110, 533–539 (2019). A review of the dissociation between excess body weight and metabolic dysfunction.

    PubMed  Google Scholar 

  4. 4.

    Willett, W. C., Dietz, W. H. & Colditz, G. A. Guidelines for healthy weight. N. Engl. J. Med. 341, 427–434 (1999).

    CAS  PubMed  Google Scholar 

  5. 5.

    Prospective Studies Collaboration. Body-mass index and cause-specific mortality in 900,000 adults: collaborative analyses of 57 prospective studies. Lancet 373, 1083–1096 (2009).

    PubMed Central  Google Scholar 

  6. 6.

    Chan, J. M., Rimm, E. B., Colditz, G. A., Stampfer, M. J. & Willett, W. C. Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care 17, 961–969 (1994).

    CAS  PubMed  Google Scholar 

  7. 7.

    Colditz, G. A., Willett, W. C., Rotnitzky, A. & Manson, J. E. Weight gain as a risk factor for clinical diabetes mellitus in women. Ann. Intern. Med. 122, 481–486 (1995).

    CAS  PubMed  Google Scholar 

  8. 8.

    Hu, F. B. et al. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N. Engl. J. Med. 345, 790–797 (2001).

    CAS  PubMed  Google Scholar 

  9. 9.

    Kendall, D. M., Cuddihy, R. M. & Bergenstal, R. M. Clinical application of incretin-based therapy: therapeutic potential, patient selection and clinical use. Am. J. Med. 122, S37–S50 (2009).

    PubMed  Google Scholar 

  10. 10.

    Mittendorfer, B., Magkos, F., Fabbrini, E., Mohammed, B. S. & Klein, S. Relationship between body fat mass and free fatty acid kinetics in men and women. Obesity 17, 1872–1877 (2009).

    CAS  PubMed  Google Scholar 

  11. 11.

    Conte, C. et al. Multiorgan insulin sensitivity in lean and obese subjects. Diabetes Care 35, 1316–1321 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Wilman, H. R. et al. Characterisation of liver fat in the UK Biobank cohort. PLoS One 12, e0172921 (2017).

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Pienkowska, J. et al. MRI assessment of ectopic fat accumulation in pancreas, liver and skeletal muscle in patients with obesity, overweight and normal BMI in correlation with the presence of central obesity and metabolic syndrome. Diabetes Metab. Syndr. Obes. 12, 623–636 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Tabak, A. G. et al. Trajectories of glycaemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes: an analysis from the Whitehall II study. Lancet 373, 2215–2221 (2009). A prospective study of the temporal changes in metabolic function and glucose control along the natural history of T2DM.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Weir, G. C. & Bonner-Weir, S. Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes 53 (Suppl. 3), 16–21 (2004).

    Google Scholar 

  16. 16.

    Astrup, A. & Finer, N. Redefining type 2 diabetes: ‘diabesity’ or ‘obesity dependent diabetes mellitus’? Obes. Rev. 1, 57–59 (2000).

    CAS  PubMed  Google Scholar 

  17. 17.

    Leitner, D. R. et al. Obesity and type 2 diabetes: two diseases with a need for combined treatment strategies — EASO can lead the way. Obes. Facts 10, 483–492 (2017).

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Sjostrom, L. Review of the key results from the Swedish Obese Subjects (SOS) trial — a prospective controlled intervention study of bariatric surgery. J. Intern. Med. 273, 219–234 (2013).

    CAS  PubMed  Google Scholar 

  19. 19.

    Jans, A. et al. Duration of type 2 diabetes and remission rates after bariatric surgery in Sweden 2007–2015: a registry-based cohort study. PLoS Med. 16, e1002985 (2019).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Davies, M. J. et al. Efficacy of liraglutide for weight loss among patients with type 2 diabetes: the SCALE diabetes randomized clinical trial. JAMA 314, 687–699 (2015).

    CAS  PubMed  Google Scholar 

  21. 21.

    Madsbad, S. & Holst, J. J. GLP-1 as a mediator in the remission of type 2 diabetes after gastric bypass and sleeve gastrectomy surgery. Diabetes 63, 3172–3174 (2014).

    CAS  PubMed  Google Scholar 

  22. 22.

    MacDonald, P. E. et al. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes 51 (Suppl. 3), 434–442 (2002).

    Google Scholar 

  23. 23.

    Magkos, F. et al. Effects of moderate and subsequent progressive weight loss on metabolic function and adipose tissue biology in humans with obesity. Cell Metab. 23, 591–601 (2016). A randomized controlled trial of the effects of progressive diet-induced weight loss on body composition and metabolic function.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Wing, R. R. et al. Long-term effects of modest weight loss in type II diabetic patients. Arch. Intern. Med. 147, 1749–1753 (1987).

    CAS  PubMed  Google Scholar 

  25. 25.

    Henry, R. R., Wallace, P. & Olefsky, J. M. Effects of weight loss on mechanisms of hyperglycemia in obese non-insulin-dependent diabetes mellitus. Diabetes 35, 990–998 (1986).

    CAS  PubMed  Google Scholar 

  26. 26.

    Markovic, T. P. et al. The determinants of glycemic responses to diet restriction and weight loss in obesity and NIDDM. Diabetes Care 21, 687–694 (1998).

    CAS  PubMed  Google Scholar 

  27. 27.

    Henry, R. R., Scheaffer, L. & Olefsky, J. M. Glycemic effects of intensive caloric restriction and isocaloric refeeding in noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 61, 917–925 (1985).

    CAS  PubMed  Google Scholar 

  28. 28.

    Hughes, T. A., Gwynne, J. T., Switzer, B. R., Herbst, C. & White, G. Effects of caloric restriction and weight loss on glycemic control, insulin release and resistance, and atherosclerotic risk in obese patients with type II diabetes mellitus. Am. J. Med. 77, 7–17 (1984).

    CAS  PubMed  Google Scholar 

  29. 29.

    Steven, S. & Taylor, R. Restoring normoglycaemia by use of a very low calorie diet in long- and short-duration type 2 diabetes. Diabet. Med. 32, 1149–1155 (2015).

    CAS  PubMed  Google Scholar 

  30. 30.

    Lim, E. L. et al. Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia 54, 2506–2514 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Taylor, R. et al. Remission of human type 2 diabetes requires decrease in liver and pancreas fat content but is dependent upon capacity for beta cell recovery. Cell Metab. 28, 547–556.e3 (2018).

    CAS  PubMed  Google Scholar 

  32. 32.

    Al-Mrabeh, A. et al. Hepatic lipoprotein export and remission of human type 2 diabetes after weight loss. Cell Metab. 31, 233–249 (2020). A prospective study evaluating the potential mechanisms of T2DM remission and relapse following lifestyle modification.

    CAS  PubMed  Google Scholar 

  33. 33.

    Taylor, R. Pathogenesis of type 2 diabetes: tracing the reverse route from cure to cause. Diabetologia 51, 1781–1789 (2008).

    CAS  PubMed  Google Scholar 

  34. 34.

    Taylor, R. & Barnes, A. C. Can type 2 diabetes be reversed and how can this best be achieved? James Lind Alliance research priority number one. Diabet. Med. 36, 308–315 (2019).

    CAS  PubMed  Google Scholar 

  35. 35.

    Brown, A. et al. Low-energy total diet replacement intervention in patients with type 2 diabetes mellitus and obesity treated with insulin: a randomized trial. BMJ Open Diabetes Res. Care 8, e001012 (2020).

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Gregg, E. W. et al. Association of an intensive lifestyle intervention with remission of type 2 diabetes. JAMA 308, 2489–2496 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Annuzzi, G., Rivellese, A. A., Bozzetto, L. & Riccardi, G. The results of Look AHEAD do not row against the implementation of lifestyle changes in patients with type 2 diabetes. Nutr. Metab. Cardiovasc. Dis. 24, 4–9 (2014).

    CAS  PubMed  Google Scholar 

  38. 38.

    Raynor, H. A. et al. Partial meal replacement plan and quality of the diet at 1 year: action for health in diabetes (Look AHEAD) trial. J. Acad. Nutr. Diet. 115, 731–742 (2015).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Lean, M. E. et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet 391, 541–551 (2018).

    PubMed  Google Scholar 

  40. 40.

    Lean, M. E. J. et al. Durability of a primary care-led weight-management intervention for remission of type 2 diabetes: 2-year results of the DiRECT open-label, cluster-randomised trial. Lancet Diabetes Endocrinol. 7, 344–355 (2019). A randomized controlled trial of diet-induced weight loss demonstrating that remission of T2DM depends on the amount of weight loss.

    PubMed  Google Scholar 

  41. 41.

    Heymsfield, S. B., Gonzalez, M. C., Shen, W., Redman, L. & Thomas, D. Weight loss composition is one-fourth fat-free mass: a critical review and critique of this widely cited rule. Obes. Rev. 15, 310–321 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    DeFronzo, R. A. et al. The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 30, 1000–1007 (1981).

    CAS  PubMed  Google Scholar 

  43. 43.

    Ferrannini, E. et al. The disposal of an oral glucose load in healthy subjects. A quantitative study. Diabetes 34, 580–588 (1985).

    CAS  PubMed  Google Scholar 

  44. 44.

    American Diabetes Association. Standards of medical care in diabetes — 2020. Diabetes Care 43, S1–S212 (2020).

    Google Scholar 

  45. 45.

    Ajala, O., English, P. & Pinkney, J. Systematic review and meta-analysis of different dietary approaches to the management of type 2 diabetes. Am. J. Clin. Nutr. 97, 505–516 (2013).

    CAS  PubMed  Google Scholar 

  46. 46.

    Hjorth, M. F., Zohar, Y., Hill, J. O. & Astrup, A. Personalized dietary management of overweight and obesity based on measures of insulin and glucose. Annu. Rev. Nutr. 38, 245–272 (2018). A review of evidence supporting baseline glycaemia as a major predictor of weight loss success in response to dietary interventions.

    CAS  PubMed  Google Scholar 

  47. 47.

    Snorgaard, O., Poulsen, G. M., Andersen, H. K. & Astrup, A. Systematic review and meta-analysis of dietary carbohydrate restriction in patients with type 2 diabetes. BMJ Open. Diabetes Res. Care 5, e000354 (2017).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Kirk, E. et al. Dietary fat and carbohydrates differentially alter insulin sensitivity during caloric restriction. Gastroenterology 136, 1552–1560 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Wing, R. R. et al. Caloric restriction per se is a significant factor in improvements in glycemic control and insulin sensitivity during weight loss in obese NIDDM patients. Diabetes Care 17, 30–36 (1994).

    CAS  PubMed  Google Scholar 

  50. 50.

    Look Ahead Research Group. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N. Engl. J. Med. 369, 145–154 (2013).

    Google Scholar 

  51. 51.

    Sjostrom, L. et al. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA 311, 2297–2304 (2014).

    PubMed  Google Scholar 

  52. 52.

    Wing, R. R., Blair, E., Marcus, M., Epstein, L. H. & Harvey, J. Year-long weight loss treatment for obese patients with type II diabetes: does including an intermittent very-low-calorie diet improve outcome? Am. J. Med. 97, 354–362 (1994).

    CAS  PubMed  Google Scholar 

  53. 53.

    Samkani, A. et al. A carbohydrate-reduced high-protein diet acutely decreases postprandial and diurnal glucose excursions in type 2 diabetes patients. Br. J. Nutr. 119, 910–917 (2018).

    CAS  PubMed  Google Scholar 

  54. 54.

    Skytte, M. J. et al. A carbohydrate-reduced high-protein diet improves HbA1c and liver fat content in weight stable participants with type 2 diabetes: a randomised controlled trial. Diabetologia 62, 2066–2078 (2019). A cross-over study showing that low-carbohydrate diets can improve metabolic risk factors in patients with T2DM without much weight loss.

    CAS  PubMed  Google Scholar 

  55. 55.

    Taylor, R., Al-Mrabeh, A. & Sattar, N. Understanding the mechanisms of reversal of type 2 diabetes. Lancet Diabetes Endocrinol. 7, 726–736 (2019). A review of the mechanisms of T2DM remission.

    CAS  PubMed  Google Scholar 

  56. 56.

    Hellerstein, M. K. De novo lipogenesis in humans: metabolic and regulatory aspects. Eur. J. Clin. Nutr. 53 (Suppl. 1), 53–65 (1999).

    Google Scholar 

  57. 57.

    van Wyk, H. J., Davis, R. E. & Davies, J. S. A critical review of low-carbohydrate diets in people with type 2 diabetes. Diabet. Med. 33, 148–157 (2016).

    PubMed  Google Scholar 

  58. 58.

    Kodama, S. et al. Influence of fat and carbohydrate proportions on the metabolic profile in patients with type 2 diabetes: a meta-analysis. Diabetes Care 32, 959–965 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Hamdy, O. et al. Fat versus carbohydrate-based energy-restricted diets for weight loss in patients with type 2 diabetes. Curr. Diab Rep. 18, 128 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Forouhi, N. G., Misra, A., Mohan, V., Taylor, R. & Yancy, W. Dietary and nutritional approaches for prevention and management of type 2 diabetes. BMJ 361, k2234 (2018).

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Shan, Z., Guo, Y., Hu, F. B., Liu, L. & Qi, Q. Association of low-carbohydrate and low-fat diets with mortality among US adults. JAMA Intern. Med. 180, 513–523 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Livesey, G. et al. Dietary glycemic index and load and the risk of type 2 diabetes: a systematic review and updated meta-analyses of prospective cohort studies. Nutrients 11, 1280 (2019).

    CAS  PubMed Central  Google Scholar 

  63. 63.

    Livesey, G. et al. Dietary glycemic index and load and the risk of type 2 diabetes: assessment of causal relations. Nutrients 11, 1436 (2019).

    CAS  PubMed Central  Google Scholar 

  64. 64.

    Hwang, J. J. et al. Blunted rise in brain glucose levels during hyperglycemia in adults with obesity and T2DM. JCI Insight 2, e95913 (2017). A study showing that patients with obesity and T2DM have a blunted rise in brain blood glucose levels in response to carbohydrate ingestion, and this associates with their feelings of appetite and hunger.

    PubMed Central  Google Scholar 

  65. 65.

    Astrup, A. & Hjorth, M. F. Classification of obesity targeted personalized dietary weight loss management based on carbohydrate tolerance. Eur. J. Clin. Nutr. 72, 1300–1304 (2018).

    PubMed  Google Scholar 

  66. 66.

    Frost, G. et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 5, 3611 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Trajkovski, M. & Wollheim, C. B. Physiology: microbial signals to the brain control weight. Nature 534, 185–187 (2016).

    CAS  PubMed  Google Scholar 

  68. 68.

    Hjorth, M. F. et al. Pretreatment prevotella-to-bacteroides ratio and salivary amylase gene copy number as prognostic markers for dietary weight loss. Am. J. Clin. Nutr. 111, 1079–1086 (2020).

    PubMed  Google Scholar 

  69. 69.

    Sanna, S. et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat. Genet. 51, 600–605 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Yamada, Y. et al. A non-calorie-restricted low-carbohydrate diet is effective as an alternative therapy for patients with type 2 diabetes. Intern. Med. 53, 13–19 (2014).

    CAS  PubMed  Google Scholar 

  71. 71.

    Tay, J. et al. A very low-carbohydrate, low-saturated fat diet for type 2 diabetes management: a randomized trial. Diabetes Care 37, 2909–2918 (2014).

    CAS  PubMed  Google Scholar 

  72. 72.

    Balducci, S. et al. Physical exercise as therapy for type 2 diabetes mellitus. Diabetes Metab. Res. Rev. 30 (Suppl 1), 13–23 (2014).

    PubMed  Google Scholar 

  73. 73.

    Boule, N. G., Haddad, E., Kenny, G. P., Wells, G. A. & Sigal, R. J. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA 286, 1218–1227 (2001).

    CAS  PubMed  Google Scholar 

  74. 74.

    Snowling, N. J. & Hopkins, W. G. Effects of different modes of exercise training on glucose control and risk factors for complications in type 2 diabetic patients: a meta-analysis. Diabetes Care 29, 2518–2527 (2006).

    PubMed  Google Scholar 

  75. 75.

    Balducci, S. et al. Effect of an intensive exercise intervention strategy on modifiable cardiovascular risk factors in subjects with type 2 diabetes mellitus: a randomized controlled trial: the Italian Diabetes and Exercise Study (IDES). Arch. Intern. Med. 170, 1794–1803 (2010).

    PubMed  Google Scholar 

  76. 76.

    Di Loreto, C. et al. Make your diabetic patients walk: long-term impact of different amounts of physical activity on type 2 diabetes. Diabetes Care 28, 1295–1302 (2005).

    PubMed  Google Scholar 

  77. 77.

    Balducci, S. et al. Changes in physical fitness predict improvements in modifiable cardiovascular risk factors independently of body weight loss in subjects with type 2 diabetes participating in the Italian Diabetes and Exercise Study (IDES). Diabetes Care 35, 1347–1354 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Balducci, S. et al. Effect of high- versus low-intensity supervised aerobic and resistance training on modifiable cardiovascular risk factors in type 2 diabetes: the Italian Diabetes and Exercise Study (IDES). PLoS One 7, e49297 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Eriksson, K. F. & Lindgarde, F. Prevention of type 2 (non-insulin-dependent) diabetes mellitus by diet and physical exercise. The 6-year Malmo feasibility study. Diabetologia 34, 891–898 (1991).

    CAS  PubMed  Google Scholar 

  80. 80.

    Saltin, B. et al. Physical training and glucose tolerance in middle-aged men with chemical diabetes. Diabetes 28 (Suppl. 1), 30–32 (1979).

    PubMed  Google Scholar 

  81. 81.

    Nagi, D. Diabetes in Practice 2nd edn (John Wiley & Sons, 2005).

  82. 82.

    Ades, P. A., Savage, P. D., Marney, A. M., Harvey, J. & Evans, K. A. Remission of recently diagnosed type 2 diabetes mellitus with weight loss and exercise. J. Cardiopulm. Rehabil. Prev. 35, 193–197 (2015).

    PubMed  PubMed Central  Google Scholar 

  83. 83.

    Ried-Larsen, M. et al. Type 2 diabetes remission 1 year after an intensive lifestyle intervention: a secondary analysis of a randomized clinical trial. Diabetes Obes. Metab. 21, 2257–2266 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Johansen, M. Y. et al. Effect of an intensive lifestyle intervention on glycemic control in patients with type 2 diabetes: a randomized clinical trial. JAMA 318, 637–646 (2017).

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    Vetter, M. L., Ritter, S., Wadden, T. A. & Sarwer, D. B. Comparison of bariatric surgical procedures for diabetes remission: efficacy and mechanisms. Diabetes Spectr. 25, 200–210 (2012).

    PubMed  PubMed Central  Google Scholar 

  86. 86.

    Bray, G. A., Krauss, R. M., Sacks, F. M. & Qi, L. Lessons learned from the POUNDS Lost Study: genetic, metabolic, and behavioral factors affecting changes in body weight, body composition, and cardiometabolic risk. Curr. Obes. Rep. 8, 262–283 (2019).

    PubMed  Google Scholar 

  87. 87.

    Franz, M. J. & Evert, A. B. American Diabetes Association Guide to Nutrition Therapy for Diabetes 2 edn (American Diabetes Association, 2012).

  88. 88.

    Rowley, W. R., Bezold, C., Arikan, Y., Byrne, E. & Krohe, S. Diabetes 2030: insights from yesterday, today, and future trends. Popul. Health Manag. 20, 6–12 (2017).

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Gillies, C. L. et al. Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: systematic review and meta-analysis. BMJ 334, 299 (2007).

    PubMed  PubMed Central  Google Scholar 

  90. 90.

    Knowler, W. C. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 346, 393–403 (2002).

    CAS  PubMed  Google Scholar 

  91. 91.

    Lindstrom, J. et al. Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention study. Lancet 368, 1673–1679 (2006).

    PubMed  Google Scholar 

  92. 92.

    Pan, X. R. et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes study. Diabetes Care 20, 537–544 (1997).

    CAS  PubMed  Google Scholar 

  93. 93.

    Li, G. et al. The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention study: a 20-year follow-up study. Lancet 371, 1783–1789 (2008).

    PubMed  Google Scholar 

  94. 94.

    Poulsen, S. K. et al. Health effect of the New Nordic Diet in adults with increased waist circumference: a 6-mo randomized controlled trial. Am. J. Clin. Nutr. 99, 35–45 (2014).

    CAS  PubMed  Google Scholar 

  95. 95.

    Hjorth, M. F. et al. Pretreatment fasting plasma glucose and insulin modify dietary weight loss success: results from 3 randomized clinical trials. Am. J. Clin. Nutr. 106, 499–505 (2017).

    CAS  PubMed  Google Scholar 

  96. 96.

    Ritz, C., Astrup, A., Larsen, T. M. & Hjorth, M. F. Weight loss at your fingertips: personalized nutrition with fasting glucose and insulin using a novel statistical approach. Eur. J. Clin. Nutr. 73, 1529–1535 (2019). This article uses a novel statistical approach to model and estimate diet-induced weight loss according to baseline levels of glycaemia.

    CAS  PubMed  Google Scholar 

  97. 97.

    Due, A. et al. Comparison of 3 ad libitum diets for weight-loss maintenance, risk of cardiovascular disease, and diabetes: a 6-mo randomized, controlled trial. Am. J. Clin. Nutr. 88, 1232–1241 (2008).

    CAS  PubMed  Google Scholar 

  98. 98.

    Hjorth, M. F., Due, A., Larsen, T. M. & Astrup, A. Pretreatment fasting plasma glucose modifies dietary weight loss maintenance success: results from a stratified RCT. Obesity 25, 2045–2048 (2017).

    CAS  PubMed  Google Scholar 

  99. 99.

    Larsen, T. M. et al. Diets with high or low protein content and glycemic index for weight-loss maintenance. N. Engl. J. Med. 363, 2102–2113 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Greenway, F. L. et al. A randomized, double-blind, placebo-controlled study of Gelesis100: a novel nonsystemic oral hydrogel for weight loss. Obesity 27, 205–216 (2019).

    CAS  PubMed  Google Scholar 

  101. 101.

    Dansinger, M. L., Gleason, J. A., Griffith, J. L., Selker, H. P. & Schaefer, E. J. Comparison of the Atkins, Ornish, Weight Watchers, and Zone diets for weight loss and heart disease risk reduction: a randomized trial. JAMA 293, 43–53 (2005).

    CAS  PubMed  Google Scholar 

  102. 102.

    Greenberg, I., Stampfer, M. J., Schwarzfuchs, D., Shai, I. & Group, D. Adherence and success in long-term weight loss diets: the dietary intervention randomized controlled trial (DIRECT). J. Am. Coll. Nutr. 28, 159–168 (2009).

    CAS  PubMed  Google Scholar 

  103. 103.

    Sacks, F. M. et al. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N. Engl. J. Med. 360, 859–873 (2009). The largest and longest (to date) randomized study comparing the weight loss effectiveness of diets differing in macronutrient composition shows no differences among diets.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Arne Astrup.

Ethics declarations

Competing interests

M.F.H. and A.A. are co-inventors on a pending provisional patent application on the use of biomarkers for prediction of weight loss responses and co-founders/owners of the University of Copenhagen spin-out company Personalized Weight Management Research Consortium ApS (Gluco-diet.dk). A.A. is a consultant or advisory board member for Basic Research, USA, Beachbody, USA, BioCare Copenhagen, Denmark, Gelesis, USA, Groupe Éthique et Santé, France, McCain Foods Limited, USA, Nestlé Research Center, Switzerland, and Weight Watchers, USA. A.A. and M.F.H. are co-authors of a number of diet/cookery books, including personalized nutrition for weight loss, published in several languages. F.M. declares no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks P. Clifton, R. Taylor and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Prediabetes

An intermediate condition between normoglycaemia and type 2 diabetes mellitus, characterized by moderately elevated fasting or postprandial blood glucose or HbA1c.

Glycaemic index

A relative ranking of foods according to their ability to increase blood glucose levels relative to a reference food (glucose or white bread) for the same amount of bioavailable carbohydrate.

Glycaemic load

An extension of the glycaemic index that takes into account the actual amount of available carbohydrate present in one serving of a food or in the whole diet.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Magkos, F., Hjorth, M.F. & Astrup, A. Diet and exercise in the prevention and treatment of type 2 diabetes mellitus. Nat Rev Endocrinol 16, 545–555 (2020). https://doi.org/10.1038/s41574-020-0381-5

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing