Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Contribution of macronutrients to obesity: implications for precision nutrition

Subjects

Abstract

The specific metabolic contribution of consuming different energy-yielding macronutrients (namely, carbohydrates, protein and lipids) to obesity is a matter of active debate. In this Review, we summarize the current research concerning associations between the intake of different macronutrients and weight gain and adiposity. We discuss insights into possible differential mechanistic pathways where macronutrients might act on either appetite or adipogenesis to cause weight gain. We also explore the role of dietary macronutrient distribution on thermogenesis or energy expenditure for weight loss and maintenance. On the basis of the data discussed, we describe a novel way to manage excessive body weight; namely, prescribing personalized diets with different macronutrient compositions according to the individual’s genotype and/or enterotype. In this context, the interplay of macronutrient consumption with obesity incidence involves mechanisms that affect appetite, thermogenesis and metabolism, and the outcomes of these mechanisms are altered by an individual’s genotype and microbiota. Indeed, the interactions of the genetic make-up and/or microbiota features of a person with specific macronutrient intakes or dietary pattern consumption help to explain individualized responses to macronutrients and food patterns, which might represent key factors for comprehensive precision nutrition recommendations and personalized obesity management.

Key points

  • Body weight and adiposity rely on energy equilibrium driven by energy-yielding macronutrient intake and energy expenditure under strict neuroendocrine control.

  • Complex energy homeostasis interactions between carbohydrates, lipids and proteins (dietary quantity and quality) follow the interpretation of their separate roles on fuel metabolism.

  • The intake of simple sugars and some saturated fatty acids has adverse effects on body adiposity, while protein and fibre consumption seem to beneficially modulate satiety and energy metabolism-related processes.

  • Personal genetic background and gut microbiota features contribute to explaining some metabolic inter-individual differences to macronutrient consumption.

  • Advances in understanding metabolism pathways and hormonal control depending on macronutrient intake involved in energy utilization are needed for precision and public health nutrition.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Key metabolic mechanisms on body weight regulation.

References

  1. 1.

    Bluher, M. Obesity: global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 15, 288–298 (2019).

    PubMed  Google Scholar 

  2. 2.

    Gonzalez-Muniesa, P. et al. Obesity. Nat. Rev. Dis. Primers 3, 17034 (2017).

    PubMed  Google Scholar 

  3. 3.

    Charakida, M. et al. Lifelong patterns of BMI and cardiovascular phenotype in individuals aged 60–64 years in the 1946 British birth cohort study: an epidemiological study. Lancet Diabetes Endocrinol. 2, 648–654 (2014).

    PubMed  Google Scholar 

  4. 4.

    Bell, J. A. et al. Associations of body mass and fat indexes with cardiometabolic traits. J. Am. Coll. Cardiol. 72, 3142–3154 (2018).

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Schwingshackl, L. & Hoffmann, G. Diet quality as assessed by the healthy eating index, the alternate healthy eating index, the dietary approaches to stop hypertension score, and health outcomes: a systematic review and meta-analysis of cohort studies. J. Acad. Nutr. Diet. 115, 780–800.e5 (2015).

    PubMed  Google Scholar 

  6. 6.

    Malik, V. S., Willett, W. C. & Hu, F. B. Global obesity: trends, risk factors and policy implications. Nat. Rev. Endocrinol. 9, 13–27 (2013).

    PubMed  Google Scholar 

  7. 7.

    Vandevijvere, S., Chow, C. C., Hall, K. D., Umali, E. & Swinburn, B. A. Increased food energy supply as a major driver of the obesity epidemic: a global analysis. Bull. World Health Organ. 93, 446–456 (2015).

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Rico-Campa, A. et al. Association between consumption of ultra-processed foods and all cause mortality: SUN prospective cohort study. BMJ 365, l1949 (2019). The main finding of this study is that a higher consumption of ultra-processed foods (>4 servings daily) was independently associated with a 62% increased hazard for all-cause mortality.

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Guthold, R., Stevens, G. A., Riley, L. M. & Bull, F. C. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1.9 million participants. Lancet Glob. Health 6, e1077–e1086 (2018). This study analyses data from 358 surveys across 168 countries, including 1.9 million participants, and shows an increased prevalence of insufficient physical activity, which does not meet the 2025 target meaning a higher risk of morbidity and mortality.

    PubMed  Google Scholar 

  10. 10.

    Compernolle, S. et al. Mediating role of energy-balance related behaviors in the association of neighborhood socio-economic status and residential area density with BMI: the SPOTLIGHT study. Prev. Med. 86, 84–91 (2016).

    PubMed  Google Scholar 

  11. 11.

    Westerterp, K. R. & Speakman, J. R. Physical activity energy expenditure has not declined since the 1980s and matches energy expenditures of wild mammals. Int. J. Obes. 32, 1256–1263 (2008).

    CAS  Google Scholar 

  12. 12.

    Hand, G. A., Shook, R. P., Hill, J. O., Giacobbi, P. R. & Blair, S. N. Energy flux: staying in energy balance at a high level is necessary to prevent weight gain for most people. Expert. Rev. Endocrinol. Metab. 10, 599–605 (2015).

    CAS  PubMed  Google Scholar 

  13. 13.

    Manore, M. M., Larson-Meyer, D. E., Lindsay, A. R., Hongu, N. & Houtkooper, L. Dynamic energy balance: an integrated framework for discussing diet and physical activity in obesity prevention — is it more than eating less and exercising more? Nutrients 9, E905 (2017). Five main issues are highlighted in this review: the meaning of dynamic versus static energy balance; the role of physical activity in weight control; the role of physical activity in appetite regulation; the concept of energy flux; and the integration of dynamic energy balance into obesity prevention programmes.

    PubMed  Google Scholar 

  14. 14.

    Romijn, J. A. et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am. J. Physiol. 265, E380–E391 (1993).

    CAS  PubMed  Google Scholar 

  15. 15.

    Rarick, K. R. et al. Energy flux, more so than energy balance, protein intake, or fitness level, influences insulin-like growth factor-I system responses during 7 days of increased physical activity. J. Appl. Physiol. 103, 1613–1621 (2007).

    CAS  PubMed  Google Scholar 

  16. 16.

    Beaulieu, K., Hopkins, M., Blundell, J. & Finlayson, G. Impact of physical activity level and dietary fat content on passive overconsumption of energy in non-obese adults. Int. J. Behav. Nutr. Phys. Act. 14, 14 (2017).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Finucane, M. M. et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 377, 557–567 (2011).

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    San-Cristobal, R. et al. Analysis of dietary pattern impact on weight status for personalised nutrition through on-line advice: the Food4Me Spanish cohort. Nutrients 7, 9523–9537 (2015).

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Anand, S. S. et al. Food consumption and its impact on cardiovascular disease: importance of solutions focused on the globalized food system: a report from the workshop convened by the World Heart Federation. J. Am. Coll. Cardiol. 66, 1590–1614 (2015).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Huang, Y. et al. Adoption and design of emerging dietary policies to improve cardiometabolic health in the US. Curr. Atheroscler. Rep. 20, 25 (2018).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Mozaffarian, D., Angell, S. Y., Lang, T. & Rivera, J. A. Role of government policy in nutrition — barriers to and opportunities for healthier eating. BMJ 361, k2426 (2018). The authors review the different strategies governments can use to improve nutrition and health in order to tackle the current nutritional problems, with a focus on obesity and comorbidities.

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Goodpaster, B. H. et al. Effects of diet and physical activity interventions on weight loss and cardiometabolic risk factors in severely obese adults: a randomized trial. JAMA 304, 1795–1802 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Speakman, J. R. & Westerterp, K. R. Associations between energy demands, physical activity, and body composition in adult humans between 18 and 96y of age. Am. J. Clin. Nutr. 92, 826–834 (2010).

    CAS  PubMed  Google Scholar 

  24. 24.

    Navas-Carretero, S. et al. Higher vegetable protein consumption, assessed by an isoenergetic macronutrient exchange model, is associated with a lower presence of overweight and obesity in the web-based Food4me European study. Int. J. Food Sci. Nutr. 70, 240–253 (2019).

    CAS  PubMed  Google Scholar 

  25. 25.

    Cuevas-Sierra, A., Ramos-Lopez, O., Riezu-Boj, J. I., Milagro, F. I. & Martinez, J. A. Diet, gut microbiota, and obesity: links with host genetics and epigenetics and potential applications. Adv. Nutr. 10, S17–S30 (2019).

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Lavie, C. J., De Schutter, A. & Milani, R. V. Healthy obese versus unhealthy lean: the obesity paradox. Nat. Rev. Endocrinol. 11, 55–62 (2015).

    PubMed  Google Scholar 

  27. 27.

    Chaput, J. P. & Tremblay, A. The glucostatic theory of appetite control and the risk of obesity and diabetes. Int. J. Obes. 33, 46–53 (2009).

    Google Scholar 

  28. 28.

    Mayer, J. Glucostatic mechanism of regulation of food intake. N. Engl. J. Med. 249, 13–16 (1953).

    CAS  PubMed  Google Scholar 

  29. 29.

    Melanson, K. J., Westerterp-Plantenga, M. S., Campfield, L. A. & Saris, W. H. Blood glucose and meal patterns in time-blinded males, after aspartame, carbohydrate, and fat consumption, in relation to sweetness perception. Br. J. Nutr. 82, 437–446 (1999).

    CAS  PubMed  Google Scholar 

  30. 30.

    Augustin, L. S. et al. Glycemic index, glycemic load and glycemic response: an international scientific consensus summit from the International Carbohydrate Quality Consortium (ICQC). Nutr. Metab. Cardiovasc. Dis. 25, 795–815 (2015).

    CAS  PubMed  Google Scholar 

  31. 31.

    Santiago, S. et al. Carbohydrate quality, weight change and incident obesity in a Mediterranean cohort: the SUN project. Eur. J. Clin. Nutr. 69, 297–302 (2015).

    CAS  PubMed  Google Scholar 

  32. 32.

    Smith, J. D. et al. Changes in intake of protein foods, carbohydrate amount and quality, and long-term weight change: results from 3 prospective cohorts. Am. J. Clin. Nutr. 101, 1216–1224 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Reynolds, A. et al. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet 393, 434–445 (2019).

    CAS  PubMed  Google Scholar 

  34. 34.

    Willett, W. C. Dietary fat and obesity: an unconvincing relation. Am. J. Clin. Nutr. 68, 1149–1150 (1998).

    CAS  PubMed  Google Scholar 

  35. 35.

    Mellinkoff, S. M., Frankland, M., Boyle, D. & Greipel, M. Relationship between serum amino acid concentration and fluctuations in appetite. J. Appl. Physiol. 8, 535–538 (1956).

    CAS  PubMed  Google Scholar 

  36. 36.

    Drummen, M., Tischmann, L., Gatta-Cherifi, B., Adam, T. & Westerterp-Plantenga, M. Dietary protein and energy balance in relation to obesity and co-morbidities. Front. Endocrinol. 9, 443 (2018).

    Google Scholar 

  37. 37.

    Woods, S. C., Seeley, R. J., Porte, D. Jr. & Schwartz, M. W. Signals that regulate food intake and energy homeostasis. Science 280, 1378–1383 (1998).

    CAS  PubMed  Google Scholar 

  38. 38.

    Karhunen, L. J., Juvonen, K. R., Huotari, A., Purhonen, A. K. & Herzig, K. H. Effect of protein, fat, carbohydrate and fibre on gastrointestinal peptide release in humans. Regul. Pept. 149, 70–78 (2008).

    CAS  PubMed  Google Scholar 

  39. 39.

    Beaumont, M. et al. Heritable components of the human fecal microbiome are associated with visceral fat. Genome Biol. 17, 189 (2016).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Bray, G. A. Static theories in a dynamic world: a glucodynamic theory of food intake. Obes. Res. 4, 489–492 (1996).

    CAS  PubMed  Google Scholar 

  41. 41.

    Boule, N. G. et al. Glucose homeostasis predicts weight gain: prospective and clinical evidence. Diabetes Metab. Res. Rev. 24, 123–129 (2008).

    CAS  PubMed  Google Scholar 

  42. 42.

    Kennedy, G. C. The development with age of hypothalamic restraint upon the appetite of the rat. J. Endocrinol. 16, 9–17 (1957).

    CAS  PubMed  Google Scholar 

  43. 43.

    Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    CAS  PubMed  Google Scholar 

  44. 44.

    Martinez, J. A. Body-weight regulation: causes of obesity. Proc. Nutr. Soc. 59, 337–345 (2000).

    CAS  PubMed  Google Scholar 

  45. 45.

    Hopkins, M. & Blundell, J. E. in Appetite and Food Intake: Central Control (ed. Harris, R. B. S.) 259–276 (CRC Press/Taylor & Francis, 2017).

  46. 46.

    Farias, M. M., Cuevas, A. M. & Rodriguez, F. Set-point theory and obesity. Metab. Syndr. Relat. Disord. 9, 85–89 (2011).

    PubMed  Google Scholar 

  47. 47.

    Hall, K. D. & Guo, J. Obesity energetics: body weight regulation and the effects of diet composition. Gastroenterology 152, 1718–1727.e3 (2017).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Mendonca, R. D. et al. Ultraprocessed food consumption and risk of overweight and obesity: the University of Navarra Follow-Up (SUN) cohort study. Am. J. Clin. Nutr. 104, 1433–1440 (2016).

    PubMed  Google Scholar 

  49. 49.

    Berthoud, H. R., Lenard, N. R. & Shin, A. C. Food reward, hyperphagia, and obesity. Am. J. Physiol. Regul. Integr. Comp. Physiol 300, R1266–R1277 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Berthoud, H. R. & Zheng, H. Modulation of taste responsiveness and food preference by obesity and weight loss. Physiol. Behav. 107, 527–532 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Francis, H. M. & Stevenson, R. J. Higher reported saturated fat and refined sugar intake is associated with reduced hippocampal-dependent memory and sensitivity to interoceptive signals. Behav. Neurosci. 125, 943–955 (2011).

    PubMed  Google Scholar 

  52. 52.

    Ochoa, M., Lalles, J. P., Malbert, C. H. & Val-Laillet, D. Dietary sugars: their detection by the gut-brain axis and their peripheral and central effects in health and diseases. Eur. J. Nutr. 54, 1–24 (2015).

    CAS  PubMed  Google Scholar 

  53. 53.

    Lowette, K., Roosen, L., Tack, J. & Vanden Berghe, P. Effects of high-fructose diets on central appetite signaling and cognitive function. Front. Nutr. 2, 5 (2015).

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Page, K. A. et al. Effects of fructose vs glucose on regional cerebral blood flow in brain regions involved with appetite and reward pathways. JAMA 309, 63–70 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Witkamp, R. F. The role of fatty acids and their endocannabinoid-like derivatives in the molecular regulation of appetite. Mol. Asp. Med. 64, 45–67 (2018).

    CAS  Google Scholar 

  56. 56.

    Veldhorst, M. A., Westerterp, K. R. & Westerterp-Plantenga, M. S. Gluconeogenesis and protein-induced satiety. Br. J. Nutr. 107, 595–600 (2012).

    CAS  PubMed  Google Scholar 

  57. 57.

    Mirzaei, K. et al. Variants in glucose- and circadian rhythm-related genes affect the response of energy expenditure to weight-loss diets: the POUNDS LOST Trial. Am. J. Clin. Nutr. 99, 392–399 (2014).

    CAS  PubMed  Google Scholar 

  58. 58.

    Oosterman, J. E., Kalsbeek, A., la Fleur, S. E. & Belsham, D. D. Impact of nutrients on circadian rhythmicity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308, R337–R350 (2015).

    CAS  PubMed  Google Scholar 

  59. 59.

    Yon, M. A., Mauger, S. L. & Pickavance, L. C. Relationships between dietary macronutrients and adult neurogenesis in the regulation of energy metabolism. Br. J. Nutr. 109, 1573–1589 (2013).

    CAS  PubMed  Google Scholar 

  60. 60.

    Seeley, R. J. & Woods, S. C. Monitoring of stored and available fuel by the CNS: implications for obesity. Nat. Rev. Neurosci. 4, 901–909 (2003).

    CAS  PubMed  Google Scholar 

  61. 61.

    Westerterp-Plantenga, M. S. Sleep, circadian rhythm and body weight: parallel developments. Proc. Nutr. Soc. 75, 431–439 (2016).

    CAS  PubMed  Google Scholar 

  62. 62.

    Goodpaster, B. H. & Sparks, L. M. Metabolic flexibility in health and disease. Cell Metab. 25, 1027–1036 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Battaglia, G. M., Zheng, D., Hickner, R. C. & Houmard, J. A. Effect of exercise training on metabolic flexibility in response to a high-fat diet in obese individuals. Am. J. Physiol. Endocrinol. Metab. 303, E1440–E1445 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Li, T. & Chiang, J. Y. Bile acid signaling in metabolic disease and drug therapy. Pharmacol. Rev. 66, 948–983 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Shin, H. S., Ingram, J. R., McGill, A. T. & Poppitt, S. D. Lipids, CHOs, proteins: can all macronutrients put a ‘brake’ on eating? Physiol. Behav. 120, 114–123 (2013).

    CAS  PubMed  Google Scholar 

  66. 66.

    Ronveaux, C. C., Tome, D. & Raybould, H. E. Glucagon-like peptide 1 interacts with ghrelin and leptin to regulate glucose metabolism and food intake through vagal afferent neuron signaling. J. Nutr. 145, 672–680 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Efeyan, A., Comb, W. C. & Sabatini, D. M. Nutrient-sensing mechanisms and pathways. Nature 517, 302–310 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    van Baak, M. A. & Astrup, A. Consumption of sugars and body weight. Obes. Rev. 10, 9–23 (2009).

    PubMed  Google Scholar 

  69. 69.

    Du, H. & Feskens, E. Dietary determinants of obesity. Acta Cardiol. 65, 377–386 (2010).

    PubMed  Google Scholar 

  70. 70.

    Bhardwaj, B., O’Keefe, E. L. & O’Keefe, J. H. Death by carbs: added sugars and refined carbohydrates cause diabetes and cardiovascular disease in Asian Indians. Mo. Med. 113, 395–400 (2016).

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Saris, W. H. et al. Randomized controlled trial of changes in dietary carbohydrate/fat ratio and simple vs complex carbohydrates on body weight and blood lipids: the CARMEN study. The carbohydrate ratio management in European national diets. Int. J. Obes. Relat. Metab. Disord. 24, 1310–1318 (2000).

    CAS  PubMed  Google Scholar 

  72. 72.

    Brehm, B. J., Seeley, R. J., Daniels, S. R. & D’Alessio, D. A. A randomized trial comparing a very low carbohydrate diet and a calorie-restricted low fat diet on body weight and cardiovascular risk factors in healthy women. J. Clin. Endocrinol. Metab. 88, 1617–1623 (2003).

    CAS  PubMed  Google Scholar 

  73. 73.

    Forouhi, N. G., Krauss, R. M., Taubes, G. & Willett, W. Dietary fat and cardiometabolic health: evidence, controversies, and consensus for guidance. BMJ 361, k2139 (2018).

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Aller, E. E., Abete, I., Astrup, A., Martinez, J. A. & van Baak, M. A. Starches, sugars and obesity. Nutrients 3, 341–369 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Malik, V. S., Popkin, B. M., Bray, G. A., Despres, J. P. & Hu, F. B. Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation 121, 1356–1364 (2010).

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    Stanhope, K. L. Sugar consumption, metabolic disease and obesity: the state of the controversy. Crit. Rev. Clin. Lab. Sci. 53, 52–67 (2016).

    CAS  PubMed  Google Scholar 

  77. 77.

    Johnson, R. J., Sanchez-Lozada, L. G., Andrews, P. & Lanaspa, M. A. Perspective: a historical and scientific perspective of sugar and its relation with obesity and diabetes. Adv. Nutr. 8, 412–422 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Bray, G. A. & Popkin, B. M. Dietary fat intake does affect obesity! Am. J. Clin. Nutr. 68, 1157–1173 (1998).

    CAS  PubMed  Google Scholar 

  79. 79.

    Lawrence, G. D. Dietary fats and health: dietary recommendations in the context of scientific evidence. Adv. Nutr. 4, 294–302 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Gulati, S. & Misra, A. Abdominal obesity and type 2 diabetes in Asian Indians: dietary strategies including edible oils, cooking practices and sugar intake. Eur. J. Clin. Nutr. 71, 850–857 (2017).

    CAS  PubMed  Google Scholar 

  81. 81.

    Bes-Rastrollo, M. et al. Olive oil consumption and weight change: the SUN prospective cohort study. Lipids 41, 249–256 (2006).

    CAS  PubMed  Google Scholar 

  82. 82.

    Beulen, Y. et al. Quality of dietary fat intake and body weight and obesity in a Mediterranean population: secondary analyses within the PREDIMED trial. Nutrients 10, 2011 (2018).

    CAS  PubMed Central  Google Scholar 

  83. 83.

    Martinez-Gonzalez, M. A. & Bes-Rastrollo, M. Nut consumption, weight gain and obesity: epidemiological evidence. Nutr. Metab. Cardiovasc. Dis. 21, S40–S45 (2011).

    PubMed  Google Scholar 

  84. 84.

    Martinez, K. B., Leone, V. & Chang, E. B. Western diets, gut dysbiosis, and metabolic diseases: are they linked? Gut Microbes 8, 130–142 (2017).

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    Veldhorst, M. A., Westerterp, K. R., van Vught, A. J. & Westerterp-Plantenga, M. S. Presence or absence of carbohydrates and the proportion of fat in a high-protein diet affect appetite suppression but not energy expenditure in normal-weight human subjects fed in energy balance. Br. J. Nutr. 104, 1395–1405 (2010).

    CAS  PubMed  Google Scholar 

  86. 86.

    Vergnaud, A. C. et al. Meat consumption and prospective weight change in participants of the EPIC-PANACEA study. Am. J. Clin. Nutr. 92, 398–407 (2010).

    CAS  PubMed  Google Scholar 

  87. 87.

    Fogelholm, M. et al. PREVIEW: prevention of diabetes through lifestyle intervention and population studies in Europe and around the world. Design, methods, and baseline participant description of an adult cohort enrolled into a three-year randomised clinical trial. Nutrients 9, 632 (2017).

    PubMed Central  Google Scholar 

  88. 88.

    Feskens, E. J., Sluik, D. & Du, H. The association between diet and obesity in specific European cohorts: DiOGenes and EPIC-PANACEA. Curr. Obes. Rep. 3, 67–78 (2014).

    PubMed  Google Scholar 

  89. 89.

    Handjieva-Darlenska, T. et al. Clinical correlates of weight loss and attrition during a 10-week dietary intervention study: results from the NUGENOB project. Obes. Facts 5, 928–936 (2012).

    PubMed  Google Scholar 

  90. 90.

    Abete, I., Astrup, A., Martinez, J. A., Thorsdottir, I. & Zulet, M. A. Obesity and the metabolic syndrome: role of different dietary macronutrient distribution patterns and specific nutritional components on weight loss and maintenance. Nutr. Rev. 68, 214–231 (2010).

    PubMed  Google Scholar 

  91. 91.

    Larsen, T. M. et al. Diets with high or low protein content and glycemic index for weight-loss maintenance. N. Engl. J. Med. 363, 2102–2113 (2010). This is the main article from the DIOGenes study, which was a large European study, and results indicate that a modest increase in protein content and a modest reduction in the glycaemic index of diets leads to an improvement in study completion and maintenance of weight loss.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    van Baak, M. A. & Mariman, E. C. M. Mechanisms of weight regain after weight loss — the role of adipose tissue. Nat. Rev. Endocrinol. 15, 274–287 (2019). In this review, the authors try to show how weight loss-induced variations in cellular stress, extracellular matrix remodelling, inflammatory responses, adipokine secretion and lipolysis are associated with the weight regained after successful weight loss. Weight regain could, at least in part, depend on these factors.

    PubMed  Google Scholar 

  93. 93.

    Mozaffarian, D. Food and weight gain: time to end our fear of fat. Lancet Diabetes Endocrinol. 4, 633–635 (2016).

    PubMed  Google Scholar 

  94. 94.

    Bray, G. A. et al. The influence of different fats and fatty acids on obesity, insulin resistance and inflammation. J. Nutr. 132, 2488–2491 (2002).

    CAS  PubMed  Google Scholar 

  95. 95.

    Ho, K. K. Y. Diet-induced thermogenesis: fake friend or foe? J. Endocrinol. 238, R185–R191 (2018).

    CAS  PubMed  Google Scholar 

  96. 96.

    Westerterp-Plantenga, M. S. Effects of energy density of daily food intake on long-term energy intake. Physiol. Behav. 81, 765–771 (2004).

    CAS  PubMed  Google Scholar 

  97. 97.

    Astrup, A. & Tremblay, A. in Introduction to Human Nutrition Ch. 3 (eds Gibney, M. J., Lanham-New, S. A., Cassidy, A. & Vorster, H. H.) 31–48 (John Wiley & Sons, 2009).

  98. 98.

    Ferguson, L. R. et al. Guide and position of the International Society of Nutrigenetics/Nutrigenomics on personalised nutrition: part 1 — fields of precision nutrition. J. Nutrigenet. Nutrigenomics 9, 12–27 (2016).

    PubMed  Google Scholar 

  99. 99.

    Kohlmeier, M. et al. Guide and position of the International Society of Nutrigenetics/Nutrigenomics on personalized nutrition: part 2 — ethics, challenges and endeavors of precision nutrition. J. Nutrigenet. Nutrigenomics 9, 28–46 (2016).

    PubMed  Google Scholar 

  100. 100.

    Martinez, J. A., Navas-Carretero, S., Saris, W. H. & Astrup, A. Personalized weight loss strategies — the role of macronutrient distribution. Nat. Rev. Endocrinol. 10, 749–760 (2014). This review discusses all the available systematic reviews and meta-analyses, and summarizes the main results of randomized controlled intervention trials that assess the influence of macronutrient composition on weight management. One of the key points is that experts generally agree that weight-loss strategies should aim to achieve long-term maintenance of a healthy body weight.

    CAS  PubMed  Google Scholar 

  101. 101.

    El-Sayed Moustafa, J. S. & Froguel, P. From obesity genetics to the future of personalized obesity therapy. Nat. Rev. Endocrinol. 9, 402–413 (2013).

    CAS  PubMed  Google Scholar 

  102. 102.

    Tessier, F., Fontaine-Bisson, B., Lefebvre, J. F., El-Sohemy, A. & Roy-Gagnon, M. H. Investigating gene-gene and gene-environment interactions in the association between overnutrition and obesity-related phenotypes. Front. Genet. 10, 151 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Goni, L., Cuervo, M., Milagro, F. I. & Martinez, J. A. A genetic risk tool for obesity predisposition assessment and personalized nutrition implementation based on macronutrient intake. Genes Nutr. 10, 445 (2015).

    PubMed  Google Scholar 

  104. 104.

    Torkamani, A., Wineinger, N. E. & Topol, E. J. The personal and clinical utility of polygenic risk scores. Nat. Rev. Genet. 19, 581–590 (2018). This review tries to rationalize how the initial promising results of DNA testing regarding personalized medicine has resulted in no or little effect of associations with diseases. Nevertheless, efforts have begun to demonstrate the utility of polygenic risk profiling to identify groups of individuals who could benefit from the knowledge of their probabilistic susceptibility to disease.

    CAS  PubMed  Google Scholar 

  105. 105.

    Dougkas, A., Yaqoob, P., Givens, D. I., Reynolds, C. K. & Minihane, A. M. The impact of obesity-related SNP on appetite and energy intake. Br. J. Nutr. 110, 1151–1156 (2013).

    CAS  PubMed  Google Scholar 

  106. 106.

    Melhorn, S. J. et al. FTO genotype impacts food intake and corticolimbic activation. Am. J. Clin. Nutr. 107, 145–154 (2018).

    PubMed  PubMed Central  Google Scholar 

  107. 107.

    Livingstone, K. M. et al. Associations between FTO genotype and total energy and macronutrient intake in adults: a systematic review and meta-analysis. Obes. Rev. 16, 666–678 (2015).

    CAS  PubMed  Google Scholar 

  108. 108.

    Qi, L., Kraft, P., Hunter, D. J. & Hu, F. B. The common obesity variant near MC4R gene is associated with higher intakes of total energy and dietary fat, weight change and diabetes risk in women. Hum. Mol. Genet. 17, 3502–3508 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Drabsch, T., Gatzemeier, J., Pfadenhauer, L., Hauner, H. & Holzapfel, C. Associations between single nucleotide polymorphisms and total energy, carbohydrate, and fat intakes: a systematic review. Adv. Nutr. 9, 425–453 (2018).

    PubMed  PubMed Central  Google Scholar 

  110. 110.

    Martinez, J. A. et al. Obesity risk is associated with carbohydrate intake in women carrying the Gln27Glu beta2-adrenoceptor polymorphism. J. Nutr. 133, 2549–2554 (2003).

    CAS  PubMed  Google Scholar 

  111. 111.

    Marti, A., Corbalan, M. S., Martinez-Gonzalez, M. A., Forga, L. & Martinez, J. A. CHO intake alters obesity risk associated with Pro12Ala polymorphism of PPARgamma gene. J. Physiol. Biochem. 58, 219–220 (2002).

    CAS  PubMed  Google Scholar 

  112. 112.

    Santos, J. L. et al. Genotype-by-nutrient interactions assessed in European obese women. A case-only study. Eur. J. Nutr. 45, 454–462 (2006).

    CAS  PubMed  Google Scholar 

  113. 113.

    Qi, Q. et al. Sugar-sweetened beverages and genetic risk of obesity. N. Engl. J. Med. 367, 1387–1396 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Rukh, G., Ericson, U., Andersson-Assarsson, J., Orho-Melander, M. & Sonestedt, E. Dietary starch intake modifies the relation between copy number variation in the salivary amylase gene and BMI. Am. J. Clin. Nutr. 106, 256–262 (2017).

    CAS  PubMed  Google Scholar 

  115. 115.

    Falchi, M. et al. Low copy number of the salivary amylase gene predisposes to obesity. Nat. Genet. 46, 492–497 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Cyrus, C. et al. Analysis of the impact of common polymorphisms of the FTO and MC4R genes with the risk of severe obesity in Saudi Arabian population. Genet. Test. Mol. Biomarkers 22, 170–177 (2018).

    CAS  PubMed  Google Scholar 

  117. 117.

    Labayen, I. et al. Dietary fat intake modifies the influence of the FTO rs9939609 polymorphism on adiposity in adolescents: the HELENA cross-sectional study. Nutr. Metab. Cardiovasc. Dis. 26, 937–943 (2016).

    CAS  PubMed  Google Scholar 

  118. 118.

    Corella, D. et al. APOA5 gene variation modulates the effects of dietary fat intake on body mass index and obesity risk in the Framingham Heart Study. J. Mol. Med. 85, 119–128 (2007).

    CAS  PubMed  Google Scholar 

  119. 119.

    Sanchez-Moreno, C. et al. APOA5 gene variation interacts with dietary fat intake to modulate obesity and circulating triglycerides in a Mediterranean population. J. Nutr. 141, 380–385 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Memisoglu, A. et al. Interaction between a peroxisome proliferator-activated receptor gamma gene polymorphism and dietary fat intake in relation to body mass. Hum. Mol. Genet. 12, 2923–2929 (2003).

    CAS  PubMed  Google Scholar 

  121. 121.

    Rosado, E. L., Bressan, J., Martinez, J. A. & Marques-Lopes, I. Interactions of the PPARgamma2 polymorphism with fat intake affecting energy metabolism and nutritional outcomes in obese women. Ann. Nutr. Metab. 57, 242–250 (2010).

    CAS  PubMed  Google Scholar 

  122. 122.

    Garaulet, M., Smith, C. E., Hernandez-Gonzalez, T., Lee, Y. C. & Ordovas, J. M. PPARgamma Pro12Ala interacts with fat intake for obesity and weight loss in a behavioural treatment based on the Mediterranean diet. Mol. Nutr. Food Res. 55, 1771–1779 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Phillips, C. M. et al. High dietary saturated fat intake accentuates obesity risk associated with the fat mass and obesity-associated gene in adults. J. Nutr. 142, 824–831 (2012).

    CAS  PubMed  Google Scholar 

  124. 124.

    Lai, C. Q. et al. Epigenomics and metabolomics reveal the mechanism of the APOA2-saturated fat intake interaction affecting obesity. Am. J. Clin. Nutr. 108, 188–200 (2018).

    PubMed  PubMed Central  Google Scholar 

  125. 125.

    Corella, D. et al. Association between the APOA2 promoter polymorphism and body weight in Mediterranean and Asian populations: replication of a gene-saturated fat interaction. Int. J. Obes. 35, 666–675 (2011).

    CAS  Google Scholar 

  126. 126.

    Celis-Morales, C. A. et al. Dietary fat and total energy intake modifies the association of genetic profile risk score on obesity: evidence from 48,170 UK Biobank participants. Int. J. Obes. 41, 1761–1768 (2017). The aim of this cross-sectional study is to ascertain if a validated genetic profile risk score for obesity associated to body mass index or waist circumference is influenced by macronutrient intake; the authors studied a sample of 48,170 participants and suggest that body weight might benefit from a reduced fat and energy intake in those individuals with higher genetic risk scores.

    CAS  Google Scholar 

  127. 127.

    Casas-Agustench, P. et al. Saturated fat intake modulates the association between an obesity genetic risk score and body mass index in two US populations. J. Acad. Nutr. Diet. 114, 1954–1966 (2014).

    PubMed  PubMed Central  Google Scholar 

  128. 128.

    Qi, Q. et al. FTO genetic variants, dietary intake and body mass index: insights from 177,330 individuals. Hum. Mol. Genet. 23, 6961–6972 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Pei, Y. F. et al. Meta-analysis of genome-wide association data identifies novel susceptibility loci for obesity. Hum. Mol. Genet. 23, 820–830 (2014).

    CAS  PubMed  Google Scholar 

  130. 130.

    Suhre, K. et al. Connecting genetic risk to disease end points through the human blood plasma proteome. Nat. Commun. 8, 14357 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Hooton, H. et al. Dietary factors impact on the association between CTSS variants and obesity related traits. PLoS One 7, e40394 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Merritt, D. C., Jamnik, J. & El-Sohemy, A. FTO genotype, dietary protein intake, and body weight in a multiethnic population of young adults: a cross-sectional study. Genes Nutr. 13, 4 (2018).

    PubMed  PubMed Central  Google Scholar 

  133. 133.

    Turcot, V. et al. Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nat. Genet. 50, 26–41 (2018).

    CAS  PubMed  Google Scholar 

  134. 134.

    Celis-Morales, C. et al. Effect of personalized nutrition on health-related behaviour change: evidence from the Food4Me European randomized controlled trial. Int. J. Epidemiol. 46, 578–588 (2017).

    PubMed  Google Scholar 

  135. 135.

    San-Cristobal, R. et al. Mediterranean diet adherence and genetic background roles within a web-based nutritional intervention: the Food4Me study. Nutrients 9, 1107 (2017). After analysing the adherence to a Mediterranean diet in the Food4Me cohort and associating the results to genetic risk score, a higher adherence to a Mediterranean diet induces beneficial effects on metabolic outcomes, which can be affected by the genetic background in some specific markers.

    PubMed Central  Google Scholar 

  136. 136.

    Fallaize, R. et al. Association between diet-quality scores, adiposity, total cholesterol and markers of nutritional status in European adults: findings from the Food4Me study. Nutrients 10, 49 (2018).

    PubMed Central  Google Scholar 

  137. 137.

    Ramos-Lopez, O. et al. DNA methylation patterns at sweet taste transducing genes are associated with BMI and carbohydrate intake in an adult population. Appetite 120, 230–239 (2018).

    CAS  PubMed  Google Scholar 

  138. 138.

    Milagro, F. I., Mansego, M. L., De Miguel, C. & Martinez, J. A. Dietary factors, epigenetic modifications and obesity outcomes: progresses and perspectives. Mol. Asp. Med. 34, 782–812 (2013).

    CAS  Google Scholar 

  139. 139.

    Aronica, L. et al. A systematic review of studies of DNA methylation in the context of a weight loss intervention. Epigenomics 9, 769–787 (2017).

    CAS  PubMed  Google Scholar 

  140. 140.

    Mohammadkhah, A. I., Simpson, E. B., Patterson, S. G. & Ferguson, J. F. Development of the gut microbiome in children, and lifetime implications for obesity and cardiometabolic disease. Children 5, 160 (2018).

    PubMed Central  Google Scholar 

  141. 141.

    Rampelli, S. et al. Pre-obese children’s dysbiotic gut microbiome and unhealthy diets may predict the development of obesity. Commun. Biol. 1, 222 (2018).

    PubMed  PubMed Central  Google Scholar 

  142. 142.

    Moreno-Indias, I., Cardona, F., Tinahones, F. J. & Queipo-Ortuno, M. I. Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Front. Microbiol. 5, 190 (2014).

    PubMed  PubMed Central  Google Scholar 

  143. 143.

    Backhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004).

    PubMed  Google Scholar 

  144. 144.

    Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013). Individuals in a Danish population with a low bacterial richness (23% of the population) were characterized by more marked overall adiposity, insulin resistance and dyslipidaemia and a more pronounced inflammatory phenotype than individuals with high bacterial richness.

    Google Scholar 

  145. 145.

    Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).

    CAS  PubMed  Google Scholar 

  146. 146.

    Ley, R. E. et al. Obesity alters gut microbial ecology. Proc. Natl Acad. Sci. USA 102, 11070–11075 (2005).

    CAS  PubMed  Google Scholar 

  147. 147.

    Zhang, H. et al. Human gut microbiota in obesity and after gastric bypass. Proc. Natl Acad. Sci. USA 106, 2365–2370 (2009).

    CAS  PubMed  Google Scholar 

  148. 148.

    Cani, P. D. et al. Endocannabinoids — at the crossroads between the gut microbiota and host metabolism. Nat. Rev. Endocrinol. 12, 133–143 (2016). In this review, the authors show that the endocannabinoid system and related bioactive lipids strongly contribute to several specific physiological processes and are a characteristic of obesity, type 2 diabetes mellitus and inflammation.

    CAS  PubMed  Google Scholar 

  149. 149.

    Gao, X. et al. Body mass index differences in the gut microbiota are gender specific. Front. Microbiol. 9, 1250 (2018).

    PubMed  PubMed Central  Google Scholar 

  150. 150.

    Heianza, Y. et al. Gut-microbiome-related LCT genotype and 2-year changes in body composition and fat distribution: the POUNDS Lost Trial. Int. J. Obes. 42, 1565–1573 (2018). The authors hypothesize that the gut microbiome regulates host energy metabolism and adiposity by studying 2-year changes in adiposity measures according to the LCT genotype and assigned weight-loss diets.

    Google Scholar 

  151. 151.

    David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014). The authors demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles.

    CAS  PubMed  Google Scholar 

  152. 152.

    Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153.

    Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    PubMed  Google Scholar 

  154. 154.

    Chambers, E. S. et al. Acute oral sodium propionate supplementation raises resting energy expenditure and lipid oxidation in fasted humans. Diabetes Obes. Metab. 20, 1034–1039 (2018).

    CAS  PubMed  Google Scholar 

  155. 155.

    Canfora, E. E. et al. Colonic infusions of short-chain fatty acid mixtures promote energy metabolism in overweight/obese men: a randomized crossover trial. Sci. Rep. 7, 2360 (2017).

    PubMed  PubMed Central  Google Scholar 

  156. 156.

    Schwiertz, A. et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18, 190–195 (2010).

    PubMed  Google Scholar 

  157. 157.

    Rahat-Rozenbloom, S., Fernandes, J., Gloor, G. B. & Wolever, T. M. Evidence for greater production of colonic short-chain fatty acids in overweight than lean humans. Int. J. Obes. 38, 1525–1531 (2014).

    CAS  Google Scholar 

  158. 158.

    Canfora, E. E., Meex, R. C. R., Venema, K. & Blaak, E. E. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat. Rev. Endocrinol. 15, 261–273 (2019). This review outlines the role of products derived from microbial carbohydrate and protein fermentation in relation to obesity and obesity-associated insulin resistance, type 2 diabetes mellitus and nonalcoholic fatty liver disease, and discusses the mechanisms involved.

    CAS  PubMed  Google Scholar 

  159. 159.

    Walker, A. W. et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 5, 220–230 (2011).

    CAS  PubMed  Google Scholar 

  160. 160.

    Duncan, S. H. et al. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl. Env. Microbiol. 73, 1073–1078 (2007).

    CAS  Google Scholar 

  161. 161.

    Wanders, A. J. et al. The effects of bulking, viscous and gel-forming dietary fibres on satiation. Br. J. Nutr. 109, 1330–1337 (2013).

    CAS  PubMed  Google Scholar 

  162. 162.

    Greenhill, C. Obesity: fermentable carbohydrates increase satiety signals. Nat. Rev. Endocrinol. 13, 3 (2017).

    CAS  PubMed  Google Scholar 

  163. 163.

    Li, Z. et al. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut 67, 1269–1279 (2018).

    CAS  PubMed  Google Scholar 

  164. 164.

    Turnbaugh, P. J., Backhed, F., Fulton, L. & Gordon, J. I. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213–223 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. 165.

    Ierardi, E. et al. Macronutrient intakes in obese subjects with or without small intestinal bacterial overgrowth: an alimentary survey. Scand. J. Gastroenterol. 51, 277–280 (2016).

    CAS  PubMed  Google Scholar 

  166. 166.

    Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Backhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).

    CAS  Google Scholar 

  167. 167.

    Neis, E. P., Dejong, C. H. & Rensen, S. S. The role of microbial amino acid metabolism in host metabolism. Nutrients 7, 2930–2946 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. 168.

    Roager, H. M. et al. Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut. Nat. Microbiol. 1, 16093 (2016).

    CAS  PubMed  Google Scholar 

  169. 169.

    Russell, W. R. et al. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am. J. Clin. Nutr. 93, 1062–1072 (2011).

    CAS  PubMed  Google Scholar 

  170. 170.

    Roager, H. M. & Licht, T. R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 9, 3294 (2018).

    PubMed  PubMed Central  Google Scholar 

  171. 171.

    Candido, F. G. et al. Impact of dietary fat on gut microbiota and low-grade systemic inflammation: mechanisms and clinical implications on obesity. Int. J. Food Sci. Nutr. 69, 125–143 (2018).

    CAS  PubMed  Google Scholar 

  172. 172.

    Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. 173.

    Simoes, C. D. et al. Habitual dietary intake is associated with stool microbiota composition in monozygotic twins. J. Nutr. 143, 417–423 (2013).

    CAS  PubMed  Google Scholar 

  174. 174.

    Osterberg, K. L. et al. Probiotic supplementation attenuates increases in body mass and fat mass during high-fat diet in healthy young adults. Obesity 23, 2364–2370 (2015).

    CAS  PubMed  Google Scholar 

  175. 175.

    Hulston, C. J., Churnside, A. A. & Venables, M. C. Probiotic supplementation prevents high-fat, overfeeding-induced insulin resistance in human subjects. Br. J. Nutr. 113, 596–602 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. 176.

    Lang, J. M. et al. Impact of individual traits, saturated fat, and protein source on the gut microbiome. mBio 9, 1604–1618 (2018).

    Google Scholar 

  177. 177.

    Sen, T. et al. Diet-driven microbiota dysbiosis is associated with vagal remodeling and obesity. Physiol. Behav. 173, 305–317 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. 178.

    Jin, Q. et al. Metabolomics and microbiomes as potential tools to evaluate the effects of the Mediterranean diet. Nutrients 11, 207 (2019).

    CAS  PubMed Central  Google Scholar 

  179. 179.

    Kong, L. C. et al. Dietary patterns differently associate with inflammation and gut microbiota in overweight and obese subjects. PLoS One 9, e109434 (2014).

    PubMed  PubMed Central  Google Scholar 

  180. 180.

    Etxeberria, U. et al. Shifts in microbiota species and fermentation products in a dietary model enriched in fat and sucrose. Benef. Microbes 6, 97–111 (2015).

    CAS  PubMed  Google Scholar 

  181. 181.

    Zhang, L. S. & Davies, S. S. Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions. Genome Med. 8, 46 (2016).

    PubMed  PubMed Central  Google Scholar 

  182. 182.

    Le Roy, C. I. et al. Heritable components of the human fecal microbiome are associated with visceral fat. Gut Microbes 9, 61–67 (2018).

    PubMed  Google Scholar 

  183. 183.

    Chua, K. J., Kwok, W. C., Aggarwal, N., Sun, T. & Chang, M. W. Designer probiotics for the prevention and treatment of human diseases. Curr. Opin. Chem. Biol. 40, 8–16 (2017).

    CAS  PubMed  Google Scholar 

  184. 184.

    Salonen, A. et al. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J. 8, 2218–2230 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. 185.

    Jumpertz, R. et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am. J. Clin. Nutr. 94, 58–65 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. 186.

    Dao, M. C. et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65, 426–436 (2016).

    CAS  PubMed  Google Scholar 

  187. 187.

    Menni, C. et al. Gut microbiome diversity and high-fibre intake are related to lower long-term weight gain. Int. J. Obes. 41, 1099–1105 (2017).

    CAS  Google Scholar 

  188. 188.

    Aguirre, M., Bussolo de Souza, C. & Venema, K. The gut microbiota from lean and obese subjects contribute differently to the fermentation of arabinogalactan and inulin. PLoS One 11, e0159236 (2016).

    PubMed  PubMed Central  Google Scholar 

  189. 189.

    Nicolucci, A. C. et al. Prebiotics reduce body fat and alter intestinal microbiota in children who are overweight or with obesity. Gastroenterology 153, 711–722 (2017).

    PubMed  Google Scholar 

  190. 190.

    Mayorga Reyes, L. et al. Correlation between diet and gut bacteria in a population of young adults. Int. J. Food Sci. Nutr. 67, 470–478 (2016).

    PubMed  Google Scholar 

  191. 191.

    Mazlan, N., Horgan, G., Whybrow, S. & Stubbs, J. Effects of increasing increments of fat- and sugar-rich snacks in the diet on energy and macronutrient intake in lean and overweight men. Br. J. Nutr. 96, 596–606 (2006).

    CAS  PubMed  Google Scholar 

  192. 192.

    Rebello, C. J., Liu, A. G., Greenway, F. L. & Dhurandhar, N. V. Dietary strategies to increase satiety. Adv. Food Nutr. Res. 69, 105–182 (2013).

    PubMed  Google Scholar 

  193. 193.

    Torres-Fuentes, C., Schellekens, H., Dinan, T. G. & Cryan, J. F. The microbiota-gut-brain axis in obesity. Lancet Gastroenterol. Hepatol. 2, 747–756 (2017).

    PubMed  Google Scholar 

  194. 194.

    Kristensen, M. & Jensen, M. G. Dietary fibres in the regulation of appetite and food intake. Importance viscosity. Appetite 56, 65–70 (2011).

    CAS  PubMed  Google Scholar 

  195. 195.

    Han, P., Bagenna, B. & Fu, M. The sweet taste signalling pathways in the oral cavity and the gastrointestinal tract affect human appetite and food intake: a review. Int. J. Food Sci. Nutr. 70, 125–135 (2019).

    CAS  PubMed  Google Scholar 

  196. 196.

    Spector, A. C. & Schier, L. A. Behavioral evidence that select carbohydrate stimuli activate T1R-independent receptor mechanisms. Appetite 122, 26–31 (2018).

    PubMed  Google Scholar 

  197. 197.

    Clark, M. J. & Slavin, J. L. The effect of fiber on satiety and food intake: a systematic review. J. Am. Coll. Nutr. 32, 200–211 (2013).

    CAS  PubMed  Google Scholar 

  198. 198.

    Bornet, F. R., Jardy-Gennetier, A. E., Jacquet, N. & Stowell, J. Glycaemic response to foods: impact on satiety and long-term weight regulation. Appetite 49, 535–553 (2007).

    CAS  PubMed  Google Scholar 

  199. 199.

    Keogh, J., Atkinson, F., Eisenhauer, B., Inamdar, A. & Brand-Miller, J. Food intake, postprandial glucose, insulin and subjective satiety responses to three different bread-based test meals. Appetite 57, 707–710 (2011).

    PubMed  Google Scholar 

  200. 200.

    Galarregui, C. et al. Interplay of glycemic index, glycemic load, and dietary antioxidant capacity with insulin resistance in subjects with a cardiometabolic risk profile. Int. J. Mol. Sci. 19, 3662 (2018).

    PubMed Central  Google Scholar 

  201. 201.

    Silva Figueiredo, P. et al. Fatty acids consumption: the role metabolic aspects involved in obesity and its associated disorders. Nutrients 9, 1158 (2017).

    PubMed Central  Google Scholar 

  202. 202.

    Okla, M., Kim, J., Koehler, K. & Chung, S. Dietary factors promoting brown and beige fat development and thermogenesis. Adv. Nutr. 8, 473–483 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. 203.

    Maher, T. & Clegg, M. E. Dietary lipids with potential to affect satiety: mechanisms and evidence. Crit. Rev. Food Sci. Nutr. 59, 1619–1644 (2018).

    PubMed  Google Scholar 

  204. 204.

    Simopoulos, A. P. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients 8, 128 (2016).

    PubMed  PubMed Central  Google Scholar 

  205. 205.

    Duca, F. A., Sakar, Y. & Covasa, M. The modulatory role of high fat feeding on gastrointestinal signals in obesity. J. Nutr. Biochem. 24, 1663–1677 (2013).

    CAS  PubMed  Google Scholar 

  206. 206.

    Trigueros, L. et al. Food ingredients as anti-obesity agents: a review. Crit. Rev. Food Sci. Nutr. 53, 929–942 (2013).

    CAS  PubMed  Google Scholar 

  207. 207.

    Darzi, J., Frost, G. S. & Robertson, M. D. Effects of a novel propionate-rich sourdough bread on appetite and food intake. Eur. J. Clin. Nutr. 66, 789–794 (2012).

    CAS  PubMed  Google Scholar 

  208. 208.

    Ichimura, A., Hara, T. & Hirasawa, A. Regulation of energy homeostasis via GPR120. Front. Endocrinol. 5, 111 (2014).

    Google Scholar 

  209. 209.

    Lorente-Cebrian, S. et al. Role of omega-3 fatty acids in obesity, metabolic syndrome, and cardiovascular diseases: a review of the evidence. J. Physiol. Biochem. 69, 633–651 (2013).

    CAS  PubMed  Google Scholar 

  210. 210.

    Hopkins, M. & Blundell, J. E. Energy balance, body composition, sedentariness and appetite regulation: pathways to obesity. Clin. Sci. 130, 1615–1628 (2016).

    CAS  PubMed  Google Scholar 

  211. 211.

    Leidy, H. J. et al. The role of protein in weight loss and maintenance. Am. J. Clin. Nutr. 101, 1320S–1329S (2015).

    CAS  PubMed  Google Scholar 

  212. 212.

    Gilbert, H. J. & Chandra, N. Editorial overview: carbohydrate-protein interactions and glycosylation: integrating structural biology, informatics and systems modelling to understand glycan structure and glycan-protein interactions. Curr. Opin. Struct. Biol. 40, v–viii (2016).

    PubMed  Google Scholar 

  213. 213.

    Hochstenbach-Waelen, A., Westerterp-Plantenga, M. S., Veldhorst, M. A. & Westerterp, K. R. Single-protein casein and gelatin diets affect energy expenditure similarly but substrate balance and appetite differently in adults. J. Nutr. 139, 2285–2292 (2009).

    CAS  PubMed  Google Scholar 

  214. 214.

    Mars, M., Stafleu, A. & de Graaf, C. Use of satiety peptides in assessing the satiating capacity of foods. Physiol. Behav. 105, 483–488 (2012).

    CAS  PubMed  Google Scholar 

  215. 215.

    Martinez de Morentin, P. B., Urisarri, A., Couce, M. L. & Lopez, M. Molecular mechanisms of appetite and obesity: a role for brain AMPK. Clin. Sci. 130, 1697–1709 (2016).

    PubMed  Google Scholar 

  216. 216.

    Ojha, U. Protein-induced satiation and the calcium-sensing receptor. Diabetes Metab. Syndr. Obes. 11, 45–51 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. 217.

    Tsurugizawa, T., Uneyama, H. & Torii, K. Brain amino acid sensing. Diabetes Obes. Metab. 16, 41–48 (2014).

    CAS  PubMed  Google Scholar 

  218. 218.

    Fowler, S. P. G. Low-calorie sweetener use and energy balance: results from experimental studies in animals, and large-scale prospective studies in humans. Physiol. Behav. 164, 517–523 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

R.S.-C. acknowledges financial support from the Juan de la Cierva Programme — Training Grants of the Spanish State Research Agency of the Spanish Ministerio de Ciencia e Innovación y Ministerio de Universidades (FJC2018-038168-I). R.S.-C., S.N.-C. and J.A.M. were part of the EU project Food4Me supported by the European Commission under the Food, Agriculture, Fisheries and Biotechnology Theme of the 7th Framework Programme for Research and Technological Development (ID no. 265494). M.A.M.-G. acknowledges the support of the European Research Council, Advanced Research Grant, PREDIMED-PLUS (ERC-2013-ADG #340918).

Author information

Affiliations

Authors

Contributions

All authors contributed to all aspects of the manuscript.

Corresponding author

Correspondence to Santiago Navas-Carretero.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks the reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Ileal brake

The delay in gastric emptying and small intestinal transit induced by the presence of certain nutrient solutions or products in the ileum.

Weende approach

The calculation of carbohydrate from the known content of fat, protein and fibre of a food.

Nutrigenetics

The science that identifies and characterizes gene variants associated with differential response to nutrients and relates this variation to diverse disease states.

Exposome

Encompasses life-course environmental exposures (including lifestyle factors) from the prenatal period onwards, including the body’s response through different endogenous metabolic processes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

San-Cristobal, R., Navas-Carretero, S., Martínez-González, M. et al. Contribution of macronutrients to obesity: implications for precision nutrition. Nat Rev Endocrinol 16, 305–320 (2020). https://doi.org/10.1038/s41574-020-0346-8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing