Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A word of caution against excessive protein intake

Abstract

Dietary protein is crucial for human health because it provides essential amino acids for protein synthesis. In addition, dietary protein is more satiating than carbohydrate and fat. Accordingly, many people consider the protein content when purchasing food and beverages and report ‘trying to eat more protein’. The global market for protein ingredients is projected to reach approximately US$90 billion by 2021, largely driven by the growing demand for protein-fortified food products. This Perspective serves as a caution against the trend of protein-enriched diets and provides an evidence-based counterpoint that underscores the potential adverse public health consequences of high protein intake.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Relationship between protein intake and health.
Fig. 2: Effect of protein intake on muscle protein turnover and amino acid oxidation.
Fig. 3: Effect of protein ingestion on muscle protein synthesis and glucose metabolism.

Similar content being viewed by others

References

  1. Westerterp-Plantenga, M. S., Lemmens, S. G. & Westerterp, K. R. Dietary protein—its role in satiety, energetics, weight loss and health. Br. J. Nutr. 108, S105–S112 (2012).

    CAS  PubMed  Google Scholar 

  2. Quatela, A., Callister, R., Patterson, A. & MacDonald-Wicks, L. The energy content and composition of meals consumed after an overnight fast and their effects on diet-induced thermogenesis: a systematic review, meta-analyses and meta-regressions. Nutrients 8, E670 (2017).

    Google Scholar 

  3. Sutton, E. F., Bray, G. A., Burton, J. H., Smith, S. R. & Redman, L. M. No evidence for metabolic adaptation in thermic effect of food by dietary protein. Obesity 24, 1639–1642 (2016).

    CAS  PubMed  Google Scholar 

  4. Deutz, N. E. et al. Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clin. Nutr. 33, 929–936 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bauer, J. et al. Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 14, 542–559 (2013).

    PubMed  Google Scholar 

  6. Drummen, M., Tischmann, L., Gatta-Cherifi, B., Adam, T. & Westerterp-Plantenga, M. Dietary protein and energy balance in relation to obesity and co-morbidities. Front. Endocrinol. 9, 443 (2018).

    Google Scholar 

  7. Wilson, B. Protein mania: the rich world’s new diet obsession. Guardian (Lond.) (4 Jan 2019).

  8. Busetto, L., Marangon, M. & De Stefano, F. High-protein low-carbohydrate diets: what is the rationale? Diabetes. Metab. Res. Rev. 27, 230–232 (2011).

    CAS  PubMed  Google Scholar 

  9. Houston, D. K. et al. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: the Health, Aging, and Body Composition (Health ABC) Study. Am. J. Clin. Nutr. 87, 150–155 (2008).

    CAS  PubMed  Google Scholar 

  10. Chen, Z. et al. Associations of specific dietary protein with longitudinal insulin resistance, prediabetes and type 2 diabetes: the Rotterdam Study. Clin. Nutr. https://doi.org/10.1016/j.clnu.2019.01.021 (2019).

  11. Malik, V. S., Li, Y., Tobias, D. K., Pan, A. & Hu, F. B. Dietary protein intake and risk of type 2 diabetes in US men and women. Am. J. Epidemiol. 183, 715–728 (2016).

    PubMed  PubMed Central  Google Scholar 

  12. Shang, X. et al. Dietary protein intake and risk of type 2 diabetes: results from the Melbourne Collaborative Cohort Study and a meta-analysis of prospective studies. Am. J. Clin. Nutr. 104, 1352–1365 (2016).

    CAS  PubMed  Google Scholar 

  13. Wang, E. T., de Koning, L. & Kanaya, A. M. Higher protein intake is associated with diabetes risk in South Asian Indians: the Metabolic Syndrome and Atherosclerosis in South Asians Living in America (MASALA) study. J. Am. Coll. Nutr. 29, 130–135 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Tinker, L. F. et al. Biomarker-calibrated dietary energy and protein intake associations with diabetes risk among postmenopausal women from the Women’s Health Initiative. Am. J. Clin. Nutr. 94, 1600–1606 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sluijs, I. et al. Dietary intake of total, animal, and vegetable protein and risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-NL study. Diabetes Care 33, 43–48 (2010).

    CAS  PubMed  Google Scholar 

  16. Simila, M. E. et al. Carbohydrate substitution for fat or protein and risk of type 2 diabetes in male smokers. Eur. J. Clin. Nutr. 66, 716–721 (2012).

    CAS  PubMed  Google Scholar 

  17. Freedhoff, Y. & Hall, K. D. Weight loss diet studies: we need help not hype. Lancet 388, 849–851 (2016).

    PubMed  Google Scholar 

  18. Huntriss, R., Campbell, M. & Bedwell, C. The interpretation and effect of a low-carbohydrate diet in the management of type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials. Eur. J. Clin. Nutr. 72, 311–325 (2018).

    CAS  PubMed  Google Scholar 

  19. Thomas, D. D., Istfan, N. W., Bistrian, B. R. & Apovian, C. M. Protein sparing therapies in acute illness and obesity: a review of George Blackburn’s contributions to nutrition science. Metabolism 79, 83–96 (2018).

    CAS  PubMed  Google Scholar 

  20. Wolfe, R. R. The 2017 Sir David P Cuthbertson lecture. Amino acids and muscle protein metabolism in critical care. Clin. Nutr. 37, 1093–1100 (2018).

    CAS  PubMed  Google Scholar 

  21. Klein, S. A primer of nutritional support for gastroenterologists. Gastroenterology 122, 1677–1687 (2002).

    CAS  PubMed  Google Scholar 

  22. Rand, W. M., Pellett, P. L. & Young, V. R. Meta-analysis of nitrogen balance studies for estimating protein requirements in healthy adults. Am. J. Clin. Nutr. 77, 109–127 (2003).

    CAS  PubMed  Google Scholar 

  23. World Health Organization. Protein and amino acid requirements in human nutrition (WHO, 2007).

  24. Motteli, S., Keller, C., Siegrist, M., Barbey, J. & Bucher, T. Consumers’ practical understanding of healthy food choices: a fake food experiment. Br. J. Nutr. 116, 559–566 (2016).

    PubMed  Google Scholar 

  25. Samal, J. R. K. & Samal, I. R. Protein supplements: pros and cons. J. Diet. Suppl. 15, 365–371 (2018).

    CAS  PubMed  Google Scholar 

  26. Aldrich, N. D., Perry, C., Thomas, W., Raatz, S. K. & Reicks, M. Perceived importance of dietary protein to prevent weight gain: a national survey among midlife women. J. Nutr. Educ. Behav. 45, 213–221 (2013).

    PubMed  Google Scholar 

  27. Mintel Press Team. US consumers have a healthy appetite for high protein food. Mintel http://www.mintel.com/press-centre/food-and-drink/us-consumers-have-a-healthy-appetite-for-high-protein-food-the-us-leads-the-way-in-global-launches-of-high-protein-products (2013).

  28. Technavio. Global protein-based food market size to reach USD 91.07 billion by 2021. BusinessWire http://www.businesswire.com/news/home/20170222005951/en/Global-High-Protein-Based-Food-Market-Size (2017).

  29. Grand View Research. Protein ingredients market size, share & trends analysis report by product (plant, animal), by application (food & beverages, infant formulations, personal care & cosmetics), and segment forecasts, 2019–2025 (GVR, 2019).

  30. Mangano, K. M. et al. Dietary protein is associated with musculoskeletal health independently of dietary pattern: the Framingham Third Generation Study. Am. J. Clin. Nutr. 105, 714–722 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Berryman, C. E., Lieberman, H. R., Fulgoni, V. L. 3rd & Pasiakos, S. M. Protein intake trends and conformity with the dietary reference intakes in the United States: analysis of the National Health and Nutrition Examination Survey, 2001–2014. Am. J. Clin. Nutr. 108, 405–413 (2018).

    PubMed  Google Scholar 

  32. National Center for Health Statistics. NCHS nutrition data (NCHS, 2017).

  33. Anderson, J. J. et al. Adiposity among 132 479 UK Biobank participants; contribution of sugar intake vs other macronutrients. Int. J. Epidemiol. 46, 492–501 (2017).

    CAS  PubMed  Google Scholar 

  34. Rennie, M. J., Wackerhage, H., Spangenburg, E. E. & Booth, F. W. Control of the size of the human muscle mass. Annu. Rev. Physiol. 66, 799–828 (2004).

    CAS  PubMed  Google Scholar 

  35. Moore, D. R. et al. Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. Am. J. Clin. Nutr. 89, 161–168 (2009).

    CAS  PubMed  Google Scholar 

  36. van Vliet, S. et al. Dysregulated handling of dietary protein and muscle protein synthesis after mixed-meal ingestion in maintenance hemodialysis patients. Kidney Int. Rep. 3, 1403–1415 (2018).

    PubMed  PubMed Central  Google Scholar 

  37. Bohe, J., Low, A., Wolfe, R. R. & Rennie, M. J. Human muscle protein synthesis is modulated by extracellular, not intramuscular amino acid availability: a dose–response study. J. Physiol. 552, 315–324 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Greenhaff, P. L. et al. Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle. Am. J. Physiol. Endocrinol. Metab. 295, E595–E604 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Heden, T. D. et al. Meal frequency differentially alters postprandial triacylglycerol and insulin concentrations in obese women. Obesity 21, 123–129 (2013).

    CAS  PubMed  Google Scholar 

  40. Magkos, F. et al. One day of overfeeding impairs nocturnal glucose but not fatty acid homeostasis in overweight men. Obesity 22, 435–440 (2014).

    CAS  PubMed  Google Scholar 

  41. Moore, D. R. et al. Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. J. Gerontol. A Biol. Sci. Med. Sci. 70, 57–62 (2015).

    CAS  PubMed  Google Scholar 

  42. Holwerda, A. M. et al. Dose-dependent increases in whole-body net protein balance and dietary protein-derived amino acid incorporation into myofibrillar protein during recovery from resistance exercise in older men. J. Nutr. 149, 221–230 (2019).

    PubMed  PubMed Central  Google Scholar 

  43. Paddon-Jones, D. & Leidy, H. Dietary protein and muscle in older persons. Curr. Opin. Clin. Nutr. Metab. Care 17, 5–11 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Atherton, P. J. et al. Muscle full effect after oral protein: time-dependent concordance and discordance between human muscle protein synthesis and mTORC1 signaling. Am. J. Clin. Nutr. 92, 1080–1088 (2010).

    CAS  PubMed  Google Scholar 

  45. Bohe, J., Low, J. F., Wolfe, R. R. & Rennie, M. J. Latency and duration of stimulation of human muscle protein synthesis during continuous infusion of amino acids. J. Physiol. 532, 575–579 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Mitchell, W. K. et al. Human skeletal muscle is refractory to the anabolic effects of leucine during the postprandial muscle-full period in older men. Clin. Sci. 131, 2643–2653 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Berryman, C. E., Agarwal, S., Lieberman, H. R., Fulgoni, V. L. 3rd & Pasiakos, S. M. Diets higher in animal and plant protein are associated with lower adiposity and do not impair kidney function in US adults. Am. J. Clin. Nutr. 104, 743–749 (2016).

    CAS  PubMed  Google Scholar 

  48. Vergnaud, A. C. et al. Macronutrient composition of the diet and prospective weight change in participants of the EPIC-PANACEA study. PLOS ONE 8, e57300 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hernandez-Alonso, P. et al. High dietary protein intake is associated with an increased body weight and total death risk. Clin. Nutr. 35, 496–506 (2016).

    CAS  PubMed  Google Scholar 

  50. Sahni, S., Mangano, K. M., Hannan, M. T., Kiel, D. P. & McLean, R. R. Higher protein intake is associated with higher lean mass and quadriceps muscle strength in adult men and women. J. Nutr. 145, 1569–1575 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Celis-Morales, C. A. et al. Associations of dietary protein intake with fat-free mass and grip strength: a cross-sectional study in 146,816 UK Biobank participants. Am. J. Epidemiol. 187, 2405–2414 (2018).

    PubMed  Google Scholar 

  52. Tong, T. Y. N., Bradbury, K. E. & Key, T. J. Re: “Associations of dietary protein intake with fat-free mass and grip strength: a cross-sectional study in 146,816 UK Biobank participants”. Am. J. Epidemiol 188, (977–978 (2019).

    Google Scholar 

  53. Zhu, K. et al. Two-year whey protein supplementation did not enhance muscle mass and physical function in well-nourished healthy older postmenopausal women. J. Nutr. 145, 2520–2526 (2015).

    CAS  PubMed  Google Scholar 

  54. Tieland, M. et al. Protein supplementation improves physical performance in frail elderly people: a randomized, double-blind, placebo-controlled trial. J. Am. Med. Dir. Assoc. 13, 720–726 (2012).

    PubMed  Google Scholar 

  55. Bhasin, S. et al. Effect of protein intake on lean body mass in functionally limited older men: a randomized clinical trial. JAMA Intern. Med. 178, 530–541 (2018).

    PubMed  Google Scholar 

  56. Ten Haaf, D. S. M. et al. Effects of protein supplementation on lean body mass, muscle strength, and physical performance in nonfrail community-dwelling older adults: a systematic review and meta-analysis. Am. J. Clin. Nutr. 108, 1043–1059 (2018).

    PubMed  Google Scholar 

  57. Finger, D. et al. Effects of protein supplementation in older adults undergoing resistance training: a systematic review and meta-analysis. Sports Med. 45, 245–255 (2015).

    PubMed  Google Scholar 

  58. Morton, R. W. et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br. J. Sports Med. 52, 376–384 (2018).

    PubMed  Google Scholar 

  59. Reidy, P. T. & Rasmussen, B. B. Role of ingested amino acids and protein in the promotion of resistance exercise-induced muscle protein anabolism. J. Nutr. 146, 155–183 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Holm, L. & Nordsborg, N. B. Supplementing a normal diet with protein yields a moderate improvement in the robust gains in muscle mass and strength induced by resistance training in older individuals. Am. J. Clin. Nutr. 106, 971–972 (2017).

    CAS  PubMed  Google Scholar 

  61. Liao, C. D. et al. Effects of protein supplementation combined with resistance exercise on body composition and physical function in older adults: a systematic review and meta-analysis. Am. J. Clin. Nutr. 106, 1078–1091 (2017).

    CAS  PubMed  Google Scholar 

  62. Thomas, D. K., Quinn, M. A., Saunders, D. H. & Greig, C. A. Protein supplementation does not significantly augment the effects of resistance exercise training in older adults: a systematic review. J. Am. Med. Dir. Assoc. 17, e951–e959 (2016).

    Google Scholar 

  63. Bray, G. A. et al. Effect of dietary protein content on weight gain, energy expenditure, and body composition during overeating: a randomized controlled trial. JAMA 307, 47–55 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Berryman, C. E. et al. Supplementing an energy adequate, higher protein diet with protein does not enhance fat-free mass restoration after short-term severe negative energy balance. J. Appl. Physiol. (1985) 122, 1485–1493 (2017).

    CAS  Google Scholar 

  65. Krieger, J. W., Sitren, H. S., Daniels, M. J. & Langkamp-Henken, B. Effects of variation in protein and carbohydrate intake on body mass and composition during energy restriction: a meta-regression 1. Am. J. Clin. Nutr. 83, 260–274 (2006).

    CAS  PubMed  Google Scholar 

  66. Kjolbaek, L. et al. Protein supplements after weight loss do not improve weight maintenance compared with recommended dietary protein intake despite beneficial effects on appetite sensation and energy expenditure: a randomized, controlled, double-blinded trial. Am. J. Clin. Nutr. 106, 684–697 (2017).

    CAS  PubMed  Google Scholar 

  67. Clifton, P. M., Condo, D. & Keogh, J. B. Long term weight maintenance after advice to consume low carbohydrate, higher protein diets—a systematic review and meta analysis. Nutr. Metab. Cardiovasc. Dis. 24, 224–235 (2014).

    CAS  PubMed  Google Scholar 

  68. Kim, J. E., O’Connor, L. E., Sands, L. P., Slebodnik, M. B. & Campbell, W. W. Effects of dietary protein intake on body composition changes after weight loss in older adults: a systematic review and meta-analysis. Nutr. Rev. 74, 210–224 (2016).

    PubMed  PubMed Central  Google Scholar 

  69. Smith, G. I. et al. High protein intake during weight loss therapy eliminates the weight loss-induced improvement in insulin action in postmenopausal women. Cell Rep. 17, 849–861 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Smith, G. I., Commean, P. K., Reeds, D. N., Klein, S. & Mittendorfer, B. Effect of protein supplementation during diet-induced weight loss on muscle mass and strength: a randomized controlled study. Obesity 26, 854–861 (2018).

    CAS  PubMed  Google Scholar 

  71. Hudson, J. L., Kim, J. E., Paddon-Jones, D. & Campbell, W. W. Within-day protein distribution does not influence body composition responses during weight loss in resistance-training adults who are overweight. Am. J. Clin. Nutr. 106, 1190–1196 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Dirks, M. L. et al. Dietary feeding pattern does not modulate the loss of muscle mass or the decline in metabolic health during short-term bed rest. Am. J. Physiol. Endocrinol. Metab. 316, E536–E545 (2019).

    CAS  PubMed  Google Scholar 

  73. McLean, R. R., Mangano, K. M., Hannan, M. T., Kiel, D. P. & Sahni, S. Dietary protein intake is protective against loss of grip strength among older adults in the Framingham Offspring cohort. J. Gerontol. A. Biol. Sci. Med. Sci. 71, 356–361 (2016).

    CAS  PubMed  Google Scholar 

  74. Suga, H. & Hashimoto, H. Age threshold for recommending higher protein intake to prevent age-related muscle weakness: a cross-sectional study in Japan. PLOS ONE 13, e0208169 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Granic, A. et al. Low protein intake, muscle strength and physical performance in the very old: the Newcastle 85+ Study. Clin. Nutr. 37, 2260–2270 (2018).

    PubMed  PubMed Central  Google Scholar 

  76. Houston, D. K. et al. Protein intake and mobility limitation in community-dwelling older adults: the Health ABC Study. J. Am. Geriatr. Soc. 65, 1705–1711 (2017).

    PubMed  PubMed Central  Google Scholar 

  77. Coelho-Junior, H. J. et al. Relative protein intake and physical function in older adults: a systematic review and meta-analysis of observational studies. Nutrients 10, E1330 (2018).

    PubMed  Google Scholar 

  78. Beelen, J., de Roos, N. M. & de Groot, L. A 12-week intervention with protein-enriched foods and drinks improved protein intake but not physical performance of older patients during the first 6 months after hospital release: a randomised controlled trial. Br. J. Nutr. 117, 1541–1549 (2017).

    CAS  PubMed  Google Scholar 

  79. Schollenberger, A. E. et al. Impact of protein supplementation after bariatric surgery: a randomized controlled double-blind pilot study. Nutrition 32, 186–192 (2016).

    CAS  PubMed  Google Scholar 

  80. Sammarco, R. et al. Evaluation of hypocaloric diet with protein supplementation in middle-aged sarcopenic obese women: a pilot study. Obes. Facts 10, 160–167 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Porter Starr, K. N. et al. Improved function with enhanced protein intake per meal: a pilot study of weight reduction in frail, obese older adults. J. Gerontol. A Biol. Sci. Med. Sci. 71, 1369–1375 (2016).

    PubMed  PubMed Central  Google Scholar 

  82. Mitchell, C. J. et al. The effects of dietary protein intake on appendicular lean mass and muscle function in elderly men: a 10-wk randomized controlled trial. Am. J. Clin. Nutr. 106, 1375–1383 (2017).

    CAS  PubMed  Google Scholar 

  83. Markofski, M. M. et al. Effect of aerobic exercise training and essential amino acid supplementation for 24 weeks on physical function, body composition and muscle metabolism in healthy, independent older adults: a randomized clinical trial. J. Gerontol. A Biol. Sci. Med. Sci 74, 1598–1604 (2019).

    PubMed  Google Scholar 

  84. Petersen, M. C. & Shulman, G. I. Mechanisms of insulin action and insulin resistance. Physiol. Rev. 98, 2133–2223 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Conte, C. et al. Multiorgan insulin sensitivity in lean and obese subjects. Diabetes Care 35, 1316–1321 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kolterman, O. G., Insel, J., Saekow, M. & Olefsky, J. M. Mechanisms of insulin resistance in human obesity: evidence for receptor and postreceptor defects. J. Clin. Invest. 65, 1272–1284 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kim, S. H. & Reaven, G. M. Insulin clearance: an underappreciated modulator of plasma insulin concentration. J. Investig. Med. 64, 1162–1165 (2016).

    PubMed  Google Scholar 

  88. Lindgren, O. et al. Incretin effect after oral amino acid ingestion in humans. J. Clin. Endocrinol. Metab. 100, 1172–1176 (2015).

    CAS  PubMed  Google Scholar 

  89. Claessens, M., Saris, W. H. & van Baak, M. A. Glucagon and insulin responses after ingestion of different amounts of intact and hydrolysed proteins. Br. J. Nutr. 100, 61–69 (2008).

    CAS  PubMed  Google Scholar 

  90. Westphal, S. A., Gannon, M. C. & Nuttall, F. Q. Metabolic response to glucose ingested with various amounts of protein. Am. J. Clin. Nutr. 52, 267–272 (1990).

    CAS  PubMed  Google Scholar 

  91. Krebs, M. et al. Mechanism of amino acid-induced skeletal muscle insulin resistance in humans. Diabetes 51, 599–605 (2002).

    CAS  PubMed  Google Scholar 

  92. Robinson, M. M. et al. High insulin combined with essential amino acids stimulates skeletal muscle mitochondrial protein synthesis while decreasing insulin sensitivity in healthy humans. J. Clin. Endocrinol. Metab. 99, E2574–E2583 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Smith, G. I. et al. Protein ingestion induces muscle insulin resistance independent of leucine-mediated mTOR activation. Diabetes 64, 1555–1563 (2015).

    CAS  PubMed  Google Scholar 

  94. Holst, J. J., Wewer Albrechtsen, N. J., Pedersen, J. & Knop, F. K. Glucagon and amino acids are linked in a mutual feedback cycle: the liver–α-cell axis. Diabetes 66, 235–240 (2017).

    CAS  PubMed  Google Scholar 

  95. Ang, T., Bruce, C. R. & Kowalski, G. M. Postprandial aminogenic insulin and glucagon secretion can stimulate glucose flux in humans. Diabetes 68, 939–946 (2019).

    CAS  PubMed  Google Scholar 

  96. van Loon, L. J., Saris, W. H., Verhagen, H. & Wagenmakers, A. J. Plasma insulin responses after ingestion of different amino acid or protein mixtures with carbohydrate. Am. J. Clin. Nutr. 72, 96–105 (2000).

    PubMed  Google Scholar 

  97. Ang, M., Muller, A. S., Wagenlehner, F., Pilatz, A. & Linn, T. Combining protein and carbohydrate increases postprandial insulin levels but does not improve glucose response in patients with type 2 diabetes. Metabolism 61, 1696–1702 (2012).

    CAS  PubMed  Google Scholar 

  98. Shah, M. et al. Effect of meal composition on postprandial glucagon-like peptide-1, insulin, glucagon, C-peptide, and glucose responses in overweight/obese subjects. Eur. J. Nutr. 56, 1053–1062 (2017).

    CAS  PubMed  Google Scholar 

  99. Manders, R. J. et al. Protein co-ingestion strongly increases postprandial insulin secretion in type 2 diabetes patients. J. Med. Food 17, 758–763 (2014).

    CAS  PubMed  Google Scholar 

  100. Calbet, J. A. & MacLean, D. A. Plasma glucagon and insulin responses depend on the rate of appearance of amino acids after ingestion of different protein solutions in humans. J. Nutr. 132, 2174–2182 (2002).

    CAS  PubMed  Google Scholar 

  101. Burd, N. A. et al. Greater stimulation of myofibrillar protein synthesis with ingestion of whey protein isolate v. micellar casein at rest and after resistance exercise in elderly men. Br. J. Nutr. 108, 958–962 (2012).

    CAS  PubMed  Google Scholar 

  102. Ma, J. et al. Effects of a protein preload on gastric emptying, glycemia, and gut hormones after a carbohydrate meal in diet-controlled type 2 diabetes. Diabetes care 32, 1600–1602 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Iozzo, P. et al. Physiological hyperinsulinemia impairs insulin-stimulated glycogen synthase activity and glycogen synthesis. Am. J. Physiol. Endocrinol. Metab. 280, E712–E719 (2001).

    CAS  PubMed  Google Scholar 

  104. Del Prato, S. et al. Effect of sustained physiologic hyperinsulinaemia and hyperglycaemia on insulin secretion and insulin sensitivity in man. Diabetologia 37, 1025–1035 (1994).

    CAS  PubMed  Google Scholar 

  105. Rizza, R. A., Mandarino, L. J., Genest, J., Baker, B. A. & Gerich, J. E. Production of insulin resistance by hyperinsulinaemia in man. Diabetologia 28, 70–75 (1985).

    CAS  PubMed  Google Scholar 

  106. Rietman, A., Schwarz, J., Tome, D., Kok, F. J. & Mensink, M. High dietary protein intake, reducing or eliciting insulin resistance? Eur. J. Clin. Nutr. 68, 973–979 (2014).

    CAS  PubMed  Google Scholar 

  107. Santesso, N. et al. Effects of higher- versus lower-protein diets on health outcomes: a systematic review and meta-analysis. Eur. J. Clin. Nutr. 66, 780–788 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Schwingshackl, L. & Hoffmann, G. Long-term effects of low-fat diets either low or high in protein on cardiovascular and metabolic risk factors: a systematic review and meta-analysis. Nutr. J. 12, 48 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Weickert, M. O. et al. Effects of supplemented isoenergetic diets differing in cereal fiber and protein content on insulin sensitivity in overweight humans. Am. J. Clin. Nutr. 94, 459–471 (2011).

    CAS  PubMed  Google Scholar 

  110. Gannon, M. C. & Nuttall, F. Q. Effect of a high-protein, low-carbohydrate diet on blood glucose control in people with type 2 diabetes. Diabetes 53, 2375–2382 (2004).

    CAS  PubMed  Google Scholar 

  111. Te Morenga, L., Docherty, P., Williams, S. & Mann, J. The effect of a diet moderately high in protein and fiber on insulin sensitivity measured using the dynamic insulin sensitivity and secretion test (DISST). Nutrients 9, E1291 (2017).

    Google Scholar 

  112. Sargrad, K. R., Homko, C., Mozzoli, M. & Boden, G. Effect of high protein vs high carbohydrate intake on insulin sensitivity, body weight, hemoglobin A1c, and blood pressure in patients with type 2 diabetes mellitus. J. Am. Diet. Assoc. 105, 573–580 (2005).

    CAS  PubMed  Google Scholar 

  113. Snorgaard, O., Poulsen, G. M., Andersen, H. K. & Astrup, A. Systematic review and meta-analysis of dietary carbohydrate restriction in patients with type 2 diabetes. BMJ Open Diabetes Res. Care 5, e000354 (2017).

    PubMed  PubMed Central  Google Scholar 

  114. Markova, M. et al. Rate of appearance of amino acids after a meal regulates insulin and glucagon secretion in patients with type 2 diabetes: a randomized clinical trial. Am. J. Clin. Nutr. 108, 279–291 (2018).

    PubMed  Google Scholar 

  115. Muller, T. D., Finan, B., Clemmensen, C., DiMarchi, R. D. & Tschop, M. H. The new biology and pharmacology of glucagon. Physiol. Rev. 97, 721–766 (2017).

    CAS  PubMed  Google Scholar 

  116. Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (National Academies Press, 2005).

Download references

Author information

Authors and Affiliations

Authors

Contributions

B.M. researched data for the article. B.M., S.K. and L.F. contributed to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Bettina Mittendorfer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks R. Basu, G. Kowalski and D.G. Tomé for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittendorfer, B., Klein, S. & Fontana, L. A word of caution against excessive protein intake. Nat Rev Endocrinol 16, 59–66 (2020). https://doi.org/10.1038/s41574-019-0274-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-019-0274-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing