Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The role of osteoblasts in energy homeostasis


Osteoblasts are specialized mesenchymal cells that synthesize bone matrix and coordinate the mineralization of the skeleton. These cells work in harmony with osteoclasts, which resorb bone, in a continuous cycle that occurs throughout life. The unique function of osteoblasts requires substantial amounts of energy production, particularly during states of new bone formation and remodelling. Over the last 15 years, studies have shown that osteoblasts secrete endocrine factors that integrate the metabolic requirements of bone formation with global energy balance through the regulation of insulin production, feeding behaviour and adipose tissue metabolism. In this article, we summarize the current understanding of three osteoblast-derived metabolic hormones (osteocalcin, lipocalin and sclerostin) and the clinical evidence that suggests the relevance of these pathways in humans, while also discussing the necessity of specific energy substrates (glucose, fatty acids and amino acids) to fuel bone formation and promote osteoblast differentiation.

Key points

  • Osteoblasts are bone-forming cells that respond to metabolic hormones and produce at least three endocrine factors that influence whole-body metabolism.

  • Osteocalcin acts via a feedforward endocrine loop to regulate pancreatic insulin production and insulin sensitivity.

  • Osteoblast-derived lipocalin regulates feeding behaviour.

  • Sclerostin exerts control over bone tissue acquisition while also regulating WNT signalling and fatty acid synthesis in adipose tissue depots.

  • The utilization of glucose, fatty acids and amino acids by the osteoblast is associated with the stage of differentiation and the energetic demands for matrix production.

  • Key osteoblast developmental signals, including WNT–β-catenin, Notch and HIF, coordinate osteoblastic activity and intermediary metabolism.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Endocrine effects of osteocalcin, lipocalin and sclerostin.
Fig. 2: Overview of pathways involved in osteogenic glucose metabolism.
Fig. 3: Overview of pathways involved in osteogenic fatty acid metabolism.
Fig. 4: Overview of pathways involved in glutamine metabolism.


  1. 1.

    Seeman, E. Bone modeling and remodeling. Crit. Rev. Eukaryot. Gene Expr. 19, 219–233 (2009).

    CAS  PubMed  Google Scholar 

  2. 2.

    Eriksen, E. F. Cellular mechanisms of bone remodeling. Rev. Endocr. Metab. Disord. 11, 219–227 (2010).

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Martin, R. B., Burr, D. B., Sharkey, N. A. & Fyhrie, D. P. in Skeletal Tissue Mechanics (Springer, 2015).

  4. 4.

    Xian, L. et al. Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat. Med. 18, 1095–1101 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Tang, Y. et al. TGF-β1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat. Med. 15, 757–765 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Pritchard, J. J. A cytological and histochemical study of bone and cartilage formation in the rat. J. Anat. 86, 259–277 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Dallas, S. L., Prideaux, M. & Bonewald, L. F. The osteocyte: an endocrine cell…. and more. Endocr. Rev. 34, 658–690 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Nakashima, T. et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med. 17, 1231–1234 (2011).

    CAS  PubMed  Google Scholar 

  9. 9.

    Dobnig, H. & Turner, R. T. Evidence that intermittent treatment with parathyroid hormone increases bone formation in adult rats by activation of bone lining cells. Endocrinology 136, 3632–3638 (1995).

    CAS  PubMed  Google Scholar 

  10. 10.

    Dudley, H. R. & Spiro, D. The fine structure of bone cells. J. Biophys. Biochem. Cytol. 11, 627–649 (1961).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Guntur, A. R., Le, P. T., Farber, C. R. & Rosen, C. J. Bioenergetics during calvarial osteoblast differentiation reflect strain differences in bone mass. Endocrinology 155, 1589–1595 (2014). This study tracks the changes in oxygen consumption and glycolytic metabolism that occur during osteoblast differentiation in vitro.

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Komarova, S. V., Ataullakhanov, F. I. & Globus, R. K. Bioenergetics and mitochondrial transmembrane potential during differentiation of cultured osteoblasts. Am. J. Physiol. Cell Physiol. 279, C1220–C1229 (2000).

    CAS  PubMed  Google Scholar 

  13. 13.

    Rolfe, D. F. & Brown, G. C. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol. Rev. 77, 731–758 (1997).

    CAS  PubMed  Google Scholar 

  14. 14.

    Buttgereit, F. & Brand, M. D. A hierarchy of ATP-consuming processes in mammalian cells. Biochem. J. 312, 163–167 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Devlin, M. J. et al. Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. J. Bone Min. Res. 25, 2078–2088 (2010).

    Google Scholar 

  16. 16.

    Miller, K. K. et al. Determinants of skeletal loss and recovery in anorexia nervosa. J. Clin. Endocrinol. Metab. 91, 2931–2937 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Lecka-Czernik, B. & Rosen, C. J. Energy excess, glucose utilization, and skeletal remodeling: new insights. J. Bone Min. Res. 30, 1356–1361 (2015).

    CAS  Google Scholar 

  18. 18.

    Ducy, P. et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100, 197–207 (2000). This work is a catalyst for the exploration of metabolic functions of the skeleton.

    CAS  PubMed  Google Scholar 

  19. 19.

    Kajimura, D. et al. Adiponectin regulates bone mass via opposite central and peripheral mechanisms through FoxO1. Cell Metab. 17, 901–915 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Ferron, M. et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142, 296–308 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Fulzele, K. et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142, 309–319 (2010). This study, along with Ferron et al. ( Cell , 2010), outlines a bone–pancreas endocrine loop.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Neuman, M. W. & Neuman, W. F. Emerging concepts of the structure and metabolic functions of bone. Am. J. Med. 22, 123–131 (1957).

    CAS  PubMed  Google Scholar 

  23. 23.

    Neuman, W. F., Neuman, M. W. & Brommage, R. Aerobic glycolysis in bone: lactate production and gradients in calvaria. Am. J. Physiol. 234, C41–C50 (1978).

    CAS  PubMed  Google Scholar 

  24. 24.

    Celeste, A. J. et al. Isolation of the human gene for bone gla protein utilizing mouse and rat cDNA clones. EMBO J. 5, 1885–1890 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Puchacz, E. et al. Chromosomal localization of the human osteocalcin gene. Endocrinology 124, 2648–2650 (1989).

    CAS  PubMed  Google Scholar 

  26. 26.

    Hauschka, P. V., Lian, J. B., Cole, D. E. & Gundberg, C. M. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol. Rev. 69, 990–1047 (1989).

    CAS  PubMed  Google Scholar 

  27. 27.

    Price, P. A., Otsuka, A. A., Poser, J. W., Kristaponis, J. & Raman, N. Characterization of a gamma-carboxyglutamic acid-containing protein from bone. Proc. Natl Acad. Sci. USA 73, 1447–1451 (1976).

    CAS  PubMed  Google Scholar 

  28. 28.

    Ducy, P. et al. Increased bone formation in osteocalcin-deficient mice. Nature 382, 448–452 (1996).

    CAS  PubMed  Google Scholar 

  29. 29.

    Boskey, A. L. et al. Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone 23, 187–196 (1998).

    CAS  PubMed  Google Scholar 

  30. 30.

    Murshed, M., Schinke, T., McKee, M. D. & Karsenty, G. Extracellular matrix mineralization is regulated locally; different roles of two gla-containing proteins. J. Cell Biol. 165, 625–630 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Poundarik, A. A. et al. Dilatational band formation in bone. Proc. Natl Acad. Sci. USA 109, 19178–19183 (2012).

    CAS  PubMed  Google Scholar 

  32. 32.

    Nikel, O., Laurencin, D., McCallum, S. A., Gundberg, C. M. & Vashishth, D. NMR investigation of the role of osteocalcin and osteopontin at the organic–inorganic interface in bone. Langmuir 29, 13873–13882 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Lee, N. K. et al. Endocrine regulation of energy metabolism by the skeleton. Cell 130, 456–469 (2007). This work provides the first evidence that osteocalcin acts as a hormone.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Ferron, M., McKee, M. D., Levine, R. L., Ducy, P. & Karsenty, G. Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone 50, 568–575 (2011).

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Ferron, M., Hinoi, E., Karsenty, G. & Ducy, P. Osteocalcin differentially regulates β cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc. Natl Acad. Sci. USA 105, 5266–5270 (2008).

    CAS  PubMed  Google Scholar 

  36. 36.

    Sabek, O. M. et al. Osteocalcin effect on human β-cells mass and function. Endocrinology 156, 3137–3146 (2015).

    CAS  PubMed  Google Scholar 

  37. 37.

    Clemens, T. L. & Karsenty, G. The osteoblast: an insulin target cell controlling glucose homeostasis. J. Bone Min. Res. 26, 677–680 (2011).

    CAS  Google Scholar 

  38. 38.

    Rached, M. T. et al. FoxO1 expression in osteoblasts regulates glucose homeostasis through regulation of osteocalcin in mice. J. Clin. Invest. 120, 357–368 (2010).

    CAS  PubMed  Google Scholar 

  39. 39.

    Pi, M., Wu, Y. & Quarles, L. D. GPRC6A mediates responses to osteocalcin in β-cells in vitro and pancreas in vivo. J. Bone Min. Res. 26, 1680–1683 (2011).

    CAS  Google Scholar 

  40. 40.

    Wei, J., Hanna, T., Suda, N., Karsenty, G. & Ducy, P. Osteocalcin promotes β-cell proliferation during development and adulthood through Gprc6a. Diabetes 63, 1021–1031 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Hawley, J. A., Hargreaves, M., Joyner, M. J. & Zierath, J. R. Integrative biology of exercise. Cell 159, 738–749 (2014).

    CAS  PubMed  Google Scholar 

  42. 42.

    Mera, P. et al. Osteocalcin signaling in myofibers is necessary and sufficient for optimum adaptation to exercise. Cell Metab. 23, 1078–1092 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Mera, P., Laue, K., Wei, J., Berger, J. M. & Karsenty, G. Osteocalcin is necessary and sufficient to maintain muscle mass in older mice. Mol. Metab. 5, 1042–1047 (2016). This study, along with Mera et al. ( Cell Metab . , 2016), highlights the effects of osteocalcin on skeletal muscle.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Gundberg, C. M., Nieman, S. D., Abrams, S. & Rosen, H. Vitamin K status and bone health: an analysis of methods for determination of undercarboxylated osteocalcin. J. Clin. Endocrinol. Metab. 83, 3258–3266 (1998).

    CAS  PubMed  Google Scholar 

  45. 45.

    Ferron, M., Wei, J., Yoshizawa, T., Ducy, P. & Karsenty, G. An ELISA-based method to quantify osteocalcin carboxylation in mice. Biochem. Biophys. Res. Commun. 397, 691–696 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Kunutsor, S. K., Apekey, T. A. & Laukkanen, J. A. Association of serum total osteocalcin with type 2 diabetes and intermediate metabolic phenotypes: systematic review and meta-analysis of observational evidence. Eur. J. Epidemiol. 30, 599–614 (2015).

    CAS  PubMed  Google Scholar 

  47. 47.

    Liu, J. M. et al. An independent positive relationship between the serum total osteocalcin level and fat-free mass in healthy premenopausal women. J. Clin. Endocrinol. Metab. 98, 2146–2152 (2013).

    CAS  PubMed  Google Scholar 

  48. 48.

    Liu, C. et al. Association between serum total osteocalcin level and type 2 diabetes mellitus: a systematic review and meta-analysis. Horm. Metab. Res. 47, 813–819 (2015).

    CAS  PubMed  Google Scholar 

  49. 49.

    Confavreux, C. B. et al. Lower serum osteocalcin is associated with more severe metabolic syndrome in elderly men from the MINOS cohort. Eur. J. Endocrinol. 171, 275–283 (2014).

    CAS  PubMed  Google Scholar 

  50. 50.

    Saleem, U., Mosley, T. H. Jr. & Kullo, I. J. Serum osteocalcin is associated with measures of insulin resistance, adipokine levels, and the presence of metabolic syndrome. Arterioscler. Thromb. Vasc. Biol. 30, 1474–1478 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Yeap, B. B. et al. Reduced serum total osteocalcin is associated with metabolic syndrome in older men via waist circumference, hyperglycemia, and triglyceride levels. Eur. J. Endocrinol. 163, 265–272 (2010).

    CAS  PubMed  Google Scholar 

  52. 52.

    Yeap, B. B. et al. Higher serum undercarboxylated osteocalcin and other bone turnover markers are associated with reduced diabetes risk and lower estradiol concentrations in older men. J. Clin. Endocrinol. Metab. 100, 63–71 (2015).

    CAS  PubMed  Google Scholar 

  53. 53.

    Gower, B. A. et al. Associations of total and undercarboxylated osteocalcin with peripheral and hepatic insulin sensitivity and β-cell function in overweight adults. J. Clin. Endocrinol. Metab. 98, E1173–E1180 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Iki, M. et al. Serum undercarboxylated osteocalcin levels are inversely associated with glycemic status and insulin resistance in an elderly Japanese male population: Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) Study. Osteoporos. Int. 23, 761–770 (2012).

    CAS  PubMed  Google Scholar 

  55. 55.

    Bonneau, J. et al. Association between osteocalcin γ-carboxylation and insulin resistance in overweight and obese postmenopausal women. J. Diabetes Complications 31, 1027–1034 (2017).

    PubMed  Google Scholar 

  56. 56.

    Basu, R., Peterson, J., Rizza, R. & Khosla, S. Effects of physiological variations in circulating insulin levels on bone turnover in humans. J. Clin. Endocrinol. Metab. 96, 1450–1455 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Schwartz, A. V. et al. Effects of antiresorptive therapies on glucose metabolism: results from the FIT, HORIZON-PFT, and FREEDOM trials. J. Bone Min. Res. 28, 1348–1354 (2013).

    CAS  Google Scholar 

  58. 58.

    Confavreux, C. B. et al. Osteoid osteoma is an osteocalcinoma affecting glucose metabolism. Osteoporos. Int. 23, 1645–1650 (2012).

    CAS  PubMed  Google Scholar 

  59. 59.

    Lin, X., Brennan-Speranza, T. C., Levinger, I. & Yeap, B. B. Undercarboxylated osteocalcin: experimental and human evidence for a role in glucose homeostasis and muscle regulation of insulin sensitivity. Nutrients 10, E847 (2018).

    PubMed  Google Scholar 

  60. 60.

    Yoshikawa, Y. et al. Genetic evidence points to an osteocalcin-independent influence of osteoblasts on energy metabolism. J. Bone Min. Res. 26, 2012–2025 (2011). This study suggests the existence of additional osteoblast-derived hormones.

    CAS  Google Scholar 

  61. 61.

    Rached, M. T. et al. FoxO1 is a positive regulator of bone formation by favoring protein synthesis and resistance to oxidative stress in osteoblasts. Cell Metab. 11, 147–160 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Yan, Q. W. et al. The adipokine lipocalin 2 is regulated by obesity and promotes insulin resistance. Diabetes 56, 2533–2540 (2007).

    CAS  PubMed  Google Scholar 

  63. 63.

    Mosialou, I. et al. MC4R-dependent suppression of appetite by bone-derived lipocalin 2. Nature 543, 385–390 (2017). This study describes the existence of a second hormone produced by osteoblasts.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Jun, L. S., Siddall, C. P. & Rosen, E. D. A minor role for lipocalin 2 in high-fat diet-induced glucose intolerance. Am. J. Physiol. Endocrinol. Metab. 301, E825–E835 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Ye, D. et al. Lipocalin-2 mediates non-alcoholic steatohepatitis by promoting neutrophil-macrophage crosstalk via the induction of CXCR2. J. Hepatol. 65, 988–997 (2016).

    CAS  PubMed  Google Scholar 

  66. 66.

    Zhang, Y. et al. Lipocalin 2 regulates brown fat activation via a nonadrenergic activation mechanism. J. Biol. Chem. 289, 22063–22077 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Guo, H. et al. Evidence for the regulatory role of lipocalin 2 in high-fat diet-induced adipose tissue remodeling in male mice. Endocrinology 154, 3525–3538 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Law, I. K. et al. Lipocalin-2 deficiency attenuates insulin resistance associated with aging and obesity. Diabetes 59, 872–882 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Guo, H. et al. Lipocalin-2 deficiency impairs thermogenesis and potentiates diet-induced insulin resistance in mice. Diabetes 59, 1376–1385 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Mera, P., Ferron, M. & Mosialou, I. Regulation of energy metabolism by bone-derived hormones. Cold Spring Harb. Perspect. Med. 8, a031666 (2018).

    PubMed  Google Scholar 

  71. 71.

    Wang, Y. et al. Lipocalin-2 is an inflammatory marker closely associated with obesity, insulin resistance, and hyperglycemia in humans. Clin. Chem. 53, 34–41 (2007).

    CAS  PubMed  Google Scholar 

  72. 72.

    Singh, R. G., Pendharkar, S. A., Plank, L. D. & Petrov, M. S. Role of human lipocalin proteins in abdominal obesity after acute pancreatitis. Peptides 91, 1–7 (2017).

    CAS  PubMed  Google Scholar 

  73. 73.

    Na, G. Y. et al. The relationship between circulating neutrophil gelatinase-associated lipocalin and early alteration of metabolic parameters is associated with dietary saturated fat intake in non-diabetic Korean women. Endocr. J. 64, 303–314 (2017).

    PubMed  Google Scholar 

  74. 74.

    Auguet, T. et al. Upregulation of lipocalin 2 in adipose tissues of severely obese women: positive relationship with proinflammatory cytokines. Obesity. 19, 2295–2300 (2011).

    CAS  PubMed  Google Scholar 

  75. 75.

    Catalan, V. et al. Increased adipose tissue expression of lipocalin-2 in obesity is related to inflammation and matrix metalloproteinase-2 and metalloproteinase-9 activities in humans. J. Mol. Med. 87, 803–813 (2009).

    CAS  PubMed  Google Scholar 

  76. 76.

    Auguet, T. et al. Liver lipocalin 2 expression in severely obese women with non alcoholic fatty liver disease. Exp. Clin. Endocrinol. Diabetes 121, 119–124 (2013).

    CAS  PubMed  Google Scholar 

  77. 77.

    Paton, C. M. et al. Lipocalin-2 increases fat oxidation in vitro and is correlated with energy expenditure in normal weight but not obese women. Obesity 21, E640–E648 (2013).

    CAS  PubMed  Google Scholar 

  78. 78.

    Moester, M. J., Papapoulos, S. E., Lowik, C. W. & van Bezooijen, R. L. Sclerostin: current knowledge and future perspectives. Calcif. Tissue Int. 87, 99–107 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Brunkow, M. E. et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am. J. Hum. Genet. 68, 577–589 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    van Bezooijen, R. L. et al. SOST expression is restricted to the great arteries during embryonic and neonatal cardiovascular development. Dev. Dyn. 236, 606–612 (2007).

    PubMed  Google Scholar 

  81. 81.

    Balemans, W. et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum. Mol. Genet. 10, 537–543 (2001).

    CAS  PubMed  Google Scholar 

  82. 82.

    Balemans, W. et al. Identification of a 52kb deletion downstream of the SOST gene in patients with van buchem disease. J. Med. Genet. 39, 91–97 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Staehling-Hampton, K. et al. A 52-kb deletion in the SOST-MEOX1 intergenic region on 17q12-q21 is associated with van buchem disease in the dutch population. Am. J. Med. Genet. 110, 144–152 (2002).

    PubMed  Google Scholar 

  84. 84.

    Beighton, P., Barnard, A., Hamersma, H. & van der Wouden, A. The syndromic status of sclerosteosis and van Buchem disease. Clin. Genet. 25, 175–181 (1984).

    CAS  PubMed  Google Scholar 

  85. 85.

    Holdsworth, G. et al. Characterization of the interaction of sclerostin with the low density lipoprotein receptor-related protein (LRP) family of Wnt co-receptors. J. Biol. Chem. 287, 26464–26477 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Bourhis, E. et al. Wnt antagonists bind through a short peptide to the first β-propeller domain of LRP5/6. Structure 19, 1433–1442 (2011).

    CAS  PubMed  Google Scholar 

  87. 87.

    Gong, Y. et al. Wnt isoform-specific interactions with coreceptor specify inhibition or potentiation of signaling by LRP6 antibodies. PLOS ONE 5, e12682 (2010).

    PubMed  PubMed Central  Google Scholar 

  88. 88.

    Day, T. F., Guo, X., Garrett-Beal, L. & Yang, Y. Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev. Cell 8, 739–750 (2005).

    CAS  PubMed  Google Scholar 

  89. 89.

    Holmen, S. L. et al. Essential role of β-catenin in postnatal bone acquisition. J. Biol. Chem. 280, 21162–21168 (2005).

    CAS  PubMed  Google Scholar 

  90. 90.

    Li, X. et al. Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J. Bone Min. Res. 23, 860–869 (2008).

    Google Scholar 

  91. 91.

    Yee, C. S. et al. Conditional deletion of sost in MSC-derived lineages identifies specific cell-type contributions to bone mass and B-cell development. J. Bone Min. Res. 33, 1748–1759 (2018).

    CAS  Google Scholar 

  92. 92.

    Clarke, B. L. & Drake, M. T. Clinical utility of serum sclerostin measurements. Bonekey Rep 2, 361 (2013).

    PubMed  PubMed Central  Google Scholar 

  93. 93.

    Arasu, A. et al. Serum sclerostin and risk of hip fracture in older Caucasian women. J. Clin. Endocrinol. Metab. 97, 2027–2032 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Ardawi, M. S. et al. High serum sclerostin predicts the occurrence of osteoporotic fractures in postmenopausal women: the center of excellence for osteoporosis research study. J. Bone Min. Res. 27, 2592–2602 (2012).

    CAS  Google Scholar 

  95. 95.

    Garcia-Martin, A. et al. Circulating levels of sclerostin are increased in patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 97, 234–241 (2012).

    CAS  PubMed  Google Scholar 

  96. 96.

    Gaudio, A. et al. Sclerostin levels associated with inhibition of the Wnt/β-catenin signaling and reduced bone turnover in type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 97, 3744–3750 (2012).

    CAS  PubMed  Google Scholar 

  97. 97.

    Gennari, L. et al. Circulating sclerostin levels and bone turnover in type 1 and type 2 diabetes. J. Clin. Endocrinol. Metab. 97, 1737–1744 (2012).

    CAS  PubMed  Google Scholar 

  98. 98.

    van Lierop, A. H. et al. Distinct effects of pioglitazone and metformin on circulating sclerostin and biochemical markers of bone turnover in men with type 2 diabetes mellitus. Eur. J. Endocrinol. 166, 711–716 (2012).

    PubMed  Google Scholar 

  99. 99.

    Heilmeier, U. et al. Volumetric femoral BMD, bone geometry, and serum sclerostin levels differ between type 2 diabetic postmenopausal women with and without fragility fractures. Osteoporos. Int. 26, 1283–1293 (2015).

    CAS  PubMed  Google Scholar 

  100. 100.

    Yamamoto, M., Yamauchi, M. & Sugimoto, T. Elevated sclerostin levels are associated with vertebral fractures in patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 98, 4030–4037 (2013).

    CAS  PubMed  Google Scholar 

  101. 101.

    Urano, T., Shiraki, M., Ouchi, Y. & Inoue, S. Association of circulating sclerostin levels with fat mass and metabolic disease–related markers in Japanese postmenopausal women. J. Clin. Endocrinol. Metab. 97, E1473–E1477 (2012).

    CAS  PubMed  Google Scholar 

  102. 102.

    Sheng, Z. et al. Serum sclerostin levels were positively correlated with fat mass and bone mineral density in central south Chinese postmenopausal women. Clin. Endocrinol. 76, 797–801 (2012).

    CAS  Google Scholar 

  103. 103.

    Amrein, K. et al. Sclerostin and its association with physical activity, age, gender, body composition, and bone mineral content in healthy adults. J. Clin. Endocrinol. Metab. 97, 148–154 (2012).

    CAS  PubMed  Google Scholar 

  104. 104.

    Confavreux, C. B. et al. Has sclerostin a true endocrine metabolic action complementary to osteocalcin in older men? Osteoporos. Int. 27, 2301–2309 (2016).

    CAS  PubMed  Google Scholar 

  105. 105.

    Daniele, G. et al. Sclerostin and insulin resistance in prediabetes: evidence of a cross talk between bone and glucose metabolism. Diabetes Care 38, 1509–1517 (2015).

    CAS  PubMed  Google Scholar 

  106. 106.

    Kim, S. P. et al. Sclerostin influences body composition by regulating catabolic and anabolic metabolism in adipocytes. Proc. Natl Acad. Sci. USA 114, E11238–E11247 (2017). This work suggests that sclerostin acts outside the skeleton to influence adipose tissue physiology.

    CAS  PubMed  Google Scholar 

  107. 107.

    Fairfield, H. et al. The skeletal cell-derived molecule sclerostin drives bone marrow adipogenesis. J. Cell. Physiol. 233, 1156–1167 (2018).

    CAS  PubMed  Google Scholar 

  108. 108.

    Cosman, F. et al. Romosozumab treatment in postmenopausal women with osteoporosis. N. Engl. J. Med. 375, 1532–1543 (2016).

    CAS  PubMed  Google Scholar 

  109. 109.

    McClung, M. R. et al. Romosozumab in postmenopausal women with low bone mineral density. N. Engl. J. Med. 370, 412–420 (2014).

    CAS  PubMed  Google Scholar 

  110. 110.

    Jacobsen, C. M. Application of anti-sclerostin therapy in non-osteoporosis disease models. Bone 96, 18–23 (2017).

    CAS  PubMed  Google Scholar 

  111. 111.

    Gillespie, J. R. et al. GSK-3β function in bone regulates skeletal development, whole-body metabolism, and male life span. Endocrinology 154, 3702–3718 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Frey, J. L. et al. Wnt–Lrp5 signaling regulates fatty acid metabolism in the osteoblast. Mol. Cell Biol. 35, 1979–1991 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Dirckx, N. et al. Vhl deletion in osteoblasts boosts cellular glycolysis and improves global glucose metabolism. J. Clin. Invest. 128, 1087–1105 (2018).

    PubMed  PubMed Central  Google Scholar 

  114. 114.

    Esen, E., Lee, S. Y., Wice, B. M. & Long, F. PTH promotes bone anabolism by stimulating aerobic glycolysis via IGF signaling. J. Bone Min. Res. 30, 1959–1968 (2015).

    CAS  Google Scholar 

  115. 115.

    Felix, R., Neuman, W. F. & Fleisch, H. Aerobic glycolysis in bone: lactic acid production by rat calvaria cells in culture. Am. J. Physiol. 234, C51–C55 (1978).

    CAS  PubMed  Google Scholar 

  116. 116.

    Nichols, F. C. & Neuman, W. F. Lactic acid production in mouse calvaria in vitro with and without parathyroid hormone stimulation: lack of acetazolamide effects. Bone 8, 105–109 (1987).

    CAS  PubMed  Google Scholar 

  117. 117.

    Kenny, A. D., Draskoczy, P. R. & Goldhaber, P. Citric acid production by resorbing bone in tissue culture. Am. J. Physiol. 197, 502–504 (1959).

    CAS  PubMed  Google Scholar 

  118. 118.

    Taylor, T. G. The nature of bone citrate. Biochim. Biophys. Acta 39, 148–149 (1960).

    CAS  PubMed  Google Scholar 

  119. 119.

    Sobel, A. E., Goldenberg, H. & Schmerzler, E. Calcification. XI. Studies of the incorporation of citrate in calcification in vitro. J. Dent. Res. 33, 497–503 (1954).

    CAS  PubMed  Google Scholar 

  120. 120.

    Dixon, T. F. & Perkins, H. R. Citric acid and bone metabolism. Biochem. J. 52, 260–265 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Neuman, W. F. The mechanism of parathyroid function. J. Lancet 78, 190–196 (1958).

    CAS  PubMed  Google Scholar 

  122. 122.

    Costello, L. C., Franklin, R. B., Reynolds, M. A. & Chellaiah, M. The important role of osteoblasts and citrate production in bone formation: ‘osteoblast citration’ as a new concept for an old relationship. Open Bone J. (2012).

    Google Scholar 

  123. 123.

    Wei, J. et al. Glucose uptake and Runx2 synergize to orchestrate osteoblast differentiation and bone formation. Cell 161, 1576–1591 (2015). This study indicates that GLUT1 expression is essential for osteoblast development.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Zoch, M. L., Abou, D. S., Clemens, T. L., Thorek, D. L. & Riddle, R. C. In vivo radiometric analysis of glucose uptake and distribution in mouse bone. Bone Res. 4, 16004 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Augustin, R. The protein family of glucose transport facilitators: it’s not only about glucose after all. IUBMB Life 62, 315–333 (2010).

    CAS  PubMed  Google Scholar 

  126. 126.

    Thomas, D. M., Maher, F., Rogers, S. D. & Best, J. D. Expression and regulation by insulin of GLUT 3 in UMR 106-01, a clonal rat osteosarcoma cell line. Biochem. Biophys. Res. Commun. 218, 789–793 (1996).

    CAS  PubMed  Google Scholar 

  127. 127.

    Thomas, D. M., Rogers, S. D., Ng, K. W. & Best, J. D. Dexamethasone modulates insulin receptor expression and subcellular distribution of the glucose transporter GLUT 1 in UMR 106-01, a clonal osteogenic sarcoma cell line. J. Mol. Endocrinol. 17, 7–17 (1996).

    CAS  PubMed  Google Scholar 

  128. 128.

    Zoidis, E., Ghirlanda-Keller, C. & Schmid, C. Stimulation of glucose transport in osteoblastic cells by parathyroid hormone and insulin-like growth factor I. Mol. Cell. Biochem. 348, 33–42 (2011).

    CAS  PubMed  Google Scholar 

  129. 129.

    Zoidis, E., Ghirlanda-Keller, C. & Schmid, C. Triiodothyronine stimulates glucose transport in bone cells. Endocrine 41, 501–511 (2012).

    CAS  PubMed  Google Scholar 

  130. 130.

    Li, Z. et al. Glucose transporter-4 facilitates insulin-stimulated glucose uptake in osteoblasts. Endocrinology 157, 4094–4103 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Simpson, I. A. et al. The facilitative glucose transporter GLUT3: 20 years of distinction. Am. J. Physiol. Endocrinol. Metab. 295, E242–E253 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Shepherd, P. R. et al. Distribution of GLUT3 glucose transporter protein in human tissues. Biochem. Biophys. Res. Commun. 188, 149–154 (1992).

    CAS  PubMed  Google Scholar 

  133. 133.

    Jahn, K. et al. Osteocytes acidify their microenvironment in response to PTHrP in vitro and in lactating mice in vivo. J. Bone Min. Res. 32, 1761–1772 (2017).

    Google Scholar 

  134. 134.

    Chen, C. T., Shih, Y. R., Kuo, T. K., Lee, O. K. & Wei, Y. H. Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells 26, 960–968 (2008).

    CAS  PubMed  Google Scholar 

  135. 135.

    Shum, L. C., White, N. S., Mills, B. N., Bentley, K. L. & Eliseev, R. A. Energy metabolism in mesenchymal stem cells during osteogenic differentiation. Stem Cells Dev. 25, 114–122 (2016).

    CAS  PubMed  Google Scholar 

  136. 136.

    Regard, J. B., Zhong, Z., Williams, B. O. & Yang, Y. Wnt signaling in bone development and disease: making stronger bone with Wnts. Cold Spring Harb. Perspect. Biol. 4, a007997 (2012).

    PubMed  PubMed Central  Google Scholar 

  137. 137.

    Yadav, V. K. et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 135, 825–837 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Esen, E. et al. WNT–LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation. Cell Metab. 17, 745–755 (2013). This work is the first to demonstrate control of osteoblast metabolism by WNT signalling.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Google Scholar 

  140. 140.

    Karner, C. M. et al. Wnt protein signaling reduces nuclear Acetyl-CoA levels to suppress gene expression during osteoblast differentiation. J. Biol. Chem. 291, 13028–13039 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141.

    Rodan, G. A., Rodan, S. B. & Marks, S. C. Jr. Parathyroid hormone stimulation of adenylate cyclase activity and lactic acid accumulation in calvaria of osteopetrotic (ia) rats. Endocrinology 102, 1501–1505 (1978).

    CAS  PubMed  Google Scholar 

  142. 142.

    Bikle, D. D. et al. Insulin-like growth factor I is required for the anabolic actions of parathyroid hormone on mouse bone. J. Bone Min. Res. 17, 1570–1578 (2002).

    CAS  Google Scholar 

  143. 143.

    McCarthy, T. L., Centrella, M. & Canalis, E. Parathyroid hormone enhances the transcript and polypeptide levels of insulin-like growth factor I in osteoblast-enriched cultures from fetal rat bone. Endocrinology 124, 1247–1253 (1989).

    CAS  PubMed  Google Scholar 

  144. 144.

    Kopan, R. & Ilagan, M. X. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137, 216–233 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145.

    Yorgan, T. et al. Osteoblast-specific Notch2 inactivation causes increased trabecular bone mass at specific sites of the appendicular skeleton. Bone 87, 136–146 (2016).

    CAS  PubMed  Google Scholar 

  146. 146.

    Zanotti, S. et al. Sustained Notch2 signaling in osteoblasts, but not in osteoclasts, is linked to osteopenia in a mouse model of Hajdu-Cheney syndrome. J. Biol. Chem. 292, 12232–12244 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147.

    Lee, S. Y. & Long, F. Notch signaling suppresses glucose metabolism in mesenchymal progenitors to restrict osteoblast differentiation. J. Clin. Invest. 128, 5573–5586 (2018).

    PubMed  PubMed Central  Google Scholar 

  148. 148.

    Zanotti, S. & Canalis, E. Parathyroid hormone inhibits Notch signaling in osteoblasts and osteocytes. Bone 103, 159–167 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149.

    Semenza, G. L. Hypoxia-inducible factors in physiology and medicine. Cell 148, 399–408 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150.

    Wang, Y. et al. The hypoxia-inducible factor α pathway couples angiogenesis to osteogenesis during skeletal development. J. Clin. Invest. 117, 1616–1626 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. 151.

    Regan, J. N. et al. Up-regulation of glycolytic metabolism is required for HIF1α-driven bone formation. Proc. Natl Acad. Sci. USA 111, 8673–8678 (2014).

    CAS  PubMed  Google Scholar 

  152. 152.

    Hu, C. J., Wang, L. Y., Chodosh, L. A., Keith, B. & Simon, M. C. Differential roles of hypoxia-inducible factor 1α (HIF-1α) and HIF-2α in hypoxic gene regulation. Mol. Cell Biol. 23, 9361–9374 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153.

    Wu, C. et al. Oxygen-sensing PHDs regulate bone homeostasis through the modulation of osteoprotegerin. Genes Dev. 29, 817–831 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. 154.

    Suchacki, K. J., Cawthorn, W. P. & Rosen, C. J. Bone marrow adipose tissue: formation, function and regulation. Curr. Opin. Pharmacol. 28, 50–56 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. 155.

    Adamek, G., Felix, R., Guenther, H. L. & Fleisch, H. Fatty acid oxidation in bone tissue and bone cells in culture. characterization and hormonal influences. Biochem. J. 248, 129–137 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. 156.

    Niemeier, A. et al. Uptake of postprandial lipoproteins into bone in vivo: impact on osteoblast function. Bone 43, 230–237 (2008). This study compares lipid uptake by the skeleton with that of other tissues.

    CAS  PubMed  Google Scholar 

  157. 157.

    Kim, S. P. et al. Fatty acid oxidation by the osteoblast is required for normal bone acquisition in a sex- and diet-dependent manner. JCI Insight 2, 92704 (2017). This study highlights the importance of fatty acid oxidation for skeletal homeostasis.

    PubMed  Google Scholar 

  158. 158.

    Lau, B. Y., Cohen, D. J., Ward, W. E. & Ma, D. W. Investigating the role of polyunsaturated fatty acids in bone development using animal models. Molecules 18, 14203–14227 (2013).

    PubMed  PubMed Central  Google Scholar 

  159. 159.

    Hooshmand, S. et al. Dietary L-carnitine supplementation improves bone mineral density by suppressing bone turnover in aged ovariectomized rats. Phytomedicine 15, 595–601 (2008).

    CAS  PubMed  Google Scholar 

  160. 160.

    Rendina-Ruedy, E., Guntur, A. R. & Rosen, C. J. Intracellular lipid droplets support osteoblast function. Adipocyte 6, 250–258 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161.

    Catherwood, B. D., Addison, J., Chapman, G., Contreras, S. & Lorang, M. Growth of rat osteoblast-like cells in a lipid-enriched culture medium and regulation of function by parathyroid hormone and 1,25-dihydroxyvitamin D. J. Bone Min. Res. 3, 431–438 (1988).

    CAS  Google Scholar 

  162. 162.

    Campbell, S. E. & Febbraio, M. A. Effect of ovarian hormones on mitochondrial enzyme activity in the fat oxidation pathway of skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 281, E803–E808 (2001).

    CAS  PubMed  Google Scholar 

  163. 163.

    Hatta, H., Atomi, Y., Shinohara, S., Yamamoto, Y. & Yamada, S. The effects of ovarian hormones on glucose and fatty acid oxidation during exercise in female ovariectomized rats. Horm. Metab. Res. 20, 609–611 (1988).

    CAS  PubMed  Google Scholar 

  164. 164.

    Herrero, P. et al. Impact of hormone replacement on myocardial fatty acid metabolism: potential role of estrogen. J. Nucl. Cardiol. 12, 574–581 (2005).

    PubMed  Google Scholar 

  165. 165.

    Schilling, A. F. et al. Increased bone formation in mice lacking apolipoprotein E. J. Bone Min. Res. 20, 274–282 (2005).

    CAS  Google Scholar 

  166. 166.

    Kevorkova, O. et al. Low-bone-mass phenotype of deficient mice for the cluster of differentiation 36 (CD36). PlOS ONE 8, e77701 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. 167.

    Riddle, R. C. et al. Lrp5 and Lrp6 exert overlapping functions in osteoblasts during postnatal bone acquisition. PlOS ONE 8, e63323 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. 168.

    Frey, J. L., Kim, S. P., Li, Z., Wolfgang, M. J. & Riddle, R. C. -Catenin directs long-chain fatty acid catabolism in the osteoblasts of male mice. Endocrinology 159, 272–284 (2018).

    PubMed  Google Scholar 

  169. 169.

    Larsson, S., Jones, H. A., Goransson, O., Degerman, E. & Holm, C. Parathyroid hormone induces adipocyte lipolysis via PKA-mediated phosphorylation of hormone-sensitive lipase. Cell Signal. 28, 204–213 (2016).

    CAS  PubMed  Google Scholar 

  170. 170.

    Fan, Y. et al. Parathyroid hormone directs bone marrow mesenchymal cell fate. Cell Metab. 25, 661–672 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. 171.

    Maridas, D. E. et al. Progenitor recruitment and adipogenic lipolysis contribute to the anabolic actions of parathyroid hormone on the skeleton. FASEB J, 33, 2885-2898 (2018).

    CAS  PubMed  Google Scholar 

  172. 172.

    Conigrave, A. D., Brown, E. M. & Rizzoli, R. Dietary protein and bone health: roles of amino acid-sensing receptors in the control of calcium metabolism and bone homeostasis. Annu. Rev. Nutr. 28, 131–155 (2008).

    CAS  PubMed  Google Scholar 

  173. 173.

    Fischer, A. Amino-acid metabolism of tissue cells in vitro. Nature 161, 1008 (1948).

    CAS  PubMed  Google Scholar 

  174. 174.

    Finerman, G. A. & Rosenberg, L. E. Amino acid transport in bone. Evidence for separate transport systems for neutral amino and imino acids. J. Biol. Chem. 241, 1487–1493 (1966).

    CAS  PubMed  Google Scholar 

  175. 175.

    Adamson, L. F. & Ingbar, S. H. Further studies of amino acid transport by embryonic chick bone. J. Biol. Chem. 242, 2646–2652 (1967).

    CAS  PubMed  Google Scholar 

  176. 176.

    Kim, S. G. et al. Differential expression and functional characterization of system L amino acid transporters in human normal osteoblast cells and osteogenic sarcoma cells. Anticancer Res. 26, 1989–1996 (2006).

    CAS  PubMed  Google Scholar 

  177. 177.

    Phang, J. M. & Downing, S. J. Amino acid transport in bone: stimulation by cyclic AMP. Am. J. Physiol. 224, 191–196 (1973).

    CAS  PubMed  Google Scholar 

  178. 178.

    Adamson, L. F. & Ingbar, S. H. Some properties of the stimulatory effect of thyroid hormones on amino acid transport by embryonic chick bone. Endocrinology 81, 1372–1378 (1967).

    CAS  PubMed  Google Scholar 

  179. 179.

    Hahn, T. J., Downing, S. J. & Phang, J. M. Insulin effect on amino acid transport in bone: dependence on protein synthesis and Na+. Am. J. Physiol. 220, 1717–1723 (1971).

    CAS  PubMed  Google Scholar 

  180. 180.

    Hahn, T. J., Downing, S. J. & Phang, J. M. Amino acid transport in adult diaphyseal bone: contrast with amino acid transport mechanisms in fetal membranous bone. Biochim. Biophys. Acta 183, 194–203 (1969).

    CAS  PubMed  Google Scholar 

  181. 181.

    Yang, X. & Karsenty, G. ATF4, the osteoblast accumulation of which is determined post-translationally, can induce osteoblast-specific gene expression in non-osteoblastic cells. J. Biol. Chem. 279, 47109–47114 (2004).

    CAS  PubMed  Google Scholar 

  182. 182.

    Yang, X. et al. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin–Lowry syndrome. Cell 117, 387–398 (2004).

    CAS  PubMed  Google Scholar 

  183. 183.

    Felig, P. Amino acid metabolism in man. Annu. Rev. Biochem. 44, 933–955 (1975).

    CAS  PubMed  Google Scholar 

  184. 184.

    Fan, J. et al. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol. Syst. Biol. 9, 712 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. 185.

    DeBerardinis, R. J. et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl Acad. Sci. USA 104, 19345–19350 (2007).

    CAS  PubMed  Google Scholar 

  186. 186.

    Biltz, R. M., Letteri, J. M., Pellegrino, E. D., Palekar, A. & Pinkus, L. M. Glutamine metabolism in bone. Min. Electrolyte Metab. 9, 125–131 (1983).

    CAS  Google Scholar 

  187. 187.

    Brown, P. M., Hutchison, J. D. & Crockett, J. C. Absence of glutamine supplementation prevents differentiation of murine calvarial osteoblasts to a mineralizing phenotype. Calcif. Tissue Int. 89, 472–482 (2011).

    CAS  PubMed  Google Scholar 

  188. 188.

    Yu, Y. et al. Glutamine metabolism regulates proliferation and lineage allocation in skeletal stem cells. Cell Metab. 29, 966–978 (2019). This study highlights the importance of glutamine metabolism for lineage allocation.

    CAS  PubMed  Google Scholar 

  189. 189.

    Karner, C. M., Esen, E., Okunade, A. L., Patterson, B. W. & Long, F. Increased glutamine catabolism mediates bone anabolism in response to WNT signaling. J. Clin. Invest. 125, 551–562 (2015).

    PubMed  Google Scholar 

  190. 190.

    Huang, T. et al. Aging reduces an ERRα-directed mitochondrial glutaminase expression suppressing glutamine anaplerosis and osteogenic differentiation of mesenchymal stem cells. Stem Cells 35, 411–424 (2017).

    CAS  PubMed  Google Scholar 

  191. 191.

    Stegen, S. et al. HIF-1α promotes glutamine-mediated redox homeostasis and glycogen-dependent bioenergetics to support postimplantation bone cell survival. Cell Metab. 23, 265–279 (2016).

    CAS  PubMed  Google Scholar 

Download references


The authors gratefully acknowledge the work by other investigators that has not been cited in this manuscript because of space limitations. Work in the authors’ laboratories is supported by grants from the National Institute of Diabetes and Digestive and Kidney Diseases (DK099134, R.C.R) and the Biomedical Laboratory Research and Development Service of the Veterans Affairs Office of Research and Development (BX003724, R.C.R; BX001234, T.L.C.). T.L.C is also the recipient of a Senior Research Career Scientist Award from the Department of Veterans Affairs.

Author information




The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Ryan C. Riddle.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks L. Bonewald and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Bone modelling

The deposition or resorption of bone matrix on separate bone surfaces to retain overall bone shape.

Bone remodelling

The consecutive resorption and then deposition of bone matrix at the same skeletal site, which is often used to replace old or damaged tissue.

Tricarboxylic acid (TCA) cycle

The series of chemical reactions in the mitochondria that liberates energy from nutrient substrates.

WNT–β-catenin signalling

A conserved signalling pathway requiring a WNT ligand, Frizzled receptor and low-density lipoprotein receptor-related protein 5 (LRP5)–LRP6 co-receptor that regulates the stability of the transcription factor β-catenin.

Calvarial cells

A population of cells isolated from the calvarial bones of neonatal rodents, which is enriched in osteoblastic cells.

Warburg metabolism

The metabolism of glucose by glycolysis rather than oxidative phosphorylation even under aerobic conditions.

Histone acetylation

The modification of lysine residues in the N-terminal tail of histones with an acetyl group to increase gene expression.


Lipoprotein particles produced in the gut consisting of protein, phospholipids, triglycerides and cholesterol.

Coffin–Lowry syndrome

A rare genetic disorder characterized by skeletal deformities, short stature and delayed intellectual development linked to mutations in the RPS6KA3 gene.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dirckx, N., Moorer, M.C., Clemens, T.L. et al. The role of osteoblasts in energy homeostasis. Nat Rev Endocrinol 15, 651–665 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing