Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Deiodinases and their intricate role in thyroid hormone homeostasis

Abstract

The deiodinase family of enzymes mediates the activation and inactivation of thyroid hormone. The role of these enzymes in the regulation of the systemic concentrations of thyroid hormone is well established and underpins the treatment of common thyroid diseases. Interest in this field has increased in the past 10 years as the deiodinases became implicated in tissue development and homeostasis, as well as in the pathogenesis of a wide range of human diseases. Three deiodinases have been identified, namely, types 1, 2 and 3 iodothyronine deiodinases, which differ in their catalytic properties and tissue distribution. Notably, the expression of these enzymes changes during the lifetime of an individual in relation to the different needs of each organ and to ageing. The systemic homeostatic role of deiodinases clearly emerges during changes in serum concentrations of thyroid hormone, as seen in patients with thyroid dysfunction. By contrast, the role of deiodinases at the tissue level allows thyroid hormone signalling to be finely tuned within a given cell in a precise time–space window without perturbing serum concentrations of thyroid hormone. This Review maps the overall functional role of the deiodinases and explores challenges and novel opportunities arising from the expanding knowledge of these ‘master’ components of the thyroid homeostatic system.

Key points

  • The coordinated action of the hypothalamic–pituitary–thyroid axis and deiodinases is critical to ensure a stable plasma concentration of T3 in euthyroid conditions and to counteract alterations in thyroid hormone levels under pathological conditions.

  • Deiodinases allow tissues to customize either enhancing or decreasing the intracellular concentration of thyroid hormone at the single-cell level and independently of plasma.

  • Deiodinase action is essential to ensure optimal intracellular concentrations of T3 at the single-cell level, in a temporal-dependent window.

  • The common DIO2 Thr92Ala polymorphism affects enzyme stability and activity, which, in turn, alters thyroid hormone metabolism, thereby exposing carriers to reduced conversion of T4 to T3 that could be critical in those who are athyreotic.

  • In levothyroxine-treated patients who are athyreotic, TSH levels within the reference range do not guarantee tissue euthyroidism; therefore, clinical or metabolic biomarkers of peripheral euthyroidism are required, particularly for patients who are symptomatic but biochemically euthyroid.

  • Studies are required to identify genetic or metabolic traits in patients with hypothyroidism in whom levothyroxine treatment alone does not suffice to restore tissue euthyroidism and clinical well-being.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Deiodinase thyroid hormone action.
Fig. 2: Thyroid hormone metabolism is dynamically regulated during linear progression of satellite cells.
Fig. 3: The interplay between thyroid hormone and oncogenic signalling pathways in cancer cells.
Fig. 4: The tumorigenesis of basal cell carcinoma is highly sensitive to thyroid hormone action.

Similar content being viewed by others

References

  1. Brent, G. A. The molecular basis of thyroid hormone action. N. Engl. J. Med. 331, 847–853 (1994).

    CAS  PubMed  Google Scholar 

  2. Bianco, A. C., Salvatore, D., Gereben, B., Berry, M. J. & Larsen, P. R. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr. Rev. 23, 38–89 (2002).

    CAS  PubMed  Google Scholar 

  3. Gereben, B. et al. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr. Rev. 29, 898–938 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Silva, J. E. & Larsen, P. R. Pituitary nuclear 3,5,3ʹ-triiodothyronine and thyrotropin secretion: an explanation for the effect of thyroxine. Science 198, 617–620 (1977).

    CAS  PubMed  Google Scholar 

  5. Christoffolete, M. A. et al. Atypical expression of type 2 iodothyronine deiodinase in thyrotrophs explains the thyroxine-mediated pituitary thyrotropin feedback mechanism. Endocrinology 147, 1735–1743 (2006).

    CAS  PubMed  Google Scholar 

  6. Fonseca, T. L. et al. Coordination of hypothalamic and pituitary T3 production regulates TSH expression. J. Clin. Invest. 123, 1492–1500 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Luongo, C. et al. The selective loss of the type 2 iodothyronine deiodinase in mouse thyrotrophs increases basal TSH but blunts the thyrotropin response to hypothyroidism. Endocrinology 156, 745–754 (2015).

    PubMed  Google Scholar 

  8. Visser, W. E., Friesema, E. C. & Visser, T. J. Minireview: thyroid hormone transporters: the knowns and the unknowns. Mol. Endocrinol. 25, 1–14 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gereben, B., Zeold, A., Dentice, M., Salvatore, D. & Bianco, A. C. Activation and inactivation of thyroid hormone by deiodinases: local action with general consequences. Cell. Mol. Life Sci. 65, 570–590 (2008).

    CAS  PubMed  Google Scholar 

  10. Dentice, M. & Salvatore, D. Deiodinases: the balance of thyroid hormone: local impact of thyroid hormone inactivation. J. Endocrinol. 209, 273–282 (2011).

    CAS  PubMed  Google Scholar 

  11. Dentice, M., Antonini, D. & Salvatore, D. Type 3 deiodinase and solid tumors: an intriguing pair. Expert Opin. Ther. Targets 17, 1369–1379 (2013).

    CAS  PubMed  Google Scholar 

  12. Bianco, A. C. & Silva, J. E. Cold exposure rapidly induces virtual saturation of brown adipose tissue nuclear T3 receptors. Am. J. Physiol. 255, E496–E503 (1988).

    CAS  PubMed  Google Scholar 

  13. Flamant, F. et al. Thyroid hormone signaling pathways: time for a more precise nomenclature. Endocrinology 158, 2052–2057 (2017).

    PubMed  PubMed Central  Google Scholar 

  14. Brent, G. A. Mechanisms of thyroid hormone action. J. Clin. Invest. 122, 3035–3043 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Yen, P. M. Physiological and molecular basis of thyroid hormone action. Physiol. Rev. 81, 1097–1142 (2001).

    CAS  PubMed  Google Scholar 

  16. Ortiga-Carvalho, T. M., Sidhaye, A. R. & Wondisford, F. E. Thyroid hormone receptors and resistance to thyroid hormone disorders. Nat. Rev. Endocrinol. 10, 582–591 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Cheng, S. Y., Leonard, J. L. & Davis, P. J. Molecular aspects of thyroid hormone actions. Endocr. Rev. 31, 139–170 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Moeller, L. C., Cao, X., Dumitrescu, A. M., Seo, H. & Refetoff, S. Thyroid hormone mediated changes in gene expression can be initiated by cytosolic action of the thyroid hormone receptor beta through the phosphatidylinositol 3-kinase pathway. Nucl. Recept. Signal 4, e020 (2006).

    PubMed  PubMed Central  Google Scholar 

  19. Vella, K. R. & Hollenberg, A. N. The actions of thyroid hormone signaling in the nucleus. Mol. Cell Endocrinol. 458, 127–135 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Maia, A. L., Kim, B. W., Huang, S. A., Harney, J. W. & Larsen, P. R. Type 2 iodothyronine deiodinase is the major source of plasma T3 in euthyroid humans. J. Clin. Invest. 115, 2524–2533 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chanoine, J. P. et al. The thyroid gland is a major source of circulating T3 in the rat. J. Clin. Invest. 91, 2709–2713 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Pilo, A. et al. Thyroidal and peripheral production of 3,5,3ʹ-triiodothyronine in humans by multicompartmental analysis. Am. J. Physiol. 258, E715–E726 (1990).

    CAS  PubMed  Google Scholar 

  23. Schreiber, G. The evolutionary and integrative roles of transthyretin in thyroid hormone homeostasis. J. Endocrinol. 175, 61–73 (2002).

    CAS  PubMed  Google Scholar 

  24. Geffner, D. L., Azukizawa, M. & Hershman, J. M. Propylthiouracil blocks extrathyroidal conversion of thyroxine to triiodothyronine and augments thyrotropin secretion in man. J. Clin. Invest. 55, 224–229 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Saberi, M., Sterling, F. H. & Utiger, R. D. Reduction in extrathyroidal triiodothyronine production by propylthiouracil in man. J. Clin. Invest. 55, 218–223 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. LoPresti, J. S. et al. Alterations in 3,3’5’-triiodothyronine metabolism in response to propylthiouracil, dexamethasone, and thyroxine administration in man. J. Clin. Invest. 84, 1650–1656 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Croxson, M. S., Hall, T. D. & Nicoloff, J. T. Combination drug therapy for treatment of hyperthyroid Grave’s disease. J. Clin. Endocrinol. Metab. 45, 623–630 (1977).

    CAS  PubMed  Google Scholar 

  28. Laurberg, P., Torring, J. & Weeke, J. A comparison of the effects of propylthiouracil and methimazol on circulating thyroid hormones and various measures of peripheral thyroid hormone effects in thyrotoxic patients. Acta Endocrinol. 108, 51–54 (1985).

    CAS  PubMed  Google Scholar 

  29. Koenig, R. J. Regulation of type 1 iodothyronine deiodinase in health and disease. Thyroid 15, 835–840 (2005).

    CAS  PubMed  Google Scholar 

  30. Leonard, J. L. & Rosenberg, I. N. Subcellular distribution of thyroxine 5ʹ-deiodinase in the rat kidney: a plasma membrane location. Endocrinology 103, 274–280 (1978).

    CAS  PubMed  Google Scholar 

  31. Baqui, M. M., Gereben, B., Harney, J. W., Larsen, P. R. & Bianco, A. C. Distinct subcellular localization of transiently expressed types 1 and 2 iodothyronine deiodinases as determined by immunofluorescence confocal microscopy. Endocrinology 141, 4309–4312 (2000).

    CAS  PubMed  Google Scholar 

  32. Silva, J. E., Dick, T. E. & Larsen, P. R. The contribution of local tissue thyroxine monodeiodination to the nuclear 3,5,3ʹ-triiodothyronine in pituitary, liver, and kidney of euthyroid rats. Endocrinology 103, 1196–1207 (1978).

    CAS  PubMed  Google Scholar 

  33. Bianco, A. C. & Silva, J. E. Nuclear 3,5,3ʹ-triiodothyronine (T3) in brown adipose tissue: receptor occupancy and sources of T3 as determined by in vivo techniques. Endocrinology 120, 55–62 (1987).

    CAS  PubMed  Google Scholar 

  34. Silva, J. E. & Matthews, P. Thyroid hormone metabolism and the source of plasma triiodothyronine in 2-week-old rats: effects of thyroid status. Endocrinology 114, 2394–2405 (1984).

    CAS  PubMed  Google Scholar 

  35. Galton, V. A., Schneider, M. J., Clark, A. S. & St Germain, D. L. Life without thyroxine to 3,5,3ʹ-triiodothyronine conversion: studies in mice devoid of the 5ʹ-deiodinases. Endocrinology 150, 2957–2963 (2009).

    CAS  PubMed  Google Scholar 

  36. Schneider, M. J. et al. Targeted disruption of the type 1 selenodeiodinase gene (Dio1) results in marked changes in thyroid hormone economy in mice. Endocrinology 147, 580–589 (2006).

    CAS  PubMed  Google Scholar 

  37. Lum, S. M., Nicoloff, J. T., Spencer, C. A. & Kaptein, E. M. Peripheral tissue mechanism for maintenance of serum triiodothyronine values in a thyroxine-deficient state in man. J. Clin. Invest. 73, 570–575 (1984).

    CAS  PubMed  Google Scholar 

  38. Abuid, J. & Larsen, P. R. Triiodothyronine and thyroxine in hyperthyroidism. Comparison of the acute changes during therapy with antithyroid agents. J. Clin. Invest. 54, 201–208 (1974).

    CAS  PubMed  Google Scholar 

  39. Schneider, M. J. et al. Targeted disruption of the type 2 selenodeiodinase gene (DIO2) results in a phenotype of pituitary resistance to T4. Mol. Endocrinol. 15, 2137–2148 (2001).

    CAS  PubMed  Google Scholar 

  40. Abrams, G. M. & Larsen, P. R. Triiodothyronine and thyroxine in the serum and thyroid glands of iodine-deficient rats. J. Clin. Invest. 52, 2522–2531 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Nguyen, T. T., Chapa, F. & DiStefano, J. J. 3rd. Direct measurement of the contributions of type I and type II 5ʹ-deiodinases to whole body steady state 3,5,3ʹ-triiodothyronine production from thyroxine in the rat. Endocrinology 139, 4626–4633 (1998).

    CAS  PubMed  Google Scholar 

  42. Peeters, R. P. et al. Polymorphisms in thyroid hormone pathway genes are associated with plasma TSH and iodothyronine levels in healthy subjects. J. Clin. Endocrinol. Metab. 88, 2880–2888 (2003).

    CAS  PubMed  Google Scholar 

  43. Castagna, M. G. et al. DIO2 Thr92Ala reduces deiodinase-2 activity and serum-T3 levels in thyroid-deficient patients. J. Clin. Endocrinol. Metab. 102, 1623–1630 (2017). This study is the first to show, using an alternative method to the classic deiodinase enzymatic assay, that DIO2 Thr92Ala reduces DIO2 activity.

    PubMed  Google Scholar 

  44. Peeters, R. P. et al. A new polymorphism in the type II deiodinase gene is associated with circulating thyroid hormone parameters. Am. J. Physiol. Endocrinol. Metab. 289, E75–E81 (2005).

    CAS  PubMed  Google Scholar 

  45. Dora, J. M., Machado, W. E., Rheinheimer, J., Crispim, D. & Maia, A. L. Association of the type 2 deiodinase Thr92Ala polymorphism with type 2 diabetes: case-control study and meta-analysis. Eur. J. Endocrinol. 163, 427–434 (2010).

    CAS  PubMed  Google Scholar 

  46. Canani, L. H. et al. The type 2 deiodinase A/G (Thr92Ala) polymorphism is associated with decreased enzyme velocity and increased insulin resistance in patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 90, 3472–3478 (2005).

    CAS  PubMed  Google Scholar 

  47. McAninch, E. A. et al. Prevalent polymorphism in thyroid hormone-activating enzyme leaves a genetic fingerprint that underlies associated clinical syndromes. J. Clin. Endocrinol. Metab. 100, 920–933 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Jo, S. et al. Type 2 deiodinase polymorphism causes ER stress and hypothyroidism in the brain. J. Clin. Invest. 129, 230–245 (2019).

    PubMed  Google Scholar 

  49. Gumieniak, O. et al. Ala92 type 2 deiodinase allele increases risk for the development of hypertension. Hypertension 49, 461–466 (2007).

    CAS  PubMed  Google Scholar 

  50. Mentuccia, D. et al. Association between a novel variant of the human type 2 deiodinase gene Thr92Ala and insulin resistance: evidence of interaction with the Trp64Arg variant of the β-3-adrenergic receptor. Diabetes 51, 880–883 (2002). This work is the first to identify the DIO2 Thr92Ala polymorphism.

    CAS  PubMed  Google Scholar 

  51. McAninch, E. A. et al. A common DIO2 polymorphism and Alzheimer disease dementia in African and European Americans. J. Clin. Endocrinol. Metab. 103, 1818–1826 (2018).

    PubMed  PubMed Central  Google Scholar 

  52. McAninch, E. A., Rajan, K. B., Miller, C. H. & Bianco, A. C. Systemic thyroid hormone status during levothyroxine therapy in hypothyroidism: a systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 103, 4533–4542 (2018).

    Google Scholar 

  53. Butler, P. W. et al. The Thr92Ala 5’ type 2 deiodinase gene polymorphism is associated with a delayed triiodothyronine secretion in response to the thyrotropin-releasing hormone-stimulation test: a pharmacogenomic study. Thyroid 20, 1407–1412 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Maia, A. L. et al. Lack of association between the type 2 deiodinase A/G polymorphism and hypertensive traits: the Framingham Heart Study. Hypertension 51, e22–e23 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Grarup, N. et al. Studies of the common DIO2 Thr92Ala polymorphism and metabolic phenotypes in 7342 Danish white subjects. J. Clin. Endocrinol. Metab. 92, 363–366 (2007).

    CAS  PubMed  Google Scholar 

  56. van der Deure, W. M. et al. Impact of thyroid function and polymorphisms in the type 2 deiodinase on blood pressure: the Rotterdam Study and the Rotterdam Scan Study. Clin. Endocrinol. 71, 137–144 (2009).

    Google Scholar 

  57. Wouters, H. J. et al. No effect of the Thr92Ala polymorphism of deiodinase-2 on thyroid hormone parameters, health-related quality of life, and cognitive functioning in a large population-based cohort study. Thyroid 27, 147–155 (2017).

    CAS  PubMed  Google Scholar 

  58. Heemstra, K. A. et al. Thr92Ala polymorphism in the type 2 deiodinase is not associated with T4 dose in athyroid patients or patients with Hashimoto thyroiditis. Clin. Endocrinol. 71, 279–283 (2009).

    CAS  Google Scholar 

  59. Yalakanti, D. & Dolia, P. B. Association of type II 5’ monodeiodinase Thr92Ala single nucleotide gene polymorphism and circulating thyroid hormones among type 2 diabetes mellitus patients. Indian J. Clin. Biochem. 31, 152–161 (2016).

    CAS  PubMed  Google Scholar 

  60. Zhang, X. et al. The type 2 deiodinase Thr92Ala polymorphism is associated with worse glycemic control in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. J. Diabetes Res. 2016, 5928726 (2016).

    PubMed  PubMed Central  Google Scholar 

  61. Maia, A. L. et al. The type 2 deiodinase (DIO2) A/G polymorphism is not associated with glycemic traits: the Framingham Heart Study. Thyroid 17, 199–202 (2007).

    CAS  PubMed  Google Scholar 

  62. Mentuccia, D. et al. The Thr92Ala deiodinase type 2 (DIO2) variant is not associated with type 2 diabetes or indices of insulin resistance in the old order of Amish. Thyroid 15, 1223–1227 (2005).

    PubMed  Google Scholar 

  63. Medici, M., Chaker, L. & Peeters, R. P. A. Step forward in understanding the relevance of genetic variation in type 2 deiodinase. J. Clin. Endocrinol. Metab. 102, 1775–1778 (2017).

    PubMed  Google Scholar 

  64. Krief, S. et al. Tissue distribution of beta 3-adrenergic receptor mRNA in man. J. Clin. Invest. 91, 344–349 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Collins, S. et al. Impaired expression and functional activity of the beta 3- and beta 1-adrenergic receptors in adipose tissue of congenitally obese (C57BL/6J ob/ob) mice. Mol. Endocrinol. 8, 518–527 (1994).

    CAS  PubMed  Google Scholar 

  66. Kimura, K. et al. Mutated human β3-adrenergic receptor (Trp64Arg) lowers the response to β3-adrenergic agonists in transfected 3T3-L1 preadipocytes. Horm. Metab. Res. 32, 91–96 (2000).

    CAS  PubMed  Google Scholar 

  67. Bartha, T. et al. Characterization of the 5ʹ-flanking and 5ʹ-untranslated regions of the cyclic adenosine 3ʹ,5ʹ-monophosphate-responsive human type 2 iodothyronine deiodinase gene1. Endocrinology 141, 229–237 (2000).

    CAS  PubMed  Google Scholar 

  68. Estivalet, A. A. et al. D2 Thr92Ala and PPARγ2 Pro12Ala polymorphisms interact in the modulation of insulin resistance in type 2 diabetic patients. Obesity 19, 825–832 (2011).

    CAS  PubMed  Google Scholar 

  69. Fiorito, M. et al. Interaction of DIO2 T92A and PPARγ2 P12A polymorphisms in the modulation of metabolic syndrome. Obesity 15, 2889–2895 (2007).

    CAS  PubMed  Google Scholar 

  70. Hoftijzer, H. C. et al. The type 2 deiodinase ORFa-Gly3Asp polymorphism (rs12885300) influences the set point of the hypothalamus-pituitary-thyroid axis in patients treated for differentiated thyroid carcinoma. J. Clin. Endocrinol. Metab. 96, E1527–E1533 (2011).

    CAS  PubMed  Google Scholar 

  71. Fuentes, A. V., Pineda, M. D. & Venkata, K. C. N. Comprehension of top 200 prescribed drugs in the US as a resource for pharmacy teaching, training and practice. Pharmacy 6, E43 (2018).

    PubMed  Google Scholar 

  72. Wiersinga, W. M., Duntas, L., Fadeyev, V., Nygaard, B. & Vanderpump, M. P. 2012 ETA guidelines: the use of L-T4 + L-T3 in the treatment of hypothyroidism. Eur. Thyroid J. 1, 55–71 (2012).

    PubMed  PubMed Central  Google Scholar 

  73. Anbar, M., Guttmann, S., Rodan, G. & Stein, J. A. The determination of the rate of deiodination of thyroxine in human subjects. J. Clin. Invest. 44, 1986–1991 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Celi, F. S. et al. The pharmacodynamic equivalence of levothyroxine and liothyronine: a randomized, double blind, cross-over study in thyroidectomized patients. Clin. Endocrinol. 72, 709–715 (2010).

    CAS  Google Scholar 

  75. Peterson, S. J. et al. An online survey of hypothyroid patients demonstrates prominent dissatisfaction. Thyroid 28, 707–721 (2018).

    CAS  PubMed  Google Scholar 

  76. Escobar-Morreale, H. F., Obregon, M. J., Escobar del Rey, F. & Morreale de Escobar, G. Replacement therapy for hypothyroidism with thyroxine alone does not ensure euthyroidism in all tissues, as studied in thyroidectomized rats. J. Clin. Invest. 96, 2828–2838 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Gullo, D. et al. Levothyroxine monotherapy cannot guarantee euthyroidism in all athyreotic patients. PLOS ONE 6, e22552 (2011). In a large cohort of patients who were athyreotic, the authors demonstrate that levothyroxine alone is not sufficient to restore T 4 and T 3 levels to within the reference ranges.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Peterson, S. J., McAninch, E. A. & Bianco, A. C. Is a normal TSH synonymous with “euthyroidism” in levothyroxine monotherapy? J. Clin. Endocrinol. Metab. 101, 4964–4973 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ito, M. et al. Biochemical markers reflecting thyroid function in athyreotic patients on levothyroxine monotherapy. Thyroid 27, 484–490 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Werneck de Castro, J. P. et al. Differences in hypothalamic type 2 deiodinase ubiquitination explain localized sensitivity to thyroxine. J. Clin. Invest. 125, 769–781 (2015).

    PubMed  PubMed Central  Google Scholar 

  81. Panicker, V. et al. Common variation in the DIO2 gene predicts baseline psychological well-being and response to combination thyroxine plus triiodothyronine therapy in hypothyroid patients. J. Clin. Endocrinol. Metab. 94, 1623–1629 (2009). This is the first paper to demonstrate the potential benefit of the combined levothyroxine and liothyronine treatment.

    CAS  PubMed  Google Scholar 

  82. Grozinsky-Glasberg, S., Fraser, A., Nahshoni, E., Weizman, A. & Leibovici, L. Thyroxine-triiodothyronine combination therapy versus thyroxine monotherapy for clinical hypothyroidism: meta-analysis of randomized controlled trials. J. Clin. Endocrinol. Metab. 91, 2592–2599 (2006).

    CAS  PubMed  Google Scholar 

  83. Valizadeh, M. et al. Efficacy of combined levothyroxine and liothyronine as compared with levothyroxine monotherapy in primary hypothyroidism: a randomized controlled trial. Endocr. Res. 34, 80–89 (2009).

    CAS  PubMed  Google Scholar 

  84. Nygaard, B., Jensen, E. W., Kvetny, J., Jarlov, A. & Faber, J. Effect of combination therapy with thyroxine (T4) and 3,5,3ʹ-triiodothyronine versus T4 monotherapy in patients with hypothyroidism, a double-blind, randomised cross-over study. Eur. J. Endocrinol. 161, 895–902 (2009).

    CAS  PubMed  Google Scholar 

  85. Appelhof, B. C. et al. Combined therapy with levothyroxine and liothyronine in two ratios, compared with levothyroxine monotherapy in primary hypothyroidism: a double-blind, randomized, controlled clinical trial. J. Clin. Endocrinol. Metab. 90, 2666–2674 (2005).

    CAS  PubMed  Google Scholar 

  86. Saravanan, P., Simmons, D. J., Greenwood, R., Peters, T. J. & Dayan, C. M. Partial substitution of thyroxine (T4) with tri-iodothyronine in patients on T4 replacement therapy: results of a large community-based randomized controlled trial. J. Clin. Endocrinol. Metab. 90, 805–812 (2005).

    CAS  PubMed  Google Scholar 

  87. Bunevicius, R., Kazanavicius, G., Zalinkevicius, R. & Prange, A. J. Jr. Effects of thyroxine as compared with thyroxine plus triiodothyronine in patients with hypothyroidism. N. Engl. J. Med. 340, 424–429 (1999).

    CAS  PubMed  Google Scholar 

  88. Bunevicius, R. et al. Thyroxine versus thyroxine plus triiodothyronine in treatment of hypothyroidism after thyroidectomy for Graves’ disease. Endocrine 18, 129–133 (2002).

    CAS  PubMed  Google Scholar 

  89. Clyde, P. W., Harari, A. E., Getka, E. J. & Shakir, K. M. Combined levothyroxine plus liothyronine compared with levothyroxine alone in primary hypothyroidism: a randomized controlled trial. JAMA 290, 2952–2958 (2003).

    CAS  PubMed  Google Scholar 

  90. Da Conceicao, R. R., Fernandes, G. W., Fonseca, T. L., Bocco, B. & Bianco, A. C. Metal coordinated poly-zinc-liothyronine provides stable circulating triiodothyronine levels in hypothyroid rats. Thyroid 28, 1425–1433 (2018). Poly-zinc-liothyronine is found to be a new T 3 formulation that has potential clinical uses.

    PubMed  Google Scholar 

  91. Carle, A., Faber, J., Steffensen, R., Laurberg, P. & Nygaard, B. Hypothyroid patients encoding combined MCT10 and DIO2 gene polymorphisms may prefer L-T3 + L-T4 combination treatment — data using a blind, randomized, clinical study. Eur. Thyroid J. 6, 143–151 (2017).

    CAS  Google Scholar 

  92. Jonklaas, J. et al. Guidelines for the treatment of hypothyroidism: prepared by the American Thyroid Association task force on thyroid hormone replacement. Thyroid 24, 1670–1751 (2014).

    PubMed  PubMed Central  Google Scholar 

  93. Sugie, H. & Verity, M. A. Postnatal histochemical fiber type differentiation in normal and hypothyroid rat soleus muscle. Muscle Nerve 8, 654–660 (1985).

    CAS  PubMed  Google Scholar 

  94. Simonides, W. S. & van Hardeveld, C. Thyroid hormone as a determinant of metabolic and contractile phenotype of skeletal muscle. Thyroid 18, 205–216 (2008).

    CAS  PubMed  Google Scholar 

  95. Salvatore, D., Simonides, W. S., Dentice, M., Zavacki, A. M. & Larsen, P. R. Thyroid hormones and skeletal muscle — new insights and potential implications. Nat. Rev. Endocrinol. 10, 206–214 (2014).

    CAS  PubMed  Google Scholar 

  96. Ambrosio, R., De Stefano, M. A., Di Girolamo, D. & Salvatore, D. Thyroid hormone signaling and deiodinase actions in muscle stem/progenitor cells. Mol. Cell. Endocrinol. 459, 79–83 (2017).

    CAS  PubMed  Google Scholar 

  97. Marsili, A. et al. Type 2 iodothyronine deiodinase levels are higher in slow-twitch than fast-twitch mouse skeletal muscle and are increased in hypothyroidism. Endocrinology 151, 5952–5960 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Yin, H., Price, F. & Rudnicki, M. A. Satellite cells and the muscle stem cell niche. Physiol. Rev. 93, 23–67 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Conboy, I. M., Conboy, M. J., Smythe, G. M. & Rando, T. A. Notch-mediated restoration of regenerative potential to aged muscle. Science 302, 1575–1577 (2003).

    CAS  PubMed  Google Scholar 

  100. Dentice, M. et al. The FoxO3/type 2 deiodinase pathway is required for normal mouse myogenesis and muscle regeneration. J. Clin. Invest. 120, 4021–4030 (2010). This study demonstrates that DIO2 is important in muscle stem cells during myogenesis and muscle regeneration processes.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Salvatore, D. Deiodinases and stem cells: an intimate relationship. J. Endocrinol. Invest. 41, 59–66 (2018).

    CAS  PubMed  Google Scholar 

  102. Dentice, M. et al. Intracellular inactivation of thyroid hormone is a survival mechanism for muscle stem cell proliferation and lineage progression. Cell Metab. 20, 1038–1048 (2014). In this paper, the authors demonstrate that DIO3 is expressed in activated satellite cells, and its expression is required to protect the cells from the apoptotic effects of thyroid hormone.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Ignacio, D. L. et al. Early developmental disruption of type 2 deiodinase pathway in mouse skeletal muscle does not impair muscle function. Thyroid 27, 577–586 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Werneck-de-Castro, J. P. et al. Thyroid hormone signaling in male mouse skeletal muscle is largely independent of D2 in myocytes. Endocrinology 156, 3842–3852 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Dentice, M. et al. β-Catenin regulates deiodinase levels and thyroid hormone signaling in colon cancer cells. Gastroenterology 143, 1037–1047 (2012).

    CAS  PubMed  Google Scholar 

  106. Catalano, V. et al. Activated thyroid hormone promotes differentiation and chemotherapeutic sensitization of colorectal cancer stem cells by regulating Wnt and BMP4 signaling. Cancer Res. 76, 1237–1244 (2016).

    CAS  PubMed  Google Scholar 

  107. Dentice, M. et al. Sonic hedgehog-induced type 3 deiodinase blocks thyroid hormone action enhancing proliferation of normal and malignant keratinocytes. Proc. Natl Acad. Sci. USA 104, 14466–14471 (2007).

    CAS  PubMed  Google Scholar 

  108. Luongo, C. et al. The sonic hedgehog-induced type 3 deiodinase facilitates tumorigenesis of basal cell carcinoma by reducing Gli2 inactivation. Endocrinology 155, 2077–2088 (2014).

    PubMed  PubMed Central  Google Scholar 

  109. Boelaert, K. et al. Serum thyrotropin concentration as a novel predictor of malignancy in thyroid nodules investigated by fine-needle aspiration. J. Clin. Endocrinol. Metab. 91, 4295–4301 (2006).

    CAS  PubMed  Google Scholar 

  110. Fiore, E. et al. Lower levels of TSH are associated with a lower risk of papillary thyroid cancer in patients with thyroid nodular disease: thyroid autonomy may play a protective role. Endocr. Relat. Cancer 16, 1251–1260 (2009).

    CAS  PubMed  Google Scholar 

  111. Sirakov, M. et al. The thyroid hormone nuclear receptor TRα1 controls the Notch signaling pathway and cell fate in murine intestine. Development 142, 2764–2774 (2015).

    CAS  PubMed  Google Scholar 

  112. Hiroi, Y. et al. Rapid nongenomic actions of thyroid hormone. Proc. Natl Acad. Sci. USA 103, 14104–14109 (2006).

    CAS  PubMed  Google Scholar 

  113. Garcia-Silva, S. & Aranda, A. The thyroid hormone receptor is a suppressor of ras-mediated transcription, proliferation, and transformation. Mol. Cell. Biol. 24, 7514–7523 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Di Girolamo, D. et al. Reciprocal interplay between thyroid hormone and microRNA-21 regulates hedgehog pathway-driven skin tumorigenesis. J. Clin. Invest. 126, 2308–2320 (2016).

    PubMed  PubMed Central  Google Scholar 

  115. Mori, K. et al. Thyroxine 5-deiodinase in human brain tumors. J. Clin. Endocrinol. Metab. 77, 1198–1202 (1993).

    CAS  PubMed  Google Scholar 

  116. Sabatino, L., Iervasi, G., Ferrazzi, P., Francesconi, D. & Chopra, I. J. A study of iodothyronine 5ʹ-monodeiodinase activities in normal and pathological tissues in man and their comparison with activities in rat tissues. Life Sci. 68, 191–202 (2000).

    CAS  PubMed  Google Scholar 

  117. Casula, S. & Bianco, A. C. Thyroid hormone deiodinases and cancer. Front. Endocrinol. 3, 74 (2012).

    CAS  Google Scholar 

  118. Maia, A. L., Goemann, I. M., Meyer, E. L. & Wajner, S. M. Deiodinases: the balance of thyroid hormone: type 1 iodothyronine deiodinase in human physiology and disease. J. Endocrinol. 209, 283–297 (2011).

    CAS  PubMed  Google Scholar 

  119. Wawrzynska, L., Sakowicz, A., Rudzinski, P., Langfort, R. & Kurzyna, M. The conversion of thyroxine to triiodothyronine in the lung: comparison of activity of type I iodothyronine 5’ deiodinase in lung cancer with peripheral lung tissues. Monaldi Arch. Chest Dis. 59, 140–145 (2003).

    CAS  PubMed  Google Scholar 

  120. Pachucki, J. et al. Type I 5ʹ-iodothyronine deiodinase activity and mRNA are remarkably reduced in renal clear cell carcinoma. J. Endocrinol. Invest. 24, 253–261 (2001).

    CAS  PubMed  Google Scholar 

  121. de Souza Meyer, E. L., Dora, J. M., Wagner, M. S. & Maia, A. L. Decreased type 1 iodothyronine deiodinase expression might be an early and discrete event in thyroid cell dedifferentiation towards papillary carcinoma. Clin. Endocrinol. 62, 672–678 (2005).

    Google Scholar 

  122. Poplawski, P. et al. Restoration of type 1 iodothyronine deiodinase expression in renal cancer cells downregulates oncoproteins and affects key metabolic pathways as well as anti-oxidative system. PLOS ONE 12, e0190179 (2017).

    PubMed  PubMed Central  Google Scholar 

  123. Schreck, R., Schnieders, F., Schmutzler, C. & Kohrle, J. Retinoids stimulate type I iodothyronine 5ʹ-deiodinase activity in human follicular thyroid carcinoma cell lines. J. Clin. Endocrinol. Metab. 79, 791–798 (1994).

    CAS  PubMed  Google Scholar 

  124. Murakami, M. et al. Expression of type II iodothyronine deiodinase in brain tumors. J. Clin. Endocrinol. Metab. 85, 4403–4406 (2000).

    CAS  PubMed  Google Scholar 

  125. Nauman, P., Bonicki, W., Michalik, R., Warzecha, A. & Czernicki, Z. The concentration of thyroid hormones and activities of iodothyronine deiodinases are altered in human brain gliomas. Folia Neuropathol. 42, 67–73 (2004).

    CAS  PubMed  Google Scholar 

  126. Tannahill, L. A. et al. Dysregulation of iodothyronine deiodinase enzyme expression and function in human pituitary tumours. Clin. Endocrinol. 56, 735–743 (2002).

    CAS  Google Scholar 

  127. Miro, C. et al. The concerted action of type 2 and type 3 deiodinases regulates the cell cycle and survival of basal cell carcinoma cells. Thyroid 27, 567–576 (2017).

    CAS  PubMed  Google Scholar 

  128. Cicatiello, A. G., Ambrosio, R. & Dentice, M. Thyroid hormone promotes differentiation of colon cancer stem cells. Mol. Cell. Endocrinol. 459, 84–89 (2017).

    CAS  PubMed  Google Scholar 

  129. Yu, G. et al. Thyroid hormone inhibits lung fibrosis in mice by improving epithelial mitochondrial function. Nat. Med. 24, 39–49 (2018).

    CAS  PubMed  Google Scholar 

  130. Ladenson, P. W. et al. Use of the thyroid hormone analogue eprotirome in statin-treated dyslipidemia. N. Engl. J. Med. 362, 906–916 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of grants from the European Research Council under the European Union’s Horizon 2020 Programme — EU FP7 contract Thyrage (grant number 666869) to D.S. and ERCStG2014 (STARS — 639548) to M.D. The authors thank J. A. Gilder (Scientific Communication srl., Naples, Italy) for assistance with language editing.

Author information

Authors and Affiliations

Authors

Contributions

C.L. and M.D. researched data for the article, provided substantial contribution to discussion of the content, wrote the paper and reviewed and edited the manuscript before submission. D.S. wrote the paper and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Domenico Salvatore.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luongo, C., Dentice, M. & Salvatore, D. Deiodinases and their intricate role in thyroid hormone homeostasis. Nat Rev Endocrinol 15, 479–488 (2019). https://doi.org/10.1038/s41574-019-0218-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-019-0218-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing