Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prolactin — a pleiotropic factor in health and disease

Abstract

The principal role of prolactin in mammals is the regulation of lactation. Prolactin is a hormone that is mainly synthesized and secreted by lactotroph cells in the anterior pituitary gland. Prolactin signalling occurs via a unique transmembrane prolactin receptor (PRL-R). The structure of the PRL-R has now been elucidated and is similar to that of many biologically fundamental receptors of the class 1 haematopoietic cytokine receptor family such as the growth hormone receptor. The PRL-R is expressed in a wide array of tissues, and a growing number of biological processes continue to be attributed to prolactin. In this Review, we focus on the newly discovered roles of prolactin in human health and disease, particularly its involvement in metabolic homeostasis including body weight control, adipose tissue, skin and hair follicles, pancreas, bone, the adrenal response to stress, the control of lactotroph cell homeostasis and maternal behaviour. New data concerning the pathological states of hypoprolactinaemia and hyperprolactinaemia will also be presented and discussed.

Key points

  • Prolactin exerts its actions via a transmembrane prolactin receptor (PRL-R), the structure of which has now been elucidated.

  • Prolactin signalling is essential for the ontogenesis of pancreatic stem cells for the establishment of a functional β-cell reserve.

  • In addition to its role in increasing dopaminergic inhibitory tone, prolactin exerts autocrine and paracrine feedback on lactotroph cells.

  • Prolactin deficiency is rare and causes failure of lactation.

  • Hyperprolactinaemia can be caused by medications or pituitary disease, can have systemic causes or can be idiopathic; this condition frequently leads to hypogonadism and infertility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Topology of the human PRL-R.
Fig. 2: New acceptance of prolactin physiological roles.
Fig. 3: Consequences of abnormal prolactin levels in humans.

Similar content being viewed by others

References

  1. Bole-Feysot, C., Goffin, V., Edery, M., Binart, N. & Kelly, P. A. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr. Rev. 19, 225–268 (1998).

    CAS  PubMed  Google Scholar 

  2. Bugge, K. et al. A combined computational and structural model of the full-length human prolactin receptor. Nat. Commun. 7, 11578 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Goffin, V., Binart, N., Touraine, P. & Kelly, P. A. Prolactin: the new biology of an old hormone. Annu. Rev. Physiol. 64, 47–67 (2002).

    CAS  PubMed  Google Scholar 

  4. Ben-Jonathan, N., LaPensee, C. R. & LaPensee, E. W. What can we learn from rodents about prolactin in humans? Endocr. Rev. 29, 1–41 (2008).

    CAS  PubMed  Google Scholar 

  5. Bernard, V., Young, J., Chanson, P. & Binart, N. New insights in prolactin: pathological implications. Nat. Rev. Endocrinol. 11, 265–275 (2015).

    CAS  PubMed  Google Scholar 

  6. Halmi, N. S., Parsons, J. A., Erlandsen, S. L. & Duello, T. Prolactin and growth hormone cells in the human hypophysis: a study with immunoenzyme histochemistry and differential staining. Cell Tissue Res. 158, 497–507 (1975).

    CAS  PubMed  Google Scholar 

  7. Shingo, T. et al. Pregnancy-stimulated neurogenesis in the adult female forebrain mediated by prolactin. Science 299, 117–120 (2003).

    CAS  PubMed  Google Scholar 

  8. Bridges, R. S. Neuroendocrine regulation of maternal behavior. Front. Neuroendocrinol. 36, 178–196 (2015).

    CAS  PubMed  Google Scholar 

  9. Rizzoti, K., Akiyama, H. & Lovell-Badge, R. Mobilized adult pituitary stem cells contribute to endocrine regeneration in response to physiological demand. Cell Stem Cell 13, 419–432 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hodson, D. J. et al. Existence of long-lasting experience-dependent plasticity in endocrine cell networks. Nat. Commun. 3, 605 (2012).

    PubMed  PubMed Central  Google Scholar 

  11. Gleiberman, A. S. et al. Genetic approaches identify adult pituitary stem cells. Proc. Natl Acad. Sci. USA 105, 6332–6337 (2008).

    CAS  PubMed  Google Scholar 

  12. Karaca, Z., Tanriverdi, F., Unluhizarci, K. & Kelestimur, F. Pregnancy and pituitary disorders. Eur. J. Endocrinol. 162, 453–475 (2010).

    CAS  PubMed  Google Scholar 

  13. Kline, J. B., Roehrs, H. & Clevenger, C. V. Functional characterization of the intermediate isoform of the human prolactin receptor. J. Biol. Chem. 274, 35461–35468 (1999).

    CAS  PubMed  Google Scholar 

  14. Hu, Z. Z., Meng, J. & Dufau, M. L. Isolation and characterization of two novel forms of the human prolactin receptor generated by alternative splicing of a newly identified exon 11. J. Biol. Chem. 276, 41086–41094 (2001).

    CAS  PubMed  Google Scholar 

  15. Trott, J. F., Hovey, R. C., Koduri, S. & Vonderhaar, B. K. Multiple new isoforms of the human prolactin receptor gene. Adv. Exp. Med. Biol. 554, 495–499 (2004).

    CAS  PubMed  Google Scholar 

  16. Goffin, V., Shiverick, K. T., Kelly, P. A. & Martial, J. A. Sequence-function relationships within the expanding family of prolactin, growth hormone, placental lactogen, and related proteins in mammals. Endocr. Rev. 17, 385–410 (1996).

    CAS  PubMed  Google Scholar 

  17. Brooks, C. L. Molecular mechanisms of prolactin and its receptor. Endocr. Rev. 33, 504–525 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Qazi, A. M., Tsai-Morris, C.-H. & Dufau, M. L. Ligand-independent homo- and heterodimerization of human prolactin receptor variants: inhibitory action of the short forms by heterodimerization. Mol. Endocrinol. 20, 1912–1923 (2006).

    CAS  PubMed  Google Scholar 

  19. Brooks, A. J. & Waters, M. J. The growth hormone receptor: mechanism of activation and clinical implications. Nat. Rev. Endocrinol. 6, 515–525 (2010).

    CAS  PubMed  Google Scholar 

  20. Goffin, V., Martial, J. A. & Summers, N. L. Use of a model to understand prolactin and growth hormone specificities. Protein Eng. 8, 1215–1231 (1995).

    CAS  PubMed  Google Scholar 

  21. Haxholm, G. W. et al. Intrinsically disordered cytoplasmic domains of two cytokine receptors mediate conserved interactions with membranes. Biochem. J. 468, 495–506 (2015).

    CAS  PubMed  Google Scholar 

  22. Brooks, A. J. et al. Mechanism of activation of protein kinase JAK2 by the growth hormone receptor. Science 344, 1249783 (2014).

    PubMed  Google Scholar 

  23. Freemark, M. et al. Targeted deletion of the PRL receptor: effects on islet development, insulin production, and glucose tolerance. Endocrinology 143, 1378–1385 (2002).

    CAS  PubMed  Google Scholar 

  24. Vasavada, R. C. et al. Growth factors and beta cell replication. Int. J. Biochem. Cell Biol. 38, 931–950 (2006).

    CAS  PubMed  Google Scholar 

  25. Ben-Jonathan, N., Hugo, E. R., Brandebourg, T. D. & LaPensee, C. R. Focus on prolactin as a metabolic hormone. Trends Endocrinol. Metab. 17, 110–116 (2006).

    CAS  PubMed  Google Scholar 

  26. Sauvé, D. & Woodside, B. Neuroanatomical specificity of prolactin-induced hyperphagia in virgin female rats. Brain Res. 868, 306–314 (2000).

    PubMed  Google Scholar 

  27. Arumugam, R., Fleenor, D. & Freemark, M. Lactogenic and somatogenic hormones regulate the expression of neuropeptide Y and cocaine- and amphetamine-regulated transcript in rat insulinoma (INS-1) cells: interactions with glucose and glucocorticoids. Endocrinology 148, 258–267 (2007).

    CAS  PubMed  Google Scholar 

  28. Perez Millan, M. I. et al. Selective disruption of dopamine D2 receptors in pituitary lactotropes increases body weight and adiposity in female mice. Endocrinology 155, 829–839 (2014).

    PubMed  Google Scholar 

  29. Luque, G. M. et al. Chronic hyperprolactinemia evoked by disruption of lactotrope dopamine D2 receptors impacts on liver and adipocyte genes related to glucose and insulin balance. Am. J. Physiol. Endocrinol. Metab. 311, E974–E988 (2016).

    PubMed  Google Scholar 

  30. Ling, C. et al. Prolactin (PRL) receptor gene expression in mouse adipose tissue: increases during lactation and in PRL-transgenic mice. Endocrinology 141, 3564–3572 (2000).

    CAS  PubMed  Google Scholar 

  31. Auffret, J. et al. Beige differentiation of adipose depots in mice lacking prolactin receptor protects against high-fat-diet-induced obesity. FASEB J. 26, 3728–3737 (2012).

    CAS  PubMed  Google Scholar 

  32. Brelje, T. C. et al. Effect of homologous placental lactogens, prolactins, and growth hormones on islet B cell division and insulin secretion in rat, mouse, and human islets: implication for placental lactogen regulation of islet function during pregnancy. Endocrinology 132, 879–887 (1993).

    CAS  PubMed  Google Scholar 

  33. Auffret, J. et al. Defective prolactin signaling impairs pancreatic β-cell development during the perinatal period. Am. J. Physiol. Endocrinol. Metab. 305, E1309–E1318 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Benner, C. et al. The transcriptional landscape of mouse beta cells compared to human beta cells reveals notable species differences in long non-coding RNA and protein-coding gene expression. BMC Genomics 15, 620 (2014).

    PubMed  PubMed Central  Google Scholar 

  35. Chen, H. et al. Augmented Stat5 signaling bypasses multiple impediments to lactogen-mediated proliferation in human β-Cells. Diabetes 64, 3784–3797 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Nielsen, J. H. Beta cell adaptation in pregnancy: a tribute to Claes Hellerström. Ups. J. Med. Sci. 121, 151–154 (2016).

    PubMed  PubMed Central  Google Scholar 

  37. Huang, C. Wild-type offspring of heterozygous prolactin receptor-null female mice have maladaptive β-cell responses during pregnancy. J. Physiol. 591, 1325–1338 (2013).

    PubMed  Google Scholar 

  38. Banerjee, R. R. et al. Gestational diabetes mellitus from inactivation of prolactin receptor and MafB in islet β-Cells. Diabetes 65, 2331–2341 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Langan, E. A., Foitzik-Lau, K., Goffin, V., Ramot, Y. & Paus, R. Prolactin: an emerging force along the cutaneous-endocrine axis. Trends Endocrinol. Metab. 21, 569–577 (2010).

    CAS  PubMed  Google Scholar 

  40. Craven, A. J. et al. Prolactin signaling influences the timing mechanism of the hair follicle: analysis of hair growth cycles in prolactin receptor knockout mice. Endocrinology 142, 2533–2539 (2001).

    CAS  PubMed  Google Scholar 

  41. Manzon, L. A. The role of prolactin in fish osmoregulation: a review. Gen. Comp. Endocrinol. 125, 291–310 (2002).

    CAS  PubMed  Google Scholar 

  42. Foitzik, K. et al. Prolactin and its receptor are expressed in murine hair follicle epithelium, show hair cycle-dependent expression, and induce catagen. Am. J. Pathol. 162, 1611–1621 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Littlejohn, M. D. et al. Functionally reciprocal mutations of the prolactin signalling pathway define hairy and slick cattle. Nat. Commun. 5, 5861 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mills, D. E. & Robertshaw, D. Response of plasma prolactin to changes in ambient temperature and humidity in man. J. Clin. Endocrinol. Metab. 52, 279–283 (1981).

    CAS  PubMed  Google Scholar 

  45. Porto-Neto, L. R. et al. Convergent evolution of slick coat in cattle through truncation mutations in the prolactin receptor. Front. Genet. 9, 57 (2018).

    PubMed  PubMed Central  Google Scholar 

  46. Giustina, A., Mazziotti, G. & Canalis, E. Growth hormone, insulin-like growth factors, and the skeleton. Endocr. Rev. 29, 535–559 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Clément-Lacroix, P. et al. Osteoblasts are a new target for prolactin: analysis of bone formation in prolactin receptor knockout mice. Endocrinology 140, 96–105 (1999).

    PubMed  Google Scholar 

  48. Macari, S. et al. Lactation induces increases in the RANK/RANKL/OPG system in maxillary bone. Bone 110, 160–169 (2018).

    CAS  PubMed  Google Scholar 

  49. Klibanski, A. et al. Decreased bone density in hyperprolactinemic women. N. Engl. J. Med. 303, 1511–1514 (1980).

    CAS  PubMed  Google Scholar 

  50. Schlechte, J. A., Sherman, B. & Martin, R. Bone density in amenorrheic women with and without hyperprolactinemia. J. Clin. Endocrinol. Metab. 56, 1120–1123 (1983).

    CAS  PubMed  Google Scholar 

  51. Mazziotti, G. et al. High prevalence of radiological vertebral fractures in women with prolactin-secreting pituitary adenomas. Pituitary 14, 299–306 (2011).

    CAS  PubMed  Google Scholar 

  52. Mazziotti, G. et al. Vertebral fractures in males with prolactinoma. Endocrine 39, 288–293 (2011).

    CAS  PubMed  Google Scholar 

  53. Klibanski, A. & Greenspan, S. L. Increase in bone mass after treatment of hyperprolactinemic amenorrhea. N. Engl. J. Med. 315, 542–546 (1986).

    CAS  PubMed  Google Scholar 

  54. Klibanski, A., Biller, B. M., Rosenthal, D. I., Schoenfeld, D. A. & Saxe, V. Effects of prolactin and estrogen deficiency in amenorrheic bone loss. J. Clin. Endocrinol. Metab. 67, 124–130 (1988).

    CAS  PubMed  Google Scholar 

  55. Winter, E. M. & Appelman-Dijkstra, N. M. Parathyroid hormone-related protein-induced hypercalcemia of pregnancy successfully reversed by a dopamine agonist. J. Clin. Endocrinol. Metab. 102, 4417–4420 (2017).

    PubMed  Google Scholar 

  56. Bridges, R. S., DiBiase, R., Loundes, D. D. & Doherty, P. C. Prolactin stimulation of maternal behavior in female rats. Science 227, 782–784 (1985).

    CAS  PubMed  Google Scholar 

  57. Shyr, S. W., Crowley, W. R. & Grosvenor, C. E. Effect of neonatal prolactin deficiency on prepubertal tuberoinfundibular and tuberohypophyseal dopaminergic neuronal activity. Endocrinology 119, 1217–1221 (1986).

    CAS  PubMed  Google Scholar 

  58. Grosvenor, C. E., Shyr, S. W. & Crowley, W. R. Effect of neonatal prolactin deficiency on prepubertal tuberoinfundibular and tuberohypophyseal dopaminergic neuronal activity. Endocrinol. Exp. 20, 223–228 (1986).

    CAS  PubMed  Google Scholar 

  59. Lucas, B. K., Ormandy, C. J., Binart, N., Bridges, R. S. & Kelly, P. A. Null mutation of the prolactin receptor gene produces a defect in maternal behavior. Endocrinology 139, 4102–4107 (1998).

    CAS  PubMed  Google Scholar 

  60. Bridges, R. S. et al. Endocrine communication between conceptus and mother: placental lactogen stimulation of maternal behavior. Neuroendocrinology 64, 57–64 (1996).

    CAS  PubMed  Google Scholar 

  61. Freeman, M. E., Kanyicska, B., Lerant, A. & Nagy, G. Prolactin: structure, function, and regulation of secretion. Physiol. Rev. 80, 1523–1631 (2000).

    CAS  PubMed  Google Scholar 

  62. Brown, R. S. E. et al. Prolactin transport into mouse brain is independent of prolactin receptor. FASEB J. 30, 1002–1010 (2016).

    CAS  PubMed  Google Scholar 

  63. Brown, R. S. E. et al. Prolactin action in the medial preoptic area is necessary for postpartum maternal nursing behavior. Proc. Natl Acad. Sci. USA 114, 10779–10784 (2017).

    CAS  PubMed  Google Scholar 

  64. Melo, A. I. et al. Effects of prolactin deficiency during the early postnatal period on the development of maternal behavior in female rats: mother’s milk makes the difference. Horm. Behav. 56, 281–291 (2009).

    CAS  PubMed  Google Scholar 

  65. Mann, P. E. & Bridges, R. S. Lactogenic hormone regulation of maternal behavior. Prog. Brain Res. 133, 251–262 (2001).

    CAS  PubMed  Google Scholar 

  66. Salais-López, H., Lanuza, E., Agustín-Pavón, C. & Martínez-García, F. Tuning the brain for motherhood: prolactin-like central signalling in virgin, pregnant, and lactating female mice. Brain Struct. Funct. 222, 895–921 (2017).

    PubMed  Google Scholar 

  67. Grattan, D. R. 60 YEARS OF NEUROENDOCRINOLOGY: the hypothalamo-prolactin axis. J. Endocrinol. 226, T101–122 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Armario, A., Marti, O., Molina, T., de Pablo, J. & Valdes, M. Acute stress markers in humans: response of plasma glucose, cortisol and prolactin to two examinations differing in the anxiety they provoke. Psychoneuroendocrinology 21, 17–24 (1996).

    CAS  PubMed  Google Scholar 

  69. Kirk, S. E., Xie, T. Y., Steyn, F. J., Grattan, D. R. & Bunn, S. J. Restraint stress increases prolactin-mediated phosphorylation of signal transducer and activator of transcription 5 in the hypothalamus and adrenal cortex in the male mouse. J. Neuroendocrinol. https://doi.org/10.1111/jne.12477 (2017).

    Article  PubMed  Google Scholar 

  70. Sobrinho, L. G. Prolactin, psychological stress and environment in humans: adaptation and maladaptation. Pituitary 6, 35–39 (2003).

    PubMed  Google Scholar 

  71. Carter, J. N. et al. Adrenocortical function in hyperprolactinemic women. J. Clin. Endocrinol. Metab. 45, 973–980 (1977).

    CAS  PubMed  Google Scholar 

  72. Schiebinger, R. J., Chrousos, G. P., Cutler, G. B. & Loriaux, D. L. The effect of serum prolactin on plasma adrenal androgens and the production and metabolic clearance rate of dehydroepiandrosterone sulfate in normal and hyperprolactinemic subjects. J. Clin. Endocrinol. Metab. 62, 202–209 (1986).

    CAS  PubMed  Google Scholar 

  73. Belisle, S. & Menard, J. Adrenal androgen production in hyperprolactinemic states. Fertil. Steril. 33, 396–400 (1980).

    CAS  PubMed  Google Scholar 

  74. Parker, L. N., Chang, S. & Odell, W. D. Adrenal androgens in patients with chronic marked elevation of prolactin. Clin. Endocrinol. 8, 1–5 (1978).

    CAS  Google Scholar 

  75. Tritos, N. & Klibanski, A. in Yen & Jaffe’s Reproductive Endocrinology E-Book: Physiology, Pathophysiology, and Clinical Management (eds Strauss, J. F., Barbieri, R. L. & Gargiulo, A. R.) 8th edn 58–75 (Elsevier, 2018).

  76. Grattan, D. R. & Kokay, I. C. Prolactin: a pleiotropic neuroendocrine hormone. J. Neuroendocrinol. 20, 752–763 (2008).

    CAS  PubMed  Google Scholar 

  77. Kelly, M. A. et al. Pituitary lactotroph hyperplasia and chronic hyperprolactinemia in dopamine D2 receptor-deficient mice. Neuron 19, 103–113 (1997).

    CAS  Google Scholar 

  78. Asa, S. L., Kelly, M. A., Grandy, D. K. & Low, M. J. Pituitary lactotroph adenomas develop after prolonged lactotroph hyperplasia in dopamine D2 receptor-deficient mice. Endocrinology 140, 5348–5355 (1999).

    CAS  PubMed  Google Scholar 

  79. Schuff, K. G. et al. Lack of prolactin receptor signaling in mice results in lactotroph proliferation and prolactinomas by dopamine-dependent and -independent mechanisms. J. Clin. Invest. 110, 973–981 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Bernard, V. et al. Natural and molecular history of prolactinoma: insights from a Prlr−/− mouse model. Oncotarget 9, 6144–6155 (2018).

    PubMed  Google Scholar 

  81. Krause, D. S. & Van Etten, R. A. Tyrosine kinases as targets for cancer therapy. N. Engl. J. Med. 353, 172–187 (2005).

    CAS  PubMed  Google Scholar 

  82. Liu, X. et al. ErbB receptor-driven prolactinomas respond to targeted lapatinib treatment in female transgenic mice. Endocrinology 156, 71–79 (2015).

    PubMed  Google Scholar 

  83. Fielitz, K. et al. Characterization of pancreatic glucagon-producing tumors and pituitary gland tumors in transgenic mice overexpressing MYCN in hGFAP-positive cells. Oncotarget 7, 74415–74426 (2016).

    PubMed  PubMed Central  Google Scholar 

  84. Bernard, V. et al. Autocrine actions of prolactin contribute to the regulation of lactotroph function in vivo. FASEB J. 9, 4791–4797 (2018).

    Google Scholar 

  85. MohanKumar, P. S., MohanKumar, S. M., Quadri, S. K. & Voogt, J. L. Effects of chronic bromocriptine treatment on tyrosine hydroxylase (TH) mRNA expression, TH activity and median eminence dopamine concentrations in ageing rats. J. Neuroendocrinol. 13, 261–269 (2001).

    CAS  PubMed  Google Scholar 

  86. Le Tissier, P. et al. An updated view of hypothalamic-vascular-pituitary unit function and plasticity. Nat. Rev. Endocrinol. 13, 257–267 (2017).

    PubMed  Google Scholar 

  87. Nikolics, K., Mason, A. J., Szönyi, E., Ramachandran, J. & Seeburg, P. H. A prolactin-inhibiting factor within the precursor for human gonadotropin-releasing hormone. Nature 316, 511–517 (1985).

    CAS  PubMed  Google Scholar 

  88. Bouligand, J. et al. Isolated familial hypogonadotropic hypogonadism and a GNRH1 mutation. N. Engl. J. Med. 360, 2742–2748 (2009).

    CAS  PubMed  Google Scholar 

  89. Cattanach, B. M., Iddon, C. A., Charlton, H. M., Chiappa, S. A. & Fink, G. Gonadotrophin-releasing hormone deficiency in a mutant mouse with hypogonadism. Nature 269, 338–340 (1977).

    CAS  PubMed  Google Scholar 

  90. Charlton, H. M. et al. Prolactin measurements in normal and hypogonadal (hpg) mice: developmental and experimental studies. Endocrinology 113, 545–548 (1983).

    CAS  PubMed  Google Scholar 

  91. Bonomi, M. et al. A family with complete resistance to thyrotropin-releasing hormone. N. Engl. J. Med. 360, 731–734 (2009).

    CAS  PubMed  Google Scholar 

  92. Yamada, M. et al. Tertiary hypothyroidism and hyperglycemia in mice with targeted disruption of the thyrotropin-releasing hormone gene. Proc. Natl Acad. Sci. USA 94, 10862–10867 (1997).

    CAS  PubMed  Google Scholar 

  93. Hennighausen, L. & Robinson, G. W. Information networks in the mammary gland. Nat. Rev. Mol. Cell Biol. 6, 715–725 (2005).

    CAS  PubMed  Google Scholar 

  94. Toledano, Y., Lubetsky, A. & Shimon, I. Acquired prolactin deficiency in patients with disorders of the hypothalamic-pituitary axis. J. Endocrinol. Invest. 30, 268–273 (2007).

    CAS  PubMed  Google Scholar 

  95. Iwama, S., Welt, C. K., Romero, C. J., Radovick, S. & Caturegli, P. Isolated prolactin deficiency associated with serum autoantibodies against prolactin-secreting cells. J. Clin. Endocrinol. Metab. 98, 3920–3925 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Kauppila, A., Chatelain, P., Kirkinen, P., Kivinen, S. & Ruokonen, A. Isolated prolactin deficiency in a woman with puerperal alactogenesis. J. Clin. Endocrinol. Metab. 64, 309–312 (1987).

    CAS  PubMed  Google Scholar 

  97. Powe, C. E. et al. Recombinant human prolactin for the treatment of lactation insufficiency. Clin. Endocrinol. 73, 645–653 (2010).

    CAS  Google Scholar 

  98. Ormandy, C. J. et al. Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Dev. 11, 167–178 (1997).

    CAS  PubMed  Google Scholar 

  99. Rasmussen, K. M., Hilson, J. A. & Kjolhede, C. L. Obesity may impair lactogenesis II. J. Nutr. 131, 3009S–3011S (2001).

    CAS  PubMed  Google Scholar 

  100. Rasmussen, K. M., Hilson, J. A. & Kjolhede, C. L. Obesity as a risk factor for failure to initiate and sustain lactation. Adv. Exp. Med. Biol. 503, 217–222 (2002).

    PubMed  Google Scholar 

  101. Rasmussen, K. M. & Kjolhede, C. L. Prepregnant overweight and obesity diminish the prolactin response to suckling in the first week postpartum. Pediatrics 113, e465–e471 (2004).

    PubMed  Google Scholar 

  102. Garcia, A. H. et al. Maternal weight status, diet, and supplement use as determinants of breastfeeding and complementary feeding: a systematic review and meta-analysis. Nutr. Rev. 74, 490–516 (2016).

    PubMed  Google Scholar 

  103. Pfäffle, R. & Klammt, J. Pituitary transcription factors in the aetiology of combined pituitary hormone deficiency. Best Pract. Res. Clin. Endocrinol. Metab. 25, 43–60 (2011).

    PubMed  Google Scholar 

  104. Nakamura, A. et al. Three novel IGSF1 mutations in four Japanese patients with X-linked congenital central hypothyroidism. J. Clin. Endocrinol. Metab. 98, E1682–E1691 (2013).

    CAS  PubMed  Google Scholar 

  105. Voutetakis, A. et al. Ovulation induction and successful pregnancy outcome in two patients with Prop1 gene mutations. Fertil. Steril. 82, 454–457 (2004).

    PubMed  Google Scholar 

  106. Carlson, H. E., Brickman, A. S. & Bottazzo, G. F. Prolactin deficiency in pseudohypoparathyroidism. N. Engl. J. Med. 296, 140–144 (1977).

    CAS  PubMed  Google Scholar 

  107. Shapiro, M. S., Bernheim, J., Gutman, A., Arber, I. & Spitz, I. M. Multiple abnormalities of anterior pituitary hormone secretion in association with pseudohypoparathyroidism. J. Clin. Endocrinol. Metab. 51, 483–487 (1980).

    CAS  PubMed  Google Scholar 

  108. Karaca, Z., Laway, B. A., Dokmetas, H. S., Atmaca, H. & Kelestimur, F. Sheehan syndrome. Nat. Rev. Dis. Primers 2, 16092 (2016).

    PubMed  Google Scholar 

  109. Webster, J. A comparative review of the tolerability profiles of dopamine agonists in the treatment of hyperprolactinaemia and inhibition of lactation. Drug Saf. 14, 228–238 (1996).

    CAS  PubMed  Google Scholar 

  110. Rains, C. P., Bryson, H. M. & Fitton, A. Cabergoline. A review of its pharmacological properties and therapeutic potential in the treatment of hyperprolactinaemia and inhibition of lactation. Drugs 49, 255–279 (1995).

    CAS  PubMed  Google Scholar 

  111. Gallego, M. I. et al. Prolactin, growth hormone, and epidermal growth factor activate Stat5 in different compartments of mammary tissue and exert different and overlapping developmental effects. Dev. Biol. 229, 163–175 (2001).

    CAS  PubMed  Google Scholar 

  112. Kobayashi, T., Usui, H., Tanaka, H. & Shozu, M. Variant prolactin receptor in agalactia and hyperprolactinemia. N. Engl. J. Med. 379, 2230–2236 (2018).

    CAS  PubMed  Google Scholar 

  113. Vilar, L. et al. Diagnosis and management of hyperprolactinemia: results of a Brazilian multicenter study with 1234 patients. J. Endocrinol. Invest. 31, 436–444 (2008).

    CAS  PubMed  Google Scholar 

  114. Soto-Pedre, E., Newey, P. J., Bevan, J. S. & Leese, G. P. Morbidity and mortality in patients with hyperprolactinaemia: the PROLEARS study. Endocr. Connect. 6, 580–588 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Therkelsen, K. E. et al. Association between prolactin and incidence of cardiovascular risk factors in the Framingham Heart Study. J. Am. Heart Assoc. 5, e002640 (2016).

    PubMed  PubMed Central  Google Scholar 

  116. Bouchard, P., Lagoguey, M., Brailly, S. & Schaison, G. Gonadotropin-releasing hormone pulsatile administration restores luteinizing hormone pulsatility and normal testosterone levels in males with hyperprolactinemia. J. Clin. Endocrinol. Metab. 60, 258–262 (1985).

    CAS  PubMed  Google Scholar 

  117. Lecomte, P. et al. Pregnancy after intravenous pulsatile gonadotropin-releasing hormone in a hyperprolactinaemic woman resistant to treatment with dopamine agonists. Eur. J. Obstet. Gynecol. Reprod. Biol. 74, 219–221 (1997).

    CAS  PubMed  Google Scholar 

  118. Sauder, S. E., Frager, M., Case, G. D., Kelch, R. P. & Marshall, J. C. Abnormal patterns of pulsatile luteinizing hormone secretion in women with hyperprolactinemia and amenorrhea: responses to bromocriptine. J. Clin. Endocrinol. Metab. 59, 941–948 (1984).

    CAS  PubMed  Google Scholar 

  119. Li, Q., Rao, A., Pereira, A., Clarke, I. J. & Smith, J. T. Kisspeptin cells in the ovine arcuate nucleus express prolactin receptor but not melatonin receptor. J. Neuroendocrinol. 23, 871–882 (2011).

    CAS  PubMed  Google Scholar 

  120. Smith, J. T. et al. Kisspeptin is essential for the full preovulatory LH surge and stimulates GnRH release from the isolated ovine median eminence. Endocrinology 152, 1001–1012 (2011).

    CAS  PubMed  Google Scholar 

  121. Sonigo, C. et al. Hyperprolactinemia-induced ovarian acyclicity is reversed by kisspeptin administration. J. Clin. Invest. 122, 3791–3795 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Millar, R. P. et al. Hypothalamic-pituitary-ovarian axis reactivation by kisspeptin-10 in hyperprolactinemic women with chronic amenorrhea. J. Endocr. Soc. 1, 1362–1371 (2017).

    PubMed  PubMed Central  Google Scholar 

  123. Abbara, A. et al. Interpretation of serum gonadotropin levels in hyperprolactinemia. Neuroendocrinology 107, 105–113 (2018).

    CAS  PubMed  Google Scholar 

  124. Raappana, A., Koivukangas, J., Ebeling, T. & Pirilä, T. Incidence of pituitary adenomas in Northern Finland in 1992–2007. J. Clin. Endocrinol. Metab. 95, 4268–4275 (2010).

    CAS  PubMed  Google Scholar 

  125. Santharam, S. et al. Prolactinomas diagnosed in the postmenopausal period: clinical phenotype and outcomes. Clin. Endocrinol. 87, 508–514 (2017).

    CAS  Google Scholar 

  126. Scoccia, B., Schneider, A. B., Marut, E. L. & Scommegna, A. Pathological hyperprolactinemia suppresses hot flashes in menopausal women. J. Clin. Endocrinol. Metab. 66, 868–871 (1988).

    CAS  PubMed  Google Scholar 

  127. Rance, N. E., Dacks, P. A., Mittelman-Smith, M. A., Romanovsky, A. A. & Krajewski-Hall, S. J. Modulation of body temperature and LH secretion by hypothalamic KNDy (kisspeptin, neurokinin B and dynorphin) neurons: a novel hypothesis on the mechanism of hot flushes. Front. Neuroendocrinol. 34, 211–227 (2013).

    CAS  PubMed  Google Scholar 

Download references

Reviewer information

Nature Reviews Endocrinology thanks D. Grattan, and other anonymous reviewers, for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors provided a substantial contribution to the discussion of content, researching data for the article, writing the article and the review and editing of the manuscript before submission.

Corresponding author

Correspondence to Nadine Binart.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernard, V., Young, J. & Binart, N. Prolactin — a pleiotropic factor in health and disease. Nat Rev Endocrinol 15, 356–365 (2019). https://doi.org/10.1038/s41574-019-0194-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-019-0194-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing