Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Physical activity and muscle–brain crosstalk

Abstract

Neurological and mental illnesses account for a considerable proportion of the global burden of disease. Exercise has many beneficial effects on brain health, contributing to decreased risks of dementia, depression and stress, and it has a role in restoring and maintaining cognitive function and metabolic control. The fact that exercise is sensed by the brain suggests that muscle-induced peripheral factors enable direct crosstalk between muscle and brain function. Muscle secretes myokines that contribute to the regulation of hippocampal function. Evidence is accumulating that the myokine cathepsin B passes through the blood–brain barrier to enhance brain-derived neurotrophic factor production and hence neurogenesis, memory and learning. Exercise increases neuronal gene expression of FNDC5 (which encodes the PGC1α-dependent myokine FNDC5), which can likewise contribute to increased brain-derived neurotrophic factor levels. Serum levels of the prototype myokine, IL-6, increase with exercise and might contribute to the suppression of central mechanisms of feeding. Exercise also increases the PGC1α-dependent muscular expression of kynurenine aminotransferase enzymes, which induces a beneficial shift in the balance between the neurotoxic kynurenine and the neuroprotective kynurenic acid, thereby reducing depression-like symptoms. Myokine signalling, other muscular factors and exercise-induced hepatokines and adipokines are implicated in mediating the exercise-induced beneficial impact on neurogenesis, cognitive function, appetite and metabolism, thus supporting the existence of a muscle–brain endocrine loop.

Key points

  • Exercise can indirectly be sensed by the brain via adipose tissue (adiponectin) or the liver (fibroblast growth factor 21 and insulin-like growth factor 1).

  • Myokines mediate muscle–organ crosstalk to the liver, gut, pancreas, adipose tissue, bone, vascular bed, skin and brain.

  • Cathepsin B is an exercise-induced myokine required for exercise-induced improvement in memory and adult neurogenesis.

  • Exercise enhances neuronal gene expression of FNDC5, the protein product of which might stimulate brain-derived neurotrophic factor in the hippocampus.

  • Serum levels of the myokine IL-6 increase with exercise, and this myokine might regulate central mechanisms for food intake.

  • Exercise increases muscular expression of kynurenine aminotransferases, which convert blood levels of neurotoxic kynurenine to the neuroprotective kynurenic acid, thereby reducing depression-like symptoms.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Ways in which exercise might beneficially affect neurogenesis, learning, memory, mood and depression-like symptoms.

References

  1. 1.

    Nietzsche, F. W. Beyond Good and Evil Aphorism 34 (Cambridge Univ. Press, 2002).

  2. 2.

    Kierkegaard, S. Kierkegaard’s Writings, XXV, Volume 25: Letters and Documents (ed. Rosenmeier, H.) letter 150, 1847 (Princeton Univ. Press, 2009).

  3. 3.

    Gros, F. A Philosophy of Walking (Verso Books, 2014).

  4. 4.

    Noakes, T. & Spedding, M. Olympics: run for your life. Nature 487, 295–296 (2012).

    CAS  PubMed  Google Scholar 

  5. 5.

    Booth, F. W., Roberts, C. K., Thyfault, J. P., Ruegsegger, G. N. & Toedebusch, R. G. Role of inactivity in chronic diseases: evolutionary insight and pathophysiological mechanisms. Physiol. Rev. 97, 1351–1402 (2017).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Cotman, C. W., Berchtold, N. C. & Christie, L. A. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 30, 464–472 (2007).

    CAS  PubMed  Google Scholar 

  7. 7.

    Mattson, M. P. Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metab. 16, 706–722 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Arem, H. et al. Leisure time physical activity and mortality: a detailed pooled analysis of the dose-response relationship. JAMA Intern. Med. 175, 959–967 (2015).

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Santos-Lozano, A. et al. Physical activity and Alzheimer disease: a protective association. Mayo Clin. Proc. 91, 999–1020 (2016).

    PubMed  Google Scholar 

  10. 10.

    Aarsland, D., Sardahaee, F. S., Anderssen, S. & Ballard, C. Is physical activity a potential preventive factor for vascular dementia? A systematic review. Aging Ment. Health 14, 386–395 (2010).

    PubMed  Google Scholar 

  11. 11.

    Williams, J. W., Plassman, B. L., Burke, J. & Benjamin, S. Preventing Alzheimer’s disease and cognitive decline. Evid. Rep. Technol. Assess. (Full Rep.) 193, 1–727 (2010).

    Google Scholar 

  12. 12.

    Pedersen, B. K. & Saltin, B. Exercise as medicine - evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand. J. Med. Sci. Sports 25 (Suppl. 3), 1–72 (2015).

    PubMed  Google Scholar 

  13. 13.

    Voss, M. W., Nagamatsu, L. S., Liu-Ambrose, T. & Kramer, A. F. Exercise, brain, and cognition across the life span. J. Appl. Physiol. 111, 1505–1513 (2011).

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Cotman, C. W. & Berchtold, N. C. Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 25, 295–301 (2002).

    CAS  PubMed  Google Scholar 

  15. 15.

    Smith, P. J. et al. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom. Med. 72, 239–252 (2010).

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Snowden, M. et al. Effect of exercise on cognitive performance in community-dwelling older adults: review of intervention trials and recommendations for public health practice and research. J. Am. Geriatr. Soc. 59, 704–716 (2011).

    PubMed  Google Scholar 

  17. 17.

    Gaser, C. & Schlaug, G. Brain structures differ between musicians and non-musicians. J. Neurosci. 23, 9240–9245 (2003).

    CAS  PubMed  Google Scholar 

  18. 18.

    Aberg, M. A. et al. Cardiovascular fitness is associated with cognition in young adulthood. Proc. Natl Acad. Sci. USA 106, 20906–20911 (2009).

    CAS  PubMed  Google Scholar 

  19. 19.

    Kelley, G. A. & Kelley, K. S. Exercise and sleep: a systematic review of previous meta-analyses. J. Evid. Based Med. 10, 26–36 (2017).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Blundell, J. E., Gibbons, C., Caudwell, P., Finlayson, G. & Hopkins, M. Appetite control and energy balance: impact of exercise. Obes. Rev. 16 (Suppl. 1), 67–76 (2015).

    PubMed  Google Scholar 

  21. 21.

    Crush, E. A., Frith, E. & Loprinzi, P. D. Experimental effects of acute exercise duration and exercise recovery on mood state. J. Affect. Disord. 229, 282–287 (2018).

    PubMed  Google Scholar 

  22. 22.

    Ruiz, J. R. et al. Resistance training does not have an effect on cognition or related serum biomarkers in nonagenarians: a randomized controlled trial. Int. J. Sports Med. 36, 54–60 (2015).

    CAS  PubMed  Google Scholar 

  23. 23.

    Gordon, B. R. et al. Association of efficacy of resistance exercise training with depressive symptoms: meta-analysis and meta-regression analysis of randomized clinical trials. JAMA Psychiatry 75, 566–576 (2018).

    PubMed  Google Scholar 

  24. 24.

    Batouli, S. A. H. & Saba, V. At least eighty percent of brain grey matter is modifiable by physical activity: a review study. Behav. Brain Res. 332, 204–217 (2017).

    PubMed  Google Scholar 

  25. 25.

    Kobilo, T. et al. Running is the neurogenic and neurotrophic stimulus in environmental enrichment. Learn. Mem. 18, 605–609 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Febbraio, M. A. & Pedersen, B. K. Contraction-induced myokine production and release: is skeletal muscle an endocrine organ? Exerc. Sport Sci. Rev. 33, 114–119 (2005).

    PubMed  Google Scholar 

  27. 27.

    Giudice, J. & Taylor, J. M. Muscle as a paracrine and endocrine organ. Curr. Opin. Pharmacol. 34, 49–55 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Karstoft, K. & Pedersen, B. K. Skeletal muscle as a gene regulatory endocrine organ. Curr. Opin. Clin. Nutr. Metab. Care 19, 270–275 (2016).

    CAS  PubMed  Google Scholar 

  29. 29.

    Pedersen, B. K. Muscle as a secretory organ. Compr. Physiol. 3, 1337–1362 (2013).

    PubMed  Google Scholar 

  30. 30.

    Pedersen, B. K. & Febbraio, M. A. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 8, 457–465 (2012).

    CAS  PubMed  Google Scholar 

  31. 31.

    Hoffmann, C. & Weigert, C. Skeletal muscle as an endocrine organ: the role of myokines in exercise adaptations. Cold Spring Harb. Perspect. Med. 7, a029793 (2017).

    PubMed  Google Scholar 

  32. 32.

    Schnyder, S. & Handschin, C. Skeletal muscle as an endocrine organ: PGC-1α, myokines and exercise. Bone 80, 115–125 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Raschke, S. & Eckel, J. Adipo-myokines: two sides of the same coin—mediators of inflammation and mediators of exercise. Mediators. Inflamm. 2013, 320724 (2013).

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Henningsen, J., Pedersen, B. K. & Kratchmarova, I. Quantitative analysis of the secretion of the MCP family of chemokines by muscle cells. Mol. Biosyst. 7, 311–321 (2011).

    CAS  PubMed  Google Scholar 

  35. 35.

    Henningsen, J., Rigbolt, K. T., Blagoev, B., Pedersen, B. K. & Kratchmarova, I. Dynamics of the skeletal muscle secretome during myoblast differentiation. Mol. Cell. Proteomics 9, 2482–2496 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Benatti, F. B. & Pedersen, B. K. Exercise as an anti-inflammatory therapy for rheumatic diseases-myokine regulation. Nat. Rev. Rheumatol. 11, 86–97 (2015).

    CAS  PubMed  Google Scholar 

  37. 37.

    Hojman, P., Gehl, J., Christensen, J. F. & Pedersen, B. K. Molecular mechanisms linking exercise to cancer prevention and treatment. Cell Metab. 27, 10–21 (2018).

    CAS  PubMed  Google Scholar 

  38. 38.

    Pedersen, L. et al. Voluntary running suppresses tumor growth through epinephrine- and IL-6-dependent NK cell mobilization and redistribution. Cell Metab. 23, 554–562 (2016).

    CAS  PubMed  Google Scholar 

  39. 39.

    Rai, M. & Demontis, F. Systemic nutrient and stress signaling via myokines and myometabolites. Annu. Rev. Physiol. 78, 85–107 (2016).

    CAS  PubMed  Google Scholar 

  40. 40.

    Makarova, J. A. et al. Exercise immunology meets MiRNAs. Exerc. Immunol. Rev. 20, 135–164 (2014).

    PubMed  Google Scholar 

  41. 41.

    Agudelo, L. Z. et al. Skeletal muscle PGC-1α1 modulates kynurenine metabolism and mediates resilience to stress-induced depression. Cell 159, 33–45 (2014).

    CAS  PubMed  Google Scholar 

  42. 42.

    Safdar, A., Saleem, A. & Tarnopolsky, M. A. The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat. Rev. Endocrinol. 12, 504–517 (2016).

    CAS  PubMed  Google Scholar 

  43. 43.

    Whitham, M. et al. Extracellular vesicles provide a means for tissue crosstalk during exercise. Cell Metab. 27, 237–251 (2018).

    CAS  PubMed  Google Scholar 

  44. 44.

    Safdar, A. & Tarnopolsky, M. A. Exosomes as mediators of the systemic adaptations to endurance exercise. Cold Spring Harb. Perspect. Med. 8, a029827 (2018).

    PubMed  Google Scholar 

  45. 45.

    Loprinzi, P. D. & Frith, E. A brief primer on the mediational role of BDNF in the exercise-memory link. Clin. Physiol. Funct. Imaging 39, 9–14 (2019).

    PubMed  Google Scholar 

  46. 46.

    Neeper, S. A., Gomez-Pinilla, F., Choi, J. & Cotman, C. Exercise and brain neurotrophins. Nature 373, 109 (1995).

    CAS  PubMed  Google Scholar 

  47. 47.

    Liu, P. Z. & Nusslock, R. Exercise-mediated neurogenesis in the hippocampus via BDNF. Front. Neurosci. 12, 52 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Oliff, H. S., Berchtold, N. C., Isackson, P. & Cotman, C. W. Exercise-induced regulation of brain-derived neurotrophic factor (BDNF) transcripts in the rat hippocampus. Brain Res. Mol. Brain Res. 61, 147–153 (1998).

    CAS  PubMed  Google Scholar 

  49. 49.

    Van Hoomissen, J. D., Chambliss, H. O., Holmes, P. V. & Dishman, R. K. Effects of chronic exercise and imipramine on mRNA for BDNF after olfactory bulbectomy in rat. Brain Res. 974, 228–235 (2003).

    PubMed  Google Scholar 

  50. 50.

    Farmer, J. et al. Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience 124, 71–79 (2004).

    CAS  PubMed  Google Scholar 

  51. 51.

    Adlard, P. A., Perreau, V. M. & Cotman, C. W. The exercise-induced expression of BDNF within the hippocampus varies across life-span. Neurobiol. Aging 26, 511–520 (2005).

    CAS  PubMed  Google Scholar 

  52. 52.

    Li, X. et al. Blocking of BDNF-TrkB signaling inhibits the promotion effect of neurological function recovery after treadmill training in rats with spinal cord injury. Spinal Cord 57, 65–74 (2019).

    PubMed  Google Scholar 

  53. 53.

    Vaynman, S., Ying, Z. & Gomez-Pinilla, F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur. J. Neurosci. 20, 2580–2590 (2004).

    PubMed  Google Scholar 

  54. 54.

    Vaynman, S., Ying, Z. & Gomez-Pinilla, F. Exercise induces BDNF and synapsin I to specific hippocampal subfields. J. Neurosci. Res. 76, 356–362 (2004).

    CAS  PubMed  Google Scholar 

  55. 55.

    Rasmussen, P. et al. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp. Physiol. 94, 1062–1069 (2009).

    CAS  PubMed  Google Scholar 

  56. 56.

    Seifert, T. et al. Endurance training enhances BDNF release from the human brain. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R372–R377 (2010).

    CAS  PubMed  Google Scholar 

  57. 57.

    Pajonk, F. G. et al. Hippocampal plasticity in response to exercise in schizophrenia. Arch. Gen. Psychiatry 67, 133–143 (2010).

    PubMed  Google Scholar 

  58. 58.

    Wrann, C. D. et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab. 18, 649–659 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    de Assis, G. G. & de Almondes, K. M. Exercise-dependent BDNF as a modulatory factor for the executive processing of individuals in course of cognitive decline. a systematic review. Front. Psychol. 8, 584 (2017).

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Matthews, V. B. et al. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia 52, 1409–1418 (2009).

    CAS  PubMed  Google Scholar 

  61. 61.

    Moon, H. Y. et al. Running-induced systemic cathepsin B secretion is associated with memory function. Cell Metab. 24, 332–340 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Martinowich, K., Manji, H. & Lu, B. New insights into BDNF function in depression and anxiety. Nat. Neurosci. 10, 1089–1093 (2007).

    CAS  PubMed  Google Scholar 

  63. 63.

    Suzuki, W. A. How body affects brain. Cell Metab. 24, 192–193 (2016).

    CAS  PubMed  Google Scholar 

  64. 64.

    Olesen, J., Kiilerich, K. & Pilegaard, H. PGC-1α-mediated adaptations in skeletal muscle. Pflugers Arch. 460, 153–162 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Spiegelman, B. M. Transcriptional control of mitochondrial energy metabolism through the PGC1 coactivators. Novartis Found. Symp. 287, 60–63 (2007).

    CAS  PubMed  Google Scholar 

  66. 66.

    Bostrom, P. et al. A PGC1α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481, 463–468 (2012).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Ding, Q., Vaynman, S., Akhavan, M., Ying, Z. & Gomez-Pinilla, F. Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience 140, 823–833 (2006).

    CAS  PubMed  Google Scholar 

  68. 68.

    Albrecht, E. et al. Irisin - a myth rather than an exercise-inducible myokine. Sci. Rep. 5, 8889 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Pekkala, S. et al. Are skeletal muscle FNDC5 gene expression and irisin release regulated by exercise and related to health? J. Physiol. 591, 5393–5400 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Eaton, M. et al. Impact of a single bout of high-intensity interval exercise and short-term interval training on interleukin-6, FNDC5, and METRNL mRNA expression in human skeletal muscle. J. Sport Health Sci. 7, 191–196 (2018).

    PubMed  Google Scholar 

  71. 71.

    Jedrychowski, M. P. et al. Detection and quantitation of circulating human irisin by tandem mass spectrometry. Cell Metab. 22, 734–740 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Wrann, C. D. FNDC5/irisin - their role in the nervous system and as a mediator for beneficial effects of exercise on the brain. Brain Plast. 1, 55–61 (2015).

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Lourenco, M. V. et al. Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models. Nat. Med. 5, 165–175 (2019).

    Google Scholar 

  74. 74.

    Koppel, I. & Timmusk, T. Differential regulation of Bdnf expression in cortical neurons by class-selective histone deacetylase inhibitors. Neuropharmacology 75, 106–115 (2013).

    CAS  PubMed  Google Scholar 

  75. 75.

    Mitchell, G. A. et al. Medical aspects of ketone body metabolism. Clin. Invest. Med. 18, 193–216 (1995).

    CAS  PubMed  Google Scholar 

  76. 76.

    Sleiman, S. F. et al. Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body beta-hydroxybutyrate. eLife 5, e15092 (2016).

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Lim, S. et al. D-β-hydroxybutyrate is protective in mouse models of Huntington’s disease. PLOS ONE 6, e24620 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Kashiwaya, Y. et al. D-β-hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease. Proc. Natl Acad. Sci. USA 97, 5440–5444 (2000).

    CAS  PubMed  Google Scholar 

  79. 79.

    Sothmann, M. S., Hart, B. A. & Horn, T. S. Sympathetic nervous system and behavioral responses to stress following exercise training. Physiol. Behav. 51, 1097–1103 (1992).

    CAS  PubMed  Google Scholar 

  80. 80.

    Gleeson, L. C., Ryan, K. J., Griffin, E. W., Connor, T. J. & Harkin, A. The β2-adrenoceptor agonist clenbuterol elicits neuroprotective, anti-inflammatory and neurotrophic actions in the kainic acid model of excitotoxicity. Brain Behav. Immun. 24, 1354–1361 (2010).

    CAS  PubMed  Google Scholar 

  81. 81.

    Cooke, J. D., Grover, L. M. & Spangler, P. R. Venlafaxine treatment stimulates expression of brain-derived neurotrophic factor protein in frontal cortex and inhibits long-term potentiation in hippocampus. Neuroscience 162, 1411–1419 (2009).

    CAS  PubMed  Google Scholar 

  82. 82.

    Mohamed-Ali, V. et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J. Clin. Endocrinol. Metab. 82, 4196–4200 (1997).

    CAS  PubMed  Google Scholar 

  83. 83.

    Carey, A. L. et al. Interleukin-6 and tumor necrosis factor-alpha are not increased in patients with type 2 diabetes: evidence that plasma IL-6 is related to fat mass and not insulin responsiveness. Diabetologia 47, 1029–1037 (2004).

    CAS  PubMed  Google Scholar 

  84. 84.

    Wedell-Neergaard, A. S. et al. Cardiorespiratory fitness and the metabolic syndrome: roles of inflammation and abdominal obesity. PLOS ONE 13, e0194991 (2018).

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    Kim, H. J. et al. Differential effects of interleukin-6 and -10 on skeletal muscle and liver insulin action in vivo. Diabetes 53, 1060–1067 (2004).

    CAS  PubMed  Google Scholar 

  86. 86.

    Cai, D. et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nat. Med. 11, 183–190 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Matthews, V. B. et al. Interleukin-6-deficient mice develop hepatic inflammation and systemic insulin resistance. Diabetologia 53, 2431–2441 (2010).

    CAS  PubMed  Google Scholar 

  88. 88.

    Wallenius, V. et al. Interleukin-6-deficient mice develop mature-onset obesity. Nat. Med. 8, 75–79 (2002).

    CAS  PubMed  Google Scholar 

  89. 89.

    Ellingsgaard, H. et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat. Med. 17, 1481–1489 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Mauer, J. et al. Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nat. Immunol. 15, 423–430 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Mauer, J., Denson, J. L. & Bruning, J. C. Versatile functions for IL-6 in metabolism and cancer. Trends Immunol. 36, 92–101 (2015).

    CAS  PubMed  Google Scholar 

  92. 92.

    Carey, A. L. et al. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 55, 2688–2697 (2006).

    CAS  PubMed  Google Scholar 

  93. 93.

    van Hall, G. et al. Interleukin-6 stimulates lipolysis and fat oxidation in humans. J. Clin. Endocrinol. Metab. 88, 3005–3010 (2003).

    PubMed  Google Scholar 

  94. 94.

    Lang Lehrskov, L. et al. Interleukin-6 delays gastric emptying in humans with direct effects on glycemic control. Cell Metab. 27, 1201–1211 (2018).

    CAS  PubMed  Google Scholar 

  95. 95.

    Starkie, R., Ostrowski, S. R., Jauffred, S., Febbraio, M. & Pedersen, B. K. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans. FASEB. J. 17, 884–886 (2003).

    CAS  PubMed  Google Scholar 

  96. 96.

    Steensberg, A., Fischer, C. P., Keller, C., Moller, K. & Pedersen, B. K. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am. J. Physiol. Endocrinol. Metab. 285, E433–E437 (2003).

    CAS  PubMed  Google Scholar 

  97. 97.

    Pedersen, B. K. & Febbraio, M. A. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol. Rev. 88, 1379–1406 (2008).

    CAS  PubMed  Google Scholar 

  98. 98.

    Febbraio, M. A. & Pedersen, B. K. Muscle-derived interleukin-6: mechanisms for activation and possible biological roles. FASEB J. 16, 1335–1347 (2002).

    CAS  PubMed  Google Scholar 

  99. 99.

    Keller, C., Hellsten, Y., Steensberg, A. & Pedersen, B. K. Differential regulation of IL-6 and TNF-α via calcineurin in human skeletal muscle cells. Cytokine 36, 141–147 (2006).

    CAS  PubMed  Google Scholar 

  100. 100.

    Keller, C. et al. Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: influence of muscle glycogen content. FASEB J. 15, 2748–2750 (2001).

    CAS  PubMed  Google Scholar 

  101. 101.

    Steensberg, A. et al. Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content. J. Physiol. 537, 633–639 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Li, G. et al. Induction of uncoupling protein 1 by central interleukin-6 gene delivery is dependent on sympathetic innervation of brown adipose tissue and underlies one mechanism of body weight reduction in rats. Neuroscience 115, 879–889 (2002).

    CAS  PubMed  Google Scholar 

  103. 103.

    Hidalgo, J. et al. Transgenic mice with astrocyte-targeted production of interleukin-6 are resistant to high-fat diet-induced increases in body weight and body fat. Brain Behav. Immun. 24, 119–126 (2010).

    CAS  PubMed  Google Scholar 

  104. 104.

    Senaris, R. M. et al. Interleukin-6 regulates the expression of hypothalamic neuropeptides involved in body weight in a gender-dependent way. J. Neuroendocrinol. 23, 675–686 (2011).

    CAS  PubMed  Google Scholar 

  105. 105.

    Schele, E. et al. Inter-relation between interleukin (IL)-1, IL-6 and body fat regulating circuits of the hypothalamic arcuate nucleus. J. Neuroendocrinol. 25, 580–589 (2013).

    CAS  PubMed  Google Scholar 

  106. 106.

    Benrick, A. et al. Interleukin-6 gene knockout influences energy balance regulating peptides in the hypothalamic paraventricular and supraoptic nuclei. J. Neuroendocrinol. 21, 620–628 (2009).

    CAS  PubMed  Google Scholar 

  107. 107.

    Molinero, A. et al. Role of muscle IL-6 in gender-specific metabolism in mice. PLOS ONE 12, e0173675 (2017).

    PubMed  PubMed Central  Google Scholar 

  108. 108.

    Timper, K. et al. IL-6 improves energy and glucose homeostasis in obesity via enhanced central IL-6 trans-signaling. Cell Rep. 19, 267–280 (2017).

    CAS  PubMed  Google Scholar 

  109. 109.

    Pedersen, M. et al. Does the aging skeletal muscle maintain its endocrine function? Exerc. Immunol. Rev. 10, 42–55 (2004).

    PubMed  Google Scholar 

  110. 110.

    Scheele, C. et al. Satellite cells derived from obese humans with type 2 diabetes and differentiated into myocytes in vitro exhibit abnormal response to IL-6. PLOS ONE 7, e39657 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Bunprajun, T., Henriksen, T. I., Scheele, C., Pedersen, B. K. & Green, C. J. Lifelong physical activity prevents aging-associated insulin resistance in human skeletal muscle myotubes via increased glucose transporter expression. PLOS ONE 8, e66628 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386, 743–800 (2015).

    PubMed Central  Google Scholar 

  113. 113.

    Canli, T. & Lesch, K. P. Long story short: the serotonin transporter in emotion regulation and social cognition. Nat. Neurosci. 10, (1103–1109 (2007).

    Google Scholar 

  114. 114.

    Muller, N. & Schwarz, M. J. The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol. Psychiatry 12, 988–1000 (2007).

    CAS  PubMed  Google Scholar 

  115. 115.

    Beal, M. F. et al. Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature 321, 168–171 (1986).

    CAS  PubMed  Google Scholar 

  116. 116.

    Wu, W. et al. Expression of tryptophan 2,3-dioxygenase and production of kynurenine pathway metabolites in triple transgenic mice and human Alzheimer’s disease brain. PLOS ONE 8, e59749 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Claes, S. et al. The kynurenine pathway in major depression: haplotype analysis of three related functional candidate genes. Psychiatry Res. 188, 355–360 (2011).

    CAS  PubMed  Google Scholar 

  118. 118.

    Myint, A. M. & Kim, Y. K. Network beyond IDO in psychiatric disorders: revisiting neurodegeneration hypothesis. Prog. Neuropsychopharmacol. Biol. Psychiatry 48, 304–313 (2014).

    CAS  PubMed  Google Scholar 

  119. 119.

    Schwarcz, R., Bruno, J. P., Muchowski, P. J. & Wu, H. Q. Kynurenines in the mammalian brain: when physiology meets pathology. Nat. Rev. Neurosci. 13, 465–477 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Arany, Z. PGC-1 coactivators and skeletal muscle adaptations in health and disease. Curr. Opin. Genet. Dev. 18, 426–434 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    White, Z. et al. Voluntary resistance wheel exercise from mid-life prevents sarcopenia and increases markers of mitochondrial function and autophagy in muscles of old male and female C57BL/6J mice. Skelet. Muscle 6, 45 (2016).

    PubMed  PubMed Central  Google Scholar 

  122. 122.

    Lin, J. et al. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418, 797–801 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Lewis, G. D. et al. Metabolic signatures of exercise in human plasma. Sci. Transl Med. 2, 33ra37 (2010).

    PubMed  PubMed Central  Google Scholar 

  124. 124.

    Eckardt, K., Taube, A. & Eckel, J. Obesity-associated insulin resistance in skeletal muscle: role of lipid accumulation and physical inactivity. Rev. Endocr. Metab. Disord. 12, 163–172 (2011).

    CAS  PubMed  Google Scholar 

  125. 125.

    Roy, T. & Lloyd, C. E. Epidemiology of depression and diabetes: a systematic review. J. Affect. Disord. 142, S8–S21 (2012).

    PubMed  Google Scholar 

  126. 126.

    Pouwer, F. Should we screen for emotional distress in type 2 diabetes mellitus? Nat. Rev. Endocrinol. 5, 665–671 (2009).

    PubMed  Google Scholar 

  127. 127.

    Fallarini, S., Magliulo, L., Paoletti, T., de Lalla, C. & Lombardi, G. Expression of functional GPR35 in human iNKT cells. Biochem. Biophys. Res. Commun. 398, 420–425 (2010).

    CAS  PubMed  Google Scholar 

  128. 128.

    Agudelo, L. Z. et al. Kynurenic acid and Gpr35 regulate adipose tissue energy homeostasis and inflammation. Cell Metab. 27, 378–392 (2018).

    CAS  PubMed  Google Scholar 

  129. 129.

    Dai, Y., Pang, J., Gong, H., Fan, W. & Zhang, T. M. Roles and tissue source of adiponectin involved in lifestyle modifications. J. Gerontol. A Biol. Sci. Med. Sci. 68, 117–128 (2013).

    CAS  PubMed  Google Scholar 

  130. 130.

    Yau, S. Y. et al. Physical exercise-induced hippocampal neurogenesis and antidepressant effects are mediated by the adipocyte hormone adiponectin. Proc. Natl Acad. Sci. USA 111, 15810–15815 (2014).

    CAS  PubMed  Google Scholar 

  131. 131.

    Li, A., Yau, S. Y., Machado, S., Yuan, T. F. & So, K. F. Adult neurogenic and antidepressant effects of adiponectin: a potential replacement for exercise? CNS Neurol. Disord. Drug Targets 14, 1129–1144 (2015).

    CAS  PubMed  Google Scholar 

  132. 132.

    Cooper, C., Moon, H. Y. & van Praag, H. On the run for hippocampal plasticity. Cold Spring Harb. Perspect. Med. 8, a029736 (2018).

    PubMed  PubMed Central  Google Scholar 

  133. 133.

    Stefan, N. & Haring, H. U. The role of hepatokines in metabolism. Nat. Rev. Endocrinol. 9, 144–152 (2013).

    CAS  PubMed  Google Scholar 

  134. 134.

    Markan, K. R. et al. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes 63, 4057–4063 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Gaich, G. et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab. 18, 333–340 (2013).

    CAS  PubMed  Google Scholar 

  136. 136.

    Hansen, J. S. et al. Exercise-induced secretion of FGF21 and follistatin are blocked by pancreatic clamp and impaired in type 2 diabetes. J. Clin. Endocrinol. Metab. 101, 2816–2825 (2016).

    CAS  PubMed  Google Scholar 

  137. 137.

    Liang, Q. et al. FGF21 maintains glucose homeostasis by mediating the cross talk between liver and brain during prolonged fasting. Diabetes 63, 4064–4075 (2014).

    CAS  PubMed  Google Scholar 

  138. 138.

    von Holstein-Rathlou, S. et al. FGF21 mediates endocrine control of simple sugar intake and sweet taste preference by the liver. Cell Metab. 23, 335–343 (2016).

    Google Scholar 

  139. 139.

    Talukdar, S. et al. FGF21 regulates sweet and alcohol preference. Cell Metab. 23, 344–349 (2016).

    CAS  PubMed  Google Scholar 

  140. 140.

    Soberg, S. et al. FGF21 is a sugar-induced hormone associated with sweet intake and preference in humans. Cell Metab. 25, 1045–1053 (2017).

    PubMed  Google Scholar 

  141. 141.

    Sa-Nguanmoo, P. et al. FGF21 improves cognition by restored synaptic plasticity, dendritic spine density, brain mitochondrial function and cell apoptosis in obese-insulin resistant male rats. Horm. Behav. 85, 86–95 (2016).

    CAS  PubMed  Google Scholar 

  142. 142.

    Hamrick, M. W. A role for myokines in muscle-bone interactions. Exerc. Sport Sci. Rev. 39, 43–47 (2011).

    PubMed  PubMed Central  Google Scholar 

  143. 143.

    Berg, U. & Bang, P. Exercise and circulating insulin-like growth factor I. Horm. Res. 62, (Suppl. 1), 50–58 (2004).

    CAS  PubMed  Google Scholar 

  144. 144.

    Chen, M. J. & Russo-Neustadt, A. A. Running exercise- and antidepressant-induced increases in growth and survival-associated signaling molecules are IGF-dependent. Growth Factors 25, 118–131 (2007).

    CAS  PubMed  Google Scholar 

  145. 145.

    Duzel, E., van Praag, H. & Sendtner, M. Can physical exercise in old age improve memory and hippocampal function? Brain 139, 662–673 (2016).

    PubMed  PubMed Central  Google Scholar 

  146. 146.

    Krishnan, V. S. et al. A neurogenic perspective of sarcopenia: time course study of sciatic nerves from aging mice. J. Neuropathol. Exp. Neurol. 75, 464–478 (2016).

    CAS  PubMed  Google Scholar 

  147. 147.

    Krishnan, V. S., Shavlakadze, T., Grounds, M. D., Hodgetts, S. I. & Harvey, A. R. Age-related loss of VGLUT1 excitatory, but not VGAT inhibitory, immunoreactive terminals on motor neurons in spinal cords of old sarcopenic male mice. Biogerontology 19, 385–399 (2018).

    CAS  PubMed  Google Scholar 

  148. 148.

    Snyder-Warwick, A. K., Satoh, A., Santosa, K. B., Imai, S. I. & Jablonka-Shariff, A. Hypothalamic Sirt1 protects terminal Schwann cells and neuromuscular junctions from age-related morphological changes. Aging Cell 17, e12776 (2018).

    PubMed Central  Google Scholar 

  149. 149.

    Spalding, K. L. et al. Dynamics of hippocampal neurogenesis in adult humans. Cell 153, 1219–1227 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Centre for Physical Activity Research (CFAS) is supported by a grant from TrygFonden. The author also thanks Alzheimer-forskningsfonden for support.

Reviewer information

Nature Reviews Endocrinology thanks M. Grounds, S. Schiaffino and other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bente Klarlund Pedersen.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Physical activity

Any bodily movement produced by skeletal muscles that requires energy expenditure.

Moderate-to-vigorous physical activity

Any activity with an energy expenditure of ≥3 metabolic equivalents (for example, brisk walking); the WHO minimum recommendations are 150 min of moderate-to-vigorous physical activity each week (or 20 min or 10,000 steps on most days of the week) for adults and 60 min of active playing on most days of the week for children and adolescents.

Aerobic exercise

Exercise involving dynamic movements and large muscle groups that predominantly rely on aerobic metabolism for fuelling muscle contractions; examples include jogging, running, swimming and rowing.

Resistance training

Movement performed against a specific external force that is regularly increased during training; examples include weightlifting and exercises using resistance machines.

Exercise training

A subset of physical activity that is planned, structured and repetitive and has a final or intermediate objective of improving or maintaining physical fitness. The terms ‘exercise’ and ‘exercise training’ are used interchangeably to refer to the cardiovascular adaptations produced by this specific type of physical activity; a single bout of exercise is referred to as ‘acute exercise’.

Myokines

Cytokines or peptides produced by skeletal muscle cells and subsequently released into the circulation, where they exert autocrine, paracrine or endocrine effects in other cells, tissues or organs.

Browning

Browning can be defined as any substantial increase in the expression of uncoupling protein 1 (UCP1) at the mRNA level occurring in what is normally considered as a white adipose tissue depot. The resulting brown adipocytes that express UCP1 and appear in white adipose tissue are referred to as beige, brite, convertible, ectopic, inducible or recruitable.

Sarcopenia

Derived from the Greek sarx (‘flesh’) and penia (‘loss’), sarcopenia is the age-induced loss of muscle mass and function that typically manifests as reduced gait speed.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pedersen, B.K. Physical activity and muscle–brain crosstalk. Nat Rev Endocrinol 15, 383–392 (2019). https://doi.org/10.1038/s41574-019-0174-x

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing