Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular pathways linking adipose innervation to insulin action in obesity and diabetes mellitus

Abstract

Adipose tissue comprises adipocytes and many other cell types that engage in dynamic crosstalk in a highly innervated and vascularized tissue matrix. Although adipose tissue has been studied for decades, it has been appreciated only in the past 5 years that extensive arborization of nerve fibres has a dominant role in regulating the function of adipose tissue. This Review summarizes the latest literature, which suggests that adipocytes signal to local sensory nerve fibres in response to perturbations in lipolysis and lipogenesis. Such adipocyte signalling to the central nervous system causes sympathetic output to distant adipose depots and potentially other metabolic tissues to regulate systemic glucose homeostasis. Paracrine factors identified in the past few years that mediate such adipocyte–neuron crosstalk are also reviewed. Similarly, immune cells and endothelial cells within adipose tissue communicate with local nerve fibres to modulate neurotransmitter tone, blood flow, adipocyte differentiation and energy expenditure, including adipose browning to produce heat. This understudied field of neurometabolism related to adipose tissue biology has great potential to reveal new mechanistic insights and potential therapeutic strategies for obesity and type 2 diabetes mellitus.

Key points

  • Adipocytes modulate whole-body metabolism through secretion of endocrine and paracrine factors that modulate local immune cell cytokine secretion, endothelium blood flow and neuronal signalling to the brain.

  • Adipocytes, the endothelium and immune cells within adipose tissues secrete factors such as leptin, vascular endothelial growth factor (VEGF) and tumour necrosis factor (TNF) that regulate local sensory nerve fibre functions.

  • Adipocyte lipid metabolism communicates with local sensory nerve fibres, sending signals to the central nervous system; conversely, sensory nerve fibres secrete factors such as calcitonin-related gene peptide (CGRP) and substance P that might regulate the metabolism of adipocytes and other adipose-resident cells.

  • Increased lipolysis in white adipose tissue in response to sympathetic activation can cause sensory nerve fibres to regulate the metabolic activity of distant brown adipose tissue depots.

  • Extensive and dynamic signalling networks among the diverse cell types in adipose tissue integrate and mediate communication through bioactive lipids to local sensory nerve fibres and neurotrophic factors to sympathetic nerve fibres.

  • Identifying factors within adipose tissues that regulate the function of sensory and sympathetic nerve fibres might reveal therapeutic strategies for obesity and type 2 diabetes mellitus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proposed mechanisms whereby adipose tissue controls systemic insulin sensitivity.
Fig. 2: Adipose signalling to local nerve fibres regulates systemic metabolism.
Fig. 3: Adipose tissue–sensory nerve crosstalk.
Fig. 4: Central integration of adipose signals and obesity-mediated dysregulation.
Fig. 5: Adipose tissue–sympathetic nerve crosstalk.
Fig. 6: Integrating peripheral signals in adipose tissue.

Similar content being viewed by others

References

  1. Shaw, H. B. A. Contribution to the study of the morphology of adipose tissue. J. Anat. Physiol. 36, 1–13 (1901).

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Kershaw, E. E. & Flier, J. S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 89, 2548–2556 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Ouchi, N., Parker, J. L., Lugus, J. J. & Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 11, 85–97 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Villarroya, F., Cereijo, R., Villarroya, J. & Giralt, M. Brown adipose tissue as a secretory organ. Nat. Rev. Endocrinol. 13, 26–35 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Stern, J. H., Rutkowski, J. M. & Scherer, P. E. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab. 23, 770–784 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Shin, J. et al. SDF-1 is an autocrine insulin-desensitizing factor in adipocytes. Diabetes 67, 1068–1078 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Villarroya, F., Gavalda-Navarro, A., Peyrou, M., Villarroya, J. & Giralt, M. The lives and times of brown adipokines. Trends Endocrinol. Metab. 28, 855–867 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Rosen, E. D. & Spiegelman, B. M. What we talk about when we talk about fat. Cell 156, 20–44 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Guilherme, A., Virbasius, J. V., Puri, V. & Czech, M. P. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol. 9, 367–377 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Nye, C., Kim, J., Kalhan, S. C. & Hanson, R. W. Reassessing triglyceride synthesis in adipose tissue. Trends Endocrinol. Metab. 19, 356–361 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Teusink, B. et al. Contribution of fatty acids released from lipolysis of plasma triglycerides to total plasma fatty acid flux and tissue-specific fatty acid uptake. Diabetes 52, 614–620 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Kersten, S. Physiological regulation of lipoprotein lipase. Biochim. Biophys. Acta 1841, 919–933 (2014).

    Google Scholar 

  14. Czech, M. P., Tencerova, M., Pedersen, D. J. & Aouadi, M. Insulin signalling mechanisms for triacylglycerol storage. Diabetologia 56, 949–964 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Unger, R. H., Clark, G. O., Scherer, P. E. & Orci, L. Lipid homeostasis, lipotoxicity and the metabolic syndrome. Biochim. Biophys. Acta 1801, 209–214 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Perry, R. J. et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 160, 745–758 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Titchenell, P. M. et al. Direct hepatocyte insulin signaling is required for lipogenesis but is dispensable for the suppression of glucose production. Cell Metab. 23, 1154–1166 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Clerk, L. H., Rattigan, S. & Clark, M. G. Lipid infusion impairs physiologic insulin-mediated capillary recruitment and muscle glucose uptake in vivo. Diabetes 51, 1138–1145 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Dresner, A. et al. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J. Clin. Invest. 103, 253–259 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Petersen, K. F. & Shulman, G. I. Cellular mechanism of insulin resistance in skeletal muscle. J. R. Soc. Med. 95 (Suppl. 42), 8–13 (2002).

    Google Scholar 

  21. DeFronzo, R. A., Bonadonna, R. C. & Ferrannini, E. Pathogenesis of NIDDM. A balanced overview. Diabetes Care 15, 318–368 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Walther, T. C., Chung, J. & Farese, R. V. Jr. Lipid droplet biogenesis. Annu. Rev. Cell Dev. Biol. 33, 491–510 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cinti, S. et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 46, 2347–2355 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Kanda, H. et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Invest. 116, 1494–1505 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Amano, S. U. et al. Local proliferation of macrophages contributes to obesity-associated adipose tissue inflammation. Cell Metab. 19, 162–171 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Gustafson, B. & Smith, U. Cytokines promote Wnt signaling and inflammation and impair the normal differentiation and lipid accumulation in 3T3-L1 preadipocytes. J. Biol. Chem. 281, 9507–9516 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Grant, R. W. & Stephens, J. M. Fat in flames: influence of cytokines and pattern recognition receptors on adipocyte lipolysis. Am. J. Physiol. Endocrinol. Metab. 309, E205–E213 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Aouadi, M. et al. Gene silencing in adipose tissue macrophages regulates whole-body metabolism in obese mice. Proc. Natl Acad. Sci. USA 110, 8278–8283 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sung, H. K. et al. Adipose vascular endothelial growth factor regulates metabolic homeostasis through angiogenesis. Cell Metab. 17, 61–72 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Halaas, J. L. et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269, 543–546 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Bartness, T. J., Kay Song, C., Shi, H., Bowers, R. R. & Foster, M. T. Brain-adipose tissue cross talk. Proc. Nutr. Soc. 64, 53–64 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Bartness, T. & Kay Song, C. Innervation of brown adipose tissue and its role in thermogenesis. Can. J. Diabetes 29, 420–428 (2005).

    CAS  Google Scholar 

  35. Bartness, T. J. & Ryu, V. Neural control of white, beige and brown adipocytes. Int. J. Obes. Suppl. 5, S35–S39 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Caron, A., Lee, S., Elmquist, J. K. & Gautron, L. Leptin and brain-adipose crosstalks. Nat. Rev. Neurosci. 19, 153–165 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Friedman, J. 20 years of leptin: leptin at 20: an overview. J. Endocrinol. 223, T1–T8 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Ryu, V., Garretson, J. T., Liu, Y., Vaughan, C. H. & Bartness, T. J. Brown adipose tissue has sympathetic-sensory feedback circuits. J. Neurosci. 35, 2181–2190 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Garretson, J. T. et al. Lipolysis sensation by white fat afferent nerves triggers brown fat thermogenesis. Mol. Metab. 5, 626–634 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Harris, R. B. S. Denervation as a tool for testing sympathetic control of white adipose tissue. Physiol. Behav. 190, 3–10 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Fishman, R. B. & Dark, J. Sensory innervation of white adipose tissue. Am. J. Physiol. 253, R942–R944 (1987).

    CAS  PubMed  Google Scholar 

  43. Shi, H., Song, C. K., Giordano, A., Cinti, S. & Bartness, T. J. Sensory or sympathetic white adipose tissue denervation differentially affects depot growth and cellularity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R1028–R1037 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. De Matteis, R., Ricquier, D. & Cinti, S. TH-, NPY-, SP-, and CGRP-immunoreactive nerves in interscapular brown adipose tissue of adult rats acclimated at different temperatures: an immunohistochemical study. J. Neurocytol. 27, 877–886 (1998).

    Article  PubMed  Google Scholar 

  45. Song, C. K., Schwartz, G. J. & Bartness, T. J. Anterograde transneuronal viral tract tracing reveals central sensory circuits from white adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R501–R511 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Vaughan, C. H. & Bartness, T. J. Anterograde transneuronal viral tract tracing reveals central sensory circuits from brown fat and sensory denervation alters its thermogenic responses. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302, R1049–R1058 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Ryu, V. & Bartness, T. J. Short and long sympathetic-sensory feedback loops in white fat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 306, R886–R900 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Nguyen, N. L. T., Xue, B. & Bartness, T. J. Sensory denervation of inguinal white fat modifies sympathetic outflow to white and brown fat in Siberian hamsters. Physiol. Behav. 190, 28–33 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Guilherme, A. et al. Neuronal modulation of brown adipose activity through perturbation of white adipocyte lipogenesis. Mol. Metab. 16, 116–125 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Pereira, M. M. et al. A brain-sparing diphtheria toxin for chemical genetic ablation of peripheral cell lineages. Nat. Commun. 8, 14967 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Niijima, A. Afferent signals from leptin sensors in the white adipose tissue of the epididymis, and their reflex effect in the rat. J. Auton. Nerv. Syst. 73, 19–25 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Niijima, A. Reflex effects from leptin sensors in the white adipose tissue of the epididymis to the efferent activity of the sympathetic and vagus nerve in the rat. Neurosci. Lett. 262, 125–128 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Murphy, K. T. et al. Leptin-sensitive sensory nerves innervate white fat. Am. J. Physiol. Endocrinol. Metab. 304, E1338–E1347 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. de Lartigue, G., Ronveaux, C. C. & Raybould, H. E. Deletion of leptin signaling in vagal afferent neurons results in hyperphagia and obesity. Mol. Metab. 3, 595–607 (2014).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Zeng, W. et al. Sympathetic neuro-adipose connections mediate leptin-driven lipolysis. Cell 163, 84–94 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Shiuchi, T. et al. Induction of glucose uptake in skeletal muscle by central leptin is mediated by muscle beta2-adrenergic receptor but not by AMPK. Sci. Rep. 7, 15141 (2017).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Waxman, S. G. From Neuroscience to Neurology: Neuroscience, Molecular Medicine, and the Therapeutic Transformation of Neurology (Elsevier Academic Press, 2005).

  58. Korsching, S. The neurotrophic factor concept: a reexamination. J. Neurosci. 13, 2739–2748 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Christian, M. Transcriptional fingerprinting of “browning” white fat identifies NRG4 as a novel adipokine. Adipocyte 4, 50–54 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Rosell, M. et al. Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice. Am. J. Physiol. Endocrinol. Metab. 306, E945–E964 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Pellegrinelli, V. et al. Adipocyte-secreted BMP8b mediates adrenergic-induced remodeling of the neuro-vascular network in adipose tissue. Nat. Commun. 9, 4974 (2018).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Nakagomi, A. et al. Role of the central nervous system and adipose tissue BDNF/TrkB axes in metabolic regulation. NPJ Aging Mech. Dis. 1, 15009 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  63. Cao, Y., Wang, H. & Zeng, W. Whole-tissue 3D imaging reveals intra-adipose sympathetic plasticity regulated by NGF-TrkA signal in cold-induced beiging. Protein Cell 9, 527–539 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Wang, G. X. et al. The brown fat-enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis. Nat. Med. 20, 1436–1443 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Min, S. Y. et al. Human ‘brite/beige’ adipocytes develop from capillary networks, and their implantation improves metabolic homeostasis in mice. Nat. Med. 22, 312–318 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Pearson, R. J. Jr & Carroll, S. L. ErbB transmembrane tyrosine kinase receptors are expressed by sensory and motor neurons projecting into sciatic nerve. J. Histochem. Cytochem. 52, 1299–1311 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Vetter, I., Pujic, Z. & Goodhill, G. J. The response of dorsal root ganglion axons to nerve growth factor gradients depends on spinal level. J. Neurotrauma 27, 1379–1386 (2010).

    Article  PubMed  Google Scholar 

  68. Moy, J. K., Khoutorsky, A., Asiedu, M. N., Dussor, G. & Price, T. J. eIF4E phosphorylation influences Bdnf mRNA translation in mouse dorsal root ganglion neurons. Front. Cell. Neurosci. 12, 29 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  69. Cannon, B. et al. ‘Neuropeptide tyrosine’ (NPY) is co-stored with noradrenaline in vascular but not in parenchymal sympathetic nerves of brown adipose tissue. Exp. Cell Res. 164, 546–550 (1986).

    Article  CAS  PubMed  Google Scholar 

  70. Slavin, B. G. & Ballard, K. W. Morphological studies on the adrenergic innervation of white adipose tissue. Anat. Rec. 191, 377–389 (1978).

    Article  CAS  PubMed  Google Scholar 

  71. Bartness, T. J. & Bamshad, M. Innervation of mammalian white adipose tissue: implications for the regulation of total body fat. Am. J. Physiol. 275, R1399–R1411 (1998).

    CAS  PubMed  Google Scholar 

  72. Carmeliet, P. & Tessier-Lavigne, M. Common mechanisms of nerve and blood vessel wiring. Nature 436, 193–200 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Shvartsman, D. et al. Sustained delivery of VEGF maintains innervation and promotes reperfusion in ischemic skeletal muscles via NGF/GDNF signaling. Mol. Ther. 22, 1243–1253 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Mackenzie, F. & Ruhrberg, C. Diverse roles for VEGF-A in the nervous system. Development 139, 1371–1380 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Guaiquil, V. H. et al. VEGF-B selectively regenerates injured peripheral neurons and restores sensory and trophic functions. Proc. Natl Acad. Sci. USA 111, 17272–17277 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Park, J. et al. VEGF-A-expressing adipose tissue shows rapid beiging and enhanced survival after transplantation and confers IL-4-independent metabolic improvements. Diabetes 66, 1479–1490 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Sun, K. et al. Dichotomous effects of VEGF-A on adipose tissue dysfunction. Proc. Natl Acad. Sci. USA 109, 5874–5879 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dhondt, J. et al. Neuronal FLT1 receptor and its selective ligand VEGF-B protect against retrograde degeneration of sensory neurons. FASEB J. 25, 1461–1473 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Pedersen, D. J. et al. A major role of insulin in promoting obesity-associated adipose tissue inflammation. Mol. Metab. 4, 507–518 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Hardy, O. T. et al. Body mass index-independent inflammation in omental adipose tissue associated with insulin resistance in morbid obesity. Surg. Obes. Relat. Dis. 7, 60–67 (2011).

    Article  PubMed  Google Scholar 

  81. Zanos, T. P. et al. Identification of cytokine-specific sensory neural signals by decoding murine vagus nerve activity. Proc. Natl Acad. Sci. USA 115, E4843–E4852 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Osamura, N. et al. Induction of interleukin-6 in dorsal root ganglion neurons after gradual elongation of rat sciatic nerve. Exp. Neurol. 195, 61–70 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Miller, R. J., Jung, H., Bhangoo, S. K. & White, F. A. Cytokine and chemokine regulation of sensory neuron function. Handb. Exp. Pharmacol. 194, 417–449 (2009).

    Article  CAS  Google Scholar 

  84. Nunez Ruiz, A. et al. Diminished levels of regulatory T cell subsets (CD8+Foxp3, CD4+Foxp3 and CD4+CD39+Foxp3) but increased Foxp3 expression in adipose tissue from overweight subjects. Nutrition 32, 943–954 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Cortez-Espinosa, N. et al. CD39 expression on Treg and Th17 cells is associated with metabolic factors in patients with type 2 diabetes. Hum. Immunol. 76, 622–630 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Herbert, M. K. & Holzer, P. Neurogenic inflammation. I. Basic mechanisms, physiology and pharmacology [German]. Anasthesiol. Intensivmed. Notfallmed. Schmerzther. 37, 314–325 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Russell, F. A., King, R., Smillie, S. J., Kodji, X. & Brain, S. D. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol. Rev. 94, 1099–1142 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Brain, S. D. & Grant, A. D. Vascular actions of calcitonin gene-related peptide and adrenomedullin. Physiol. Rev. 84, 903–934 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Sung, C. P. et al. CGRP stimulates the adhesion of leukocytes to vascular endothelial cells. Peptides 13, 429–434 (1992).

    Article  CAS  PubMed  Google Scholar 

  90. Liu, T. et al. Endogenous calcitonin gene-related peptide regulates lipid metabolism and energy homeostasis in male mice. Endocrinology 158, 1194–1206 (2017).

    Article  PubMed  Google Scholar 

  91. Walker, C. S. et al. Mice lacking the neuropeptide alpha-calcitonin gene-related peptide are protected against diet-induced obesity. Endocrinology 151, 4257–4269 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Aveseh, M., Koushkie-Jahromi, M., Nemati, J. & Esmaeili-Mahani, S. Serum calcitonin gene-related peptide facilitates adipose tissue lipolysis during exercise via PIPLC/IP3 pathways. Endocrine 61, 462–472 (2018).

    Article  CAS  PubMed  Google Scholar 

  93. Johnson, M. B., Young, A. D. & Marriott, I. The therapeutic potential of targeting substance P/NK-1R interactions in inflammatory CNS disorders. Front. Cell. Neurosci. 10, 296 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Garcia-Recio, S. & Gascon, P. Biological and pharmacological aspects of the NK1-receptor. Biomed. Res. Int. 2015, 495704 (2015).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. O’Connor, T. M. et al. The role of substance P in inflammatory disease. J. Cell. Physiol. 201, 167–180 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Reilly, S. M. & Saltiel, A. R. Adapting to obesity with adipose tissue inflammation. Nat. Rev. Endocrinol. 13, 633–643 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Ellis, A. & Bennett, D. L. Neuroinflammation and the generation of neuropathic pain. Br. J. Anaesth. 111, 26–37 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Yadav, R. L. et al. Somatic neural alterations in non-diabetic obesity: a cross-sectional study. BMC Obes. 3, 50 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  99. Richardson, J. D. & Vasko, M. R. Cellular mechanisms of neurogenic inflammation. J. Pharmacol. Exp. Ther. 302, 839–845 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Xanthos, D. N. & Sandkuhler, J. Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat. Rev. Neurosci. 15, 43–53 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Schaper, N. C., Huijberts, M. & Pickwell, K. Neurovascular control and neurogenic inflammation in diabetes. Diabetes Metab. Res. Rev. 24, S40–S44 (2008).

    Article  PubMed  Google Scholar 

  102. Farkas, G. J. & Gater, D. R. Neurogenic obesity and systemic inflammation following spinal cord injury: a review. J. Spinal Cord Med. 41, 378–387 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Morrison, S. F., Madden, C. J. & Tupone, D. Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab. 19, 741–756 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Morrison, S. F. Central neural control of thermoregulation and brown adipose tissue. Auton. Neurosci. 196, 14–24 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Williams, K. W. & Elmquist, J. K. From neuroanatomy to behavior: central integration of peripheral signals regulating feeding behavior. Nat. Neurosci. 15, 1350–1355 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Konner, A. C., Klockener, T. & Bruning, J. C. Control of energy homeostasis by insulin and leptin: targeting the arcuate nucleus and beyond. Physiol. Behav. 97, 632–638 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Timper, K. & Bruning, J. C. Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity. Dis. Model. Mech. 10, 679–689 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Hollenberg, A. N. The role of the thyrotropin-releasing hormone (TRH) neuron as a metabolic sensor. Thyroid 18, 131–139 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Ryu, V., Watts, A. G., Xue, B. & Bartness, T. J. Bidirectional crosstalk between the sensory and sympathetic motor systems innervating brown and white adipose tissue in male Siberian hamsters. Am. J. Physiol. Regul. Integr. Comp. Physiol. 312, R324–R337 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  110. Nguyen, N. L., Randall, J., Banfield, B. W. & Bartness, T. J. Central sympathetic innervations to visceral and subcutaneous white adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 306, R375–R386 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Bamshad, M., Aoki, V. T., Adkison, M. G., Warren, W. S. & Bartness, T. J. Central nervous system origins of the sympathetic nervous system outflow to white adipose tissue. Am. J. Physiol. 275, R291–R299 (1998).

    CAS  PubMed  Google Scholar 

  112. Morton, G. J. & Schwartz, M. W. Leptin and the central nervous system control of glucose metabolism. Physiol. Rev. 91, 389–411 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Contreras, C., Nogueiras, R., Dieguez, C., Rahmouni, K. & Lopez, M. Traveling from the hypothalamus to the adipose tissue: the thermogenic pathway. Redox Biol. 12, 854–863 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Myers, M. G. Jr & Olson, D. P. Central nervous system control of metabolism. Nature 491, 357–363 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Mahu, I. & Domingos, A. I. The sympathetic neuro-adipose connection and the control of body weight. Exp. Cell Res. 360, 27–30 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dodd, G. T. & Tiganis, T. Insulin action in the brain: Roles in energy and glucose homeostasis. J. Neuroendocrinol. 29, e12513 (2017).

    Article  CAS  Google Scholar 

  117. Roh, E., Song, D. K. & Kim, M. S. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism. Exp. Mol. Med. 48, e216 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Benoit, S. C. et al. The catabolic action of insulin in the brain is mediated by melanocortins. J. Neurosci. 22, 9048–9052 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Choudhury, A. I. et al. The role of insulin receptor substrate 2 in hypothalamic and beta cell function. J. Clin. Invest. 115, 940–950 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Dodd, G. T. et al. Leptin and insulin act on POMC neurons to promote the browning of white fat. Cell 160, 88–104 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Dodd, G. T. et al. A hypothalamic phosphatase switch coordinates energy expenditure with feeding. Cell Metab. 26, 375–393 (2017).

    Article  CAS  PubMed  Google Scholar 

  122. Shin, A. C. et al. Insulin receptor signaling in POMC, but not AgRP, neurons controls adipose tissue insulin action. Diabetes 66, 1560–1571 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Harris, R. B., Kelso, E. W., Flatt, W. P., Bartness, T. J. & Grill, H. J. Energy expenditure and body composition of chronically maintained decerebrate rats in the fed and fasted condition. Endocrinology 147, 1365–1376 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Thaler, J. P. et al. Obesity is associated with hypothalamic injury in rodents and humans. J. Clin. Invest. 122, 153–162 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Kleinridders, A. et al. MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity. Cell Metab. 10, 249–259 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  126. Thaler, J. P. & Schwartz, M. W. Minireview: inflammation and obesity pathogenesis: the hypothalamus heats up. Endocrinology 151, 4109–4115 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  127. Gao, Y. et al. Hormones and diet, but not body weight, control hypothalamic microglial activity. Glia 62, 17–25 (2014).

    Article  PubMed  Google Scholar 

  128. Garcia-Caceres, C., Yi, C. X. & Tschop, M. H. Hypothalamic astrocytes in obesity. Endocrinol. Metab. Clin. North Am. 42, 57–66 (2013).

    Article  PubMed  Google Scholar 

  129. Baufeld, C., Osterloh, A., Prokop, S., Miller, K. R. & Heppner, F. L. High-fat diet-induced brain region-specific phenotypic spectrum of CNS resident microglia. Acta Neuropathol. 132, 361–375 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  130. Schur, E. A. et al. Radiologic evidence that hypothalamic gliosis is associated with obesity and insulin resistance in humans. Obesity 23, 2142–2148 (2015).

    Article  CAS  PubMed  Google Scholar 

  131. Valdearcos, M. et al. Microglial inflammatory signaling orchestrates the hypothalamic immune response to dietary excess and mediates obesity susceptibility. Cell Metab. 26, 185–197 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  132. Giordano, A. et al. White adipose tissue lacks significant vagal innervation and immunohistochemical evidence of parasympathetic innervation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R1243–R1255 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Bartness, T. J., Liu, Y., Shrestha, Y. B. & Ryu, V. Neural innervation of white adipose tissue and the control of lipolysis. Front. Neuroendocrinol. 35, 473–493 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  134. Scherer, T. et al. Brain insulin controls adipose tissue lipolysis and lipogenesis. Cell Metab. 13, 183–194 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  135. Vitali, A. et al. The adipose organ of obesity-prone C57BL/6J mice is composed of mixed white and brown adipocytes. J. Lipid Res. 53, 619–629 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  136. Jiang, H., Ding, X., Cao, Y., Wang, H. & Zeng, W. Dense intra-adipose sympathetic arborizations are essential for cold-induced beiging of mouse white adipose tissue. Cell Metab. 26, 686–692 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Chi, J. et al. Three-dimensional adipose tissue imaging reveals regional variation in beige fat biogenesis and PRDM16-dependent sympathetic neurite density. Cell Metab. 27, 226–236 (2018).

    Article  CAS  PubMed  Google Scholar 

  138. Schulz, T. J. et al. Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature 495, 379–383 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  139. Zhu, Y. et al. Connexin 43 mediates white adipose tissue beiging by facilitating the propagation of sympathetic neuronal signals. Cell Metab. 24, 420–433 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  140. Burnstock, G. & Sneddon, P. Evidence for ATP and noradrenaline as cotransmitters in sympathetic nerves. Clin. Sci. 68, 89s–92s (1985).

    Article  Google Scholar 

  141. Pablo Huidobro-Toro, J. & Veronica Donoso, M. Sympathetic co-transmission: the coordinated action of ATP and noradrenaline and their modulation by neuropeptide Y in human vascular neuroeffector junctions. Eur. J. Pharmacol. 500, 27–35 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Ralevic, V. & Dunn, W. R. Purinergic transmission in blood vessels. Auton. Neurosci. 191, 48–66 (2015).

    Article  CAS  PubMed  Google Scholar 

  143. Razzoli, M. et al. Stress-induced activation of brown adipose tissue prevents obesity in conditions of low adaptive thermogenesis. Mol. Metab. 5, 19–33 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Xie, T. R., Liu, C. F. & Kang, J. S. Sympathetic transmitters control thermogenic efficacy of brown adipocytes by modulating mitochondrial complex V. Signal Transduct. Target. Ther. 2, 17060 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  145. Pirzgalska, R. M. et al. Sympathetic neuron-associated macrophages contribute to obesity by importing and metabolizing norepinephrine. Nat. Med. 23, 1309–1318 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Tang, L. et al. Sympathetic nerve activity maintains an anti-inflammatory state in adipose tissue in male mice by inhibiting TNF-alpha gene expression in macrophages. Endocrinology 156, 3680–3694 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Camell, C. D. et al. Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature 550, 119–123 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  148. Collins, S. Beta-adrenoceptor signaling networks in adipocytes for recruiting stored fat and energy expenditure. Front. Endocrinol. 2, 102 (2011).

    Article  Google Scholar 

  149. Zechner, R., Madeo, F. & Kratky, D. Cytosolic lipolysis and lipophagy: two sides of the same coin. Nat. Rev. Mol. Cell Biol. 18, 671–684 (2017).

    Article  CAS  PubMed  Google Scholar 

  150. Granneman, J. G., Li, P., Zhu, Z. & Lu, Y. Metabolic and cellular plasticity in white adipose tissue I: effects of beta3-adrenergic receptor activation. Am. J. Physiol. Endocrinol. Metab. 289, E608–E616 (2005).

    Article  CAS  PubMed  Google Scholar 

  151. Ramseyer, V. D. & Granneman, J. G. Adrenergic regulation of cellular plasticity in brown, beige/brite and white adipose tissues. Adipocyte 5, 119–129 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  152. Bachman, E. S. et al. betaAR signaling required for diet-induced thermogenesis and obesity resistance. Science 297, 843–845 (2002).

    Article  CAS  PubMed  Google Scholar 

  153. Douris, N. et al. Beta-adrenergic receptors are critical for weight loss but not for other metabolic adaptations to the consumption of a ketogenic diet in male mice. Mol. Metab. 6, 854–862 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  154. Nisoli, E., Tonello, C., Briscini, L. & Carruba, M. O. Inducible nitric oxide synthase in rat brown adipocytes: implications for blood flow to brown adipose tissue. Endocrinology 138, 676–682 (1997).

    Article  CAS  PubMed  Google Scholar 

  155. Petrovic, V. et al. NO modulates the molecular basis of rat interscapular brown adipose tissue thermogenesis. Comp. Biochem. Physiol. C 152, 147–159 (2010).

    Google Scholar 

  156. Takahashi, H. et al. Beta-3 adrenergic agonist, BRL-26830A, and alpha/beta blocker, arotinolol, markedly increase regional blood flow in the brown adipose tissue in anesthetized rats. Jpn Circ. J. 56, 936–942 (1992).

    Article  CAS  PubMed  Google Scholar 

  157. Giordano, A. et al. Evidence for a functional nitric oxide synthase system in brown adipocyte nucleus. FEBS Lett. 514, 135–140 (2002).

    Article  CAS  PubMed  Google Scholar 

  158. Sipe, L. M. et al. Differential sympathetic outflow to adipose depots is required for visceral fat loss in response to calorie restriction. Nutr. Diabetes 7, e260 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  159. Zhang, W., Cline, M. A. & Gilbert, E. R. Hypothalamus-adipose tissue crosstalk: neuropeptide Y and the regulation of energy metabolism. Nutr. Metab. 11, 27 (2014).

    Article  CAS  Google Scholar 

  160. Turtzo, L. C., Marx, R. & Lane, M. D. Cross-talk between sympathetic neurons and adipocytes in coculture. Proc. Natl Acad. Sci. USA 98, 12385–12390 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Yang, K., Guan, H., Arany, E., Hill, D. J. & Cao, X. Neuropeptide Y is produced in visceral adipose tissue and promotes proliferation of adipocyte precursor cells via the Y1 receptor. FASEB J. 22, 2452–2464 (2008).

    Article  CAS  PubMed  Google Scholar 

  162. Kuo, L. E. et al. Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nat. Med. 13, 803–811 (2007).

    Article  CAS  PubMed  Google Scholar 

  163. Burnstock, G. Purinergic cotransmission. Exp. Physiol. 94, 20–24 (2009).

    Article  CAS  PubMed  Google Scholar 

  164. Burnstock, G. & Gentile, D. The involvement of purinergic signalling in obesity. Purinergic Signal. 14, 97–108 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  165. Tozzi, M. & Novak, I. Purinergic receptors in adipose tissue as potential targets in metabolic disorders. Front. Pharmacol. 8, 878 (2017).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  166. Ussar, S. et al. ASC-1, PAT2, and P2RX5 are cell surface markers for white, beige, and brown adipocytes. Sci. Transl Med. 6, 247ra103 (2014).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  167. Stefanidis, A. et al. Insights into the neurochemical signature of the innervation of beige fat. Mol. Metab. 11, 47–58 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  168. Bernhard, F. et al. Functional relevance of genes implicated by obesity genome-wide association study signals for human adipocyte biology. Diabetologia 56, 311–322 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. Guilherme, A. et al. Adipocyte lipid synthesis coupled to neuronal control of thermogenic programming. Mol. Metab. 6, 781–796 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  170. Migrenne, S. et al. Fatty acid signaling in the hypothalamus and the neural control of insulin secretion. Diabetes 55, 5 (2006).

    Article  CAS  Google Scholar 

  171. Bazinet, R. P. & Laye, S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat. Rev. Neurosci. 15, 771–785 (2014).

    Article  CAS  PubMed  Google Scholar 

  172. Matias, I. et al. Regulation, function, and dysregulation of endocannabinoids in models of adipose and beta-pancreatic cells and in obesity and hyperglycemia. J. Clin. Endocrinol. Metab. 91, 3171–3180 (2006).

    Article  CAS  PubMed  Google Scholar 

  173. Gonthier, M. P. et al. Identification of endocannabinoids and related compounds in human fat cells. Obesity 15, 837–845 (2007).

    Article  CAS  PubMed  Google Scholar 

  174. Matias, I. et al. Role and regulation of acylethanolamides in energy balance: focus on adipocytes and beta-cells. Br. J. Pharmacol. 152, 676–690 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  175. Ruiz de Azua, I. et al. Adipocyte cannabinoid receptor CB1 regulates energy homeostasis and alternatively activated macrophages. J. Clin. Invest. 127, 4148–4162 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  176. Cote, M. et al. Circulating endocannabinoid levels, abdominal adiposity and related cardiometabolic risk factors in obese men. Int. J. Obes. 31, 692–699 (2007).

    Article  CAS  Google Scholar 

  177. Di Marzo, V. et al. Changes in plasma endocannabinoid levels in viscerally obese men following a 1 year lifestyle modification programme and waist circumference reduction: associations with changes in metabolic risk factors. Diabetologia 52, 213–217 (2009).

    Article  CAS  PubMed  Google Scholar 

  178. Wagner, I. V., Perwitz, N., Drenckhan, M., Lehnert, H. & Klein, J. Cannabinoid type 1 receptor mediates depot-specific effects on differentiation, inflammation and oxidative metabolism in inguinal and epididymal white adipocytes. Nutr. Diabetes 1, e16 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  179. Quarta, C. et al. CB(1) signaling in forebrain and sympathetic neurons is a key determinant of endocannabinoid actions on energy balance. Cell Metab. 11, 273–285 (2010).

    Article  CAS  PubMed  Google Scholar 

  180. Bajzer, M. et al. Cannabinoid receptor 1 (CB1) antagonism enhances glucose utilisation and activates brown adipose tissue in diet-induced obese mice. Diabetologia 54, 3121–3131 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Pakdeechote, P., Dunn, W. R. & Ralevic, V. Cannabinoids inhibit noradrenergic and purinergic sympathetic cotransmission in the rat isolated mesenteric arterial bed. Br. J. Pharmacol. 152, 725–733 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  182. O’Keefe, L., Simcocks, A. C., Hryciw, D. H., Mathai, M. L. & McAinch, A. J. The cannabinoid receptor 1 and its role in influencing peripheral metabolism. Diabetes Obes. Metab. 16, 294–304 (2014).

    Article  CAS  PubMed  Google Scholar 

  183. Pongratz, G. & Straub, R. H. The sympathetic nervous response in inflammation. Arthritis Res. Ther. 16, 504 (2014).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  184. Xiong, Y. et al. Long-acting MIC-1/GDF15 molecules to treat obesity: evidence from mice to monkeys. Sci. Transl Med. 9, eaan8732 (2017).

    Article  CAS  PubMed  Google Scholar 

  185. Rines, A. K., Verdeguer, F. & Puigserver, P. Adenosine activates thermogenic adipocytes. Cell Res. 25, 155–156 (2015).

    Article  CAS  PubMed  Google Scholar 

  186. Bootcov, M. R. et al. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily. Proc. Natl Acad. Sci. USA 94, 11514–11519 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Tsai, V. W., Lin, S., Brown, D. A., Salis, A. & Breit, S. N. Anorexia-cachexia and obesity treatment may be two sides of the same coin: role of the TGF-b superfamily cytokine MIC-1/GDF15. Int. J. Obes. 40, 193–197 (2016).

    Article  CAS  Google Scholar 

  188. Tsai, V. W. et al. Treatment with the TGF-b superfamily cytokine MIC-1/GDF15 reduces the adiposity and corrects the metabolic dysfunction of mice with diet-induced obesity. Int. J. Obes. 42, 561–571 (2018).

    Article  CAS  Google Scholar 

  189. O’Rahilly, S. GDF15 — from biomarker to allostatic hormone. Cell Metab. 26, 807–808 (2017).

    Article  CAS  PubMed  Google Scholar 

  190. Strelau, J., Schober, A., Sullivan, A., Schilling, L. & Unsicker, K. Growth/differentiation factor-15 (GDF-15), a novel member of the TGF-beta superfamily, promotes survival of lesioned mesencephalic dopaminergic neurons in vitro and in vivo and is induced in neurons following cortical lesioning. J. Neural Transm. Suppl. 65, 197–203 (2003).

    Article  Google Scholar 

  191. Gnad, T. et al. Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors. Nature 516, 395–399 (2014).

    Article  CAS  PubMed  Google Scholar 

  192. Dobson, J. G. Jr Mechanism of adenosine inhibition of catecholamine-induced responses in heart. Circ. Res. 52, 151–160 (1983).

    Article  CAS  PubMed  Google Scholar 

  193. Rongen, G. A. et al. Presynaptic inhibition of norepinephrine release from sympathetic nerve endings by endogenous adenosine. Hypertension 27, 933–938 (1996).

    Article  CAS  PubMed  Google Scholar 

  194. Thorp, A. A. & Schlaich, M. P. Relevance of sympathetic nervous system activation in obesity and metabolic syndrome. J. Diabetes Res. 2015, 341583 (2015).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  195. Bougneres, P. et al. In vivo resistance of lipolysis to epinephrine. A new feature of childhood onset obesity. J. Clin. Invest. 99, 2568–2573 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  196. Horowitz, J. F. & Klein, S. Whole body and abdominal lipolytic sensitivity to epinephrine is suppressed in upper body obese women. Am. J. Physiol. Endocrinol. Metab. 278, E1144–E1152 (2000).

    Article  CAS  PubMed  Google Scholar 

  197. Heinonen, S. et al. Impaired mitochondrial biogenesis in adipose tissue in acquired obesity. Diabetes 64, 3135–3145 (2015).

    Article  CAS  PubMed  Google Scholar 

  198. Guo, T. et al. Adipocyte ALK7 links nutrient overload to catecholamine resistance in obesity. eLife 3, e03245 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  199. Buettner, C. Is hyperinsulinemia required to develop overeating-induced obesity? Cell Metab. 16, 691–692 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  200. Mehran, A. E. et al. Hyperinsulinemia drives diet-induced obesity independently of brain insulin production. Cell Metab. 16, 723–737 (2012).

    Article  CAS  PubMed  Google Scholar 

  201. Collins, S., Daniel, K. W. & Rohlfs, E. M. Depressed expression of adipocyte beta-adrenergic receptors is a common feature of congenital and diet-induced obesity in rodents. Int. J. Obes. Relat. Metab. Disord. 23, 669–677 (1999).

    Article  CAS  PubMed  Google Scholar 

  202. Surwit, R. S., Dixon, T. M., Petro, A. E., Daniel, K. W. & Collins, S. Diazoxide restores beta3-adrenergic receptor function in diet-induced obesity and diabetes. Endocrinology 141, 3630–3637 (2000).

    Article  CAS  PubMed  Google Scholar 

  203. Rahmouni, K. et al. Hypothalamic PI3K and MAPK differentially mediate regional sympathetic activation to insulin. J. Clin. Invest. 114, 652–658 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  204. Muntzel, M. S., Morgan, D. A., Mark, A. L. & Johnson, A. K. Intracerebroventricular insulin produces nonuniform regional increases in sympathetic nerve activity. Am. J. Physiol. 267, R1350–R1355 (1994).

    CAS  PubMed  Google Scholar 

  205. Komohara, Y., Fujiwara, Y., Ohnishi, K., Shiraishi, D. & Takeya, M. Contribution of macrophage polarization to metabolic diseases. J. Atheroscler. Thromb. 23, 10–17 (2016).

    Article  CAS  PubMed  Google Scholar 

  206. Olefsky, J. M. & Glass, C. K. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 72, 219–246 (2010).

    Article  CAS  PubMed  Google Scholar 

  207. Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  208. Aron-Wisnewsky, J. et al. Human adipose tissue macrophages: m1 and m2 cell surface markers in subcutaneous and omental depots and after weight loss. J. Clin. Endocrinol. Metab. 94, 4619–4623 (2009).

    Article  CAS  PubMed  Google Scholar 

  209. Patsouris, D. et al. Ablation of CD11c-positive cells normalizes insulin sensitivity in obese insulin resistant animals. Cell Metab. 8, 301–309 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  210. Oh, D. Y. et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142, 687–698 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  211. Grailer, J. J., Haggadone, M. D., Sarma, J. V., Zetoune, F. S. & Ward, P. A. Induction of M2 regulatory macrophages through the beta2-adrenergic receptor with protection during endotoxemia and acute lung injury. J. Innate Immun. 6, 607–618 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  212. Czech, M. P. Macrophages dispose of catecholamines in adipose tissue. Nat. Med. 23, 1255–1257 (2017).

    Article  CAS  PubMed  Google Scholar 

  213. Cao, Y. Angiogenesis and vascular functions in modulation of obesity, adipose metabolism, and insulin sensitivity. Cell Metab. 18, 478–489 (2013).

    Article  CAS  PubMed  Google Scholar 

  214. Garg, J. et al. Catecholamines facilitate VEGF-dependent angiogenesis via beta2-adrenoceptor-induced Epac1 and PKA activation. Oncotarget 8, 44732–44748 (2017).

    PubMed Central  PubMed  Google Scholar 

  215. Domigan, C. K. et al. Autocrine VEGF maintains endothelial survival through regulation of metabolism and autophagy. J. Cell Sci. 128, 2236–2248 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  216. Lee, S. et al. Autocrine VEGF signaling is required for vascular homeostasis. Cell 130, 691–703 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  217. Marko, S. B. & Damon, D. H. VEGF promotes vascular sympathetic innervation. Am. J. Physiol. Heart Circ. Physiol. 294, H2646–H2652 (2008).

    Article  CAS  PubMed  Google Scholar 

  218. Long, J. B., Jay, S. M., Segal, S. S. & Madri, J. A. VEGF-A and semaphorin3A: modulators of vascular sympathetic innervation. Dev. Biol. 334, 119–132 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  219. Robciuc, M. R. et al. VEGFB/VEGFR1-induced expansion of adipose vasculature counteracts obesity and related metabolic complications. Cell Metab. 23, 712–724 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  220. During, M. J. et al. Adipose VEGF links the white-to-brown fat switch with environmental, genetic, and pharmacological stimuli in male mice. Endocrinology 156, 2059–2073 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  221. Kim, K. H. et al. Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage. Cell Res. 27, 1309–1326 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  222. Xue, Y. et al. Hypoxia-independent angiogenesis in adipose tissues during cold acclimation. Cell Metab. 9, 99–109 (2009).

    Article  CAS  PubMed  Google Scholar 

  223. Sun, K. et al. Brown adipose tissue derived VEGF-A modulates cold tolerance and energy expenditure. Mol. Metab. 3, 474–483 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  224. Zhao, Y. et al. Transient overexpression of VEGF-A in adipose tissue promotes energy expenditure via activation of the sympathetic nervous system. Mol. Cell. Biol. 38, e00242–18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Jiang, Y., Berry, D. C. & Graff, J. M. Distinct cellular and molecular mechanisms for beta3 adrenergic receptor-induced beige adipocyte formation. eLife 6, e30329 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  226. Ueta, C. B. et al. beta(1) Adrenergic receptor is key to cold- and diet-induced thermogenesis in mice. J. Endocrinol. 214, 359–365 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  227. Shah, S. H. et al. Neuropeptide Y gene polymorphisms confer risk of early-onset atherosclerosis. PLOS Genet. 5, e1000318 (2009).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  228. Sung, C. P., Arleth, A. J. & Feuerstein, G. Z. Neuropeptide Y upregulates the adhesiveness of human endothelial cells for leukocytes. Circ. Res. 68, 314–318 (1991).

    Article  CAS  PubMed  Google Scholar 

  229. Claxson, A. et al. The anti-inflammatory effects of D-myo-inositol-1.2.6-trisphosphate (PP56) on animal models of inflammation. Agents Act. 29, 68–70 (1990).

    Article  CAS  Google Scholar 

  230. Singer, K. et al. Neuropeptide Y is produced by adipose tissue macrophages and regulates obesity-induced inflammation. PLOS ONE 8, e57929 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  231. Pandolfi, J. et al. Purinergic signaling modulates human visceral adipose inflammatory responses: implications in metabolically unhealthy obesity. J. Leukoc. Biol. 97, 941–949 (2015).

    Article  CAS  PubMed  Google Scholar 

  232. Eltzschig, H. K., Sitkovsky, M. V. & Robson, S. C. Purinergic signaling during inflammation. N. Engl. J. Med. 367, 2322–2333 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  233. Jo, E. K., Kim, J. K., Shin, D. M. & Sasakawa, C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell. Mol. Immunol. 13, 148–159 (2016).

    Article  CAS  PubMed  Google Scholar 

  234. Enjyoji, K. et al. Deletion of cd39/entpd1 results in hepatic insulin resistance. Diabetes 57, 2311–2320 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  235. Chen, Z. et al. Nrg4 promotes fuel oxidation and a healthy adipokine profile to ameliorate diet-induced metabolic disorders. Mol. Metab. 6, 863–872 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  236. Jeong, J. H., Chang, J. S. & Jo, Y. H. Intracellular glycolysis in brown adipose tissue is essential for optogenetically induced nonshivering thermogenesis in mice. Sci. Rep. 8, 6672 (2018).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  237. Akhmedov, D. et al. Gs-DREADD knock-in mice for tissue-specific, temporal stimulation of cyclic AMP signaling. Mol. Cell. Biol. 37, e00584–16 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  238. Rojas, J. M. & Schwartz, M. W. Control of hepatic glucose metabolism by islet and brain. Diabetes Obes. Metab. 16 (Suppl. 1), 33–40 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  239. Cantu, R. C. & Goodman, H. M. Effects of denervation and fasting on white adipose tissue. Am. J. Physiol. 212, 207–212 (1967).

    Article  CAS  PubMed  Google Scholar 

  240. Bartness, T. J., Shrestha, Y. B., Vaughan, C. H., Schwartz, G. J. & Song, C. K. Sensory and sympathetic nervous system control of white adipose tissue lipolysis. Mol. Cell. Endocrinol. 318, 34–43 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work from the laboratory of M.P.C. discussed in this Review was supported by NIH grants DK30898 and DK103047 to M.P.C.

Reviewer information

Nature Reviews Endocrinology thanks K. Rahmouni, and other anonymous reviewers, for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

A.G., F.H., A.H.B. and M.P.C. contributed equally to the discussion of content, researching data for the article, writing the article and reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Michael P. Czech.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guilherme, A., Henriques, F., Bedard, A.H. et al. Molecular pathways linking adipose innervation to insulin action in obesity and diabetes mellitus. Nat Rev Endocrinol 15, 207–225 (2019). https://doi.org/10.1038/s41574-019-0165-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-019-0165-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing