Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Post-transplant diabetes mellitus in patients with solid organ transplants

Abstract

Solid organ transplantation (SOT) is a life-saving procedure and an established treatment for patients with end-stage organ failure. However, transplantation is also accompanied by associated cardiovascular risk factors, of which post-transplant diabetes mellitus (PTDM) is one of the most important. PTDM develops in 10–20% of patients with kidney transplants and in 20–40% of patients who have undergone other SOT. PTDM increases mortality, which is best documented in patients who have received kidney and heart transplants. PTDM results from predisposing factors (similar to type 2 diabetes mellitus) but also as a result of specific post-transplant risk factors. Although PTDM has many characteristics in common with type 2 diabetes mellitus, the prevention and treatment of the two disorders are often different. Over the past 20 years, the lifespan of patients who have undergone SOT has increased, and PTDM becomes more common over the lifespan of these patients. Accordingly, PTDM becomes an important condition not only to be aware of but also to treat. This Review presents the current knowledge on PTDM in patients receiving kidney, heart, liver and lung transplants. This information is not only for transplant health providers but also for endocrinologists and others who will meet these patients in their clinics.

Key points

  • Post-transplant diabetes mellitus (PTDM) is mostly studied in recipients of kidney transplants, but risk factors for development of PTDM seem to be similar in recipients of heart, liver and lung transplants.

  • PTDM develops in 10–40% of patients during the first year after a solid organ transplant and is a major risk factor for cardiovascular disease and death.

  • Major risk factors for development of PTDM are metabolic adverse effects of immunosuppressive drugs, post-transplant viral infections and hypomagnesaemia, in addition to the traditional risk factors seen in patients with type 2 diabetes mellitus.

  • Prevention of PTDM can be achieved by tailoring the immunosuppressant regimen and probably also by lifestyle intervention; however, this intervention is not well studied.

  • Patients with PTDM should be treated with hypoglycaemic agents that have been tested for efficacy and safety regarding drug–drug interactions, immunosuppressant drugs and organ function.

  • Large-scale long-term studies on new glucose-lowering drug classes that have shown cardiovascular protection in high-risk patients with type 2 diabetes mellitus (for example, glucagon-like protein 1 (GLP1) receptor agonists and sodium/glucose cotransporter 2 (SGLT2) inhibitors) are also warranted in patients with PTDM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Acknowledged contributors of hyperglycaemia in PTDM.
Fig. 2: Incidence of PTDM after renal transplantation.
Fig. 3: Effects of immunosuppressive agents on β-cells and insulin-sensitive tissues that promote PTDM.
Fig. 4: The incidence of early PTDM and impaired glucose tolerance over the past 20 years in a national cohort of recipients of kidney transplants.
Fig. 5: Long-term outcomes of recipients of different organ transplants according to their PTDM status.
Fig. 6: A suggested algorithm for glucose lowering in PTDM, drawn from our experience of treating recipients of renal transplants.

Similar content being viewed by others

References

  1. Hart, A. et al. OPTN/SRTR 2016 annual data report: kidney. Am. J. Transplant. 18 (Suppl. 1), 18–113 (2018).

    PubMed  PubMed Central  Google Scholar 

  2. Kim, W. Ret al. OPTN/SRTR 2016 annual data report: liver. Am. J. Transplant. 18 (Suppl. 1), 172–253 (2018).

    PubMed  Google Scholar 

  3. Valapour, M. et al. OPTN/SRTR 2016 annual data report: lung. Am. J. Transplant. 18 (Suppl. 1), 363–433 (2018).

    PubMed  Google Scholar 

  4. Colvin, M. et al. OPTN/SRTR 2016 annual data report: heart. Am. J. Transplant. 18 (Suppl. 1), 291–362 (2018).

    PubMed  Google Scholar 

  5. Jenssen, T. & Hartmann, A. Emerging treatments for post-transplantation diabetes mellitus. Nat. Rev. Nephrol. 11, 465–477 (2015).

    CAS  PubMed  Google Scholar 

  6. Bergrem, H. A. et al. Undiagnosed diabetes in kidney transplant candidates: a case-finding strategy. Clin. J. Am. Soc. Nephrol. 5, 616–622 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sharif, A. et al. Proceedings from an international consensus meeting on posttransplantation diabetes mellitus: recommendations and future directions. Am. J. Transplant. 14, 1992–2000 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Eide, I. A. et al. Mortality risk in post-transplantation diabetes mellitus based on glucose and HbA1c diagnostic criteria. Transpl. Int. 29, 568–578 (2016).

    CAS  PubMed  Google Scholar 

  9. Seoane-Pillado, M. T. et al. Incidence of cardiovascular events and associated risk factors in kidney transplant patients: a competing risks survival analysis. BMC Cardiovasc. Disord. 17, 72 (2017).

    PubMed  PubMed Central  Google Scholar 

  10. Cho, M. S. et al. The clinical course and outcomes of post-transplantation diabetes mellitus after heart transplantation. J. Kor. Med. Sci. 27, 1460–1467 (2012).

    Google Scholar 

  11. Martinez-Dolz, L. et al. Predictive factors for development of diabetes mellitus post-heart transplant. Transplant. Proc. 37, 4064–4066 (2005).

    CAS  PubMed  Google Scholar 

  12. Kim, H. J. et al. New-onset diabetes mellitus after heart transplantation- incidence, risk factors and impact on clinical outcome. Circ. J. 81, 806–814 (2017).

    CAS  PubMed  Google Scholar 

  13. Hackman, K. L., Snell, G. I. & Bach, L. A. Poor glycemic control is associated with decreased survival in lung transplant recipients. Transplantation 101, 2200–2206 (2017).

    CAS  PubMed  Google Scholar 

  14. D’Avola, D. et al. Cardiovascular morbidity and mortality after liver transplantation: the protective role of mycophenolate mofetil. Liver Transpl. 23, 498–509 (2017).

    PubMed  Google Scholar 

  15. Roccaro, G. A. et al. Sustained posttransplantation diabetes is associated with long-term major cardiovascular events following liver transplantation. Am. J. Transplant. 18, 207–215 (2018).

    CAS  PubMed  Google Scholar 

  16. Davidson, J. et al. New-onset diabetes after transplantation: 2003 international consensus guidelines. Proceedings of an international expert panel meeting. Transplantation 75 (Suppl. 10) SS3–SS24 (2003).

    PubMed  Google Scholar 

  17. Wilkinson, A. et al. Guidelines for the treatment and management of new-onset diabetes after transplantation. Clin. Transplant. 19, 291–298 (2005).

    PubMed  Google Scholar 

  18. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 34, S62–S69 (2011).

    PubMed Central  Google Scholar 

  19. Eide, I. A. et al. Limitations of hemoglobin A1c for the diagnosis of posttransplant diabetes mellitus. Transplantation 99, 629–635 (2015).

    CAS  PubMed  Google Scholar 

  20. Hare, M. J., Shaw, J. E. & Zimmet, P. Z. Current controversies in the use of haemoglobin A1c. J. Intern. Med. 271, 227–236 (2012).

    CAS  PubMed  Google Scholar 

  21. Pimentel, A. L., Cavagnolli, G. & Camargo, J. L. Diagnostic accuracy of glycated hemoglobin for post-transplantation diabetes mellitus after kidney transplantation: systematic review and meta-analysis. Nephrol. Dial. Transplant. 32, 565–572 (2017).

    CAS  PubMed  Google Scholar 

  22. Valderhaug, T. G. et al. The association of early post-transplant glucose levels with long-term mortality. Diabetologia 54, 1341–1349 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Pimentel, A. L. & Camargo, J. L. Variability of glycated hemoglobin levels in the first year post renal transplantation in patients without diabetes. Clin. Biochem. 50, 997–1001 (2017).

    CAS  PubMed  Google Scholar 

  24. Porrini, E. et al. The combined effect of pre-transplant triglyceride levels and the type of calcineurin inhibitor in predicting the risk of new onset diabetes after renal transplantation. Nephrol. Dial. Transplant. 23, 1436–1441 (2008).

    CAS  PubMed  Google Scholar 

  25. Valderhaug, T. G. et al. Fasting plasma glucose and glycosylated hemoglobin in the screening for diabetes mellitus after renal transplantation. Transplantation 88, 429–434 (2009).

    PubMed  Google Scholar 

  26. Hecking, M. et al. Glucose metabolism after renal transplantation. Diabetes Care 36, 2763–2771 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Heldal, T. F. et al. Inflammatory and related biomarkers are associated with post-transplant diabetes mellitus in kidney recipients. Transpl. Int. 31, 510–519 (2018).

    CAS  PubMed  Google Scholar 

  28. DeFronzo, R. A., Ferrannini, E. & Simonson, D. C. Fasting hyperglycemia in non-insulin-dependent diabetes mellitus: contributions of excessive hepatic glucose production and impaired tissue glucose uptake. Metabolism 38, 387–395 (1989).

    CAS  PubMed  Google Scholar 

  29. Ekstrand, A. V., Eriksson, J. G., Gronhagen-Riska, C., Ahonen, P. J. & Groop, L. C. Insulin resistance and insulin deficiency in the pathogenesis of posttransplantation diabetes in man. Transplantation 53, 563–569 (1992).

    CAS  PubMed  Google Scholar 

  30. Jorgensen, M. B. et al. The impact of kidney transplantation on insulin sensitivity. Transpl. Int. 30, 295–304 (2017).

    CAS  PubMed  Google Scholar 

  31. Ferrannini, E. et al. Natural history and physiological determinants of changes in glucose tolerance in a non-diabetic population: the RISC Study. Diabetologia 54, 1507–1516 (2011).

    CAS  PubMed  Google Scholar 

  32. Holst, J. J., Knop, F. K., Vilsboll, T., Krarup, T. & Madsbad, S. Loss of incretin effect is a specific, important, and early characteristic of type 2 diabetes. Diabetes Care 34 (Suppl. 2), S251–S257 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Halden, T. A. et al. GLP-1 restores altered insulin and glucagon secretion in posttransplantation diabetes. Diabetes Care 39, 617–624 (2016).

    CAS  PubMed  Google Scholar 

  34. Gerich, J. E. Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabet. Med. 27, 136–142 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kleinridders, A., Ferris, H. A., Cai, W. & Kahn, C. R. Insulin action in brain regulates systemic metabolism and brain function. Diabetes 63, 2232–2243 (2014).

    PubMed  PubMed Central  Google Scholar 

  36. Ferrannini, E. et al. Insulin resistance and hypersecretion in obesity. European Group for the Study of Insulin Resistance (EGIR). J. Clin. Invest. 100, 1166–1173 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kloting, N. et al. Insulin-sensitive obesity. Am. J. Physiol. Endocrinol. Metab. 299, E506–E515 (2010).

    PubMed  Google Scholar 

  38. Cron, D. C. et al. Using analytic morphomics to describe body composition associated with post-kidney transplantation diabetes mellitus. Clin. Transplant. 31, e13040 (2017).

    Google Scholar 

  39. von Düring, M. E. et al. Visceral fat is better related to impaired glucose metabolism than body mass index after kidney transplantation. Transpl. Int. 28, 1162–1171 (2015).

    Google Scholar 

  40. Despres, J. P. & Lemieux, I. Abdominal obesity and metabolic syndrome. Nature 444, 881–887 (2006).

    CAS  PubMed  Google Scholar 

  41. Hjelmesaeth, J. et al. Hypoadiponectinemia is associated with insulin resistance and glucose intolerance after renal transplantation: impact of immunosuppressive and antihypertensive drug therapy. Clin. J. Am. Soc. Nephrol. 1, 575–582 (2006).

    CAS  PubMed  Google Scholar 

  42. Adachi, H. et al. Adiponectin fractions influence the development of posttransplant diabetes mellitus and cardiovascular disease in Japanese renal transplant recipients. PLOS ONE 11, e0163899 (2016).

    PubMed  PubMed Central  Google Scholar 

  43. Plotz, T. et al. The monounsaturated fatty acid oleate is the major physiological toxic free fatty acid for human beta cells. Nutr. Diabetes 7, 305 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sharif, A., Moore, R. & Baboolal, K. Influence of lifestyle modification in renal transplant recipients with postprandial hyperglycemia. Transplantation 85, 353–358 (2008).

    PubMed  Google Scholar 

  45. Cosio, F. G., Pesavento, T. E., Osei, K., Henry, M. L. & Ferguson, R. M. Post-transplant diabetes mellitus: increasing incidence in renal allograft recipients transplanted in recent years. Kidney Int. 59, 732–737 (2001).

    CAS  PubMed  Google Scholar 

  46. Porrini, E. L. et al. Clinical evolution of post-transplant diabetes mellitus. Nephrol. Dial. Transplant. 31, 495–505 (2016).

    CAS  PubMed  Google Scholar 

  47. Szabo, M., Mate, B., Csep, K. & Benedek, T. Genetic approaches to the study of gene variants and their impact on the pathophysiology of type 2 diabetes. Biochem. Genet. 56, 22–55 (2018).

    CAS  PubMed  Google Scholar 

  48. McCaughan, J. A., McKnight, A. J. & Maxwell, A. P. Genetics of new-onset diabetes after transplantation. J. Am. Soc. Nephrol. 25, 1037–1049 (2014).

    CAS  PubMed  Google Scholar 

  49. Yalin, G. Y. et al. Evaluation of glutathione peroxidase and KCNJ11 gene polymorphisms in patients with new onset diabetes mellitus after renal transplantation. Exp. Clin. Endocrinol. Diabetes 125, 408–413 (2017).

    CAS  PubMed  Google Scholar 

  50. Romanowski, M. et al. Adiponectin and leptin gene polymorphisms in patients with post-transplant diabetes mellitus. Pharmacogenomics 16, 1243–1251 (2015).

    CAS  PubMed  Google Scholar 

  51. Gervasini, G., Luna, E., Garcia-Cerrada, M., Garcia-Pino, G. & Cubero, J. J. Risk factors for post-transplant diabetes mellitus in renal transplant: role of genetic variability in the CYP450-mediated arachidonic acid metabolism. Mol. Cell. Endocrinol. 419, 158–164 (2016).

    CAS  PubMed  Google Scholar 

  52. Romanowski, M. et al. Interleukin-17 gene polymorphisms in patients with post-transplant diabetes mellitus. Eur. Rev. Med. Pharmacol. Sci. 19, 3152–3156 (2015).

    CAS  PubMed  Google Scholar 

  53. Kim, Y. G. et al. Association of genetic polymorphisms of interleukins with new-onset diabetes after transplantation in renal transplantation. Transplantation 93, 900–907 (2012).

    CAS  PubMed  Google Scholar 

  54. Kim, J. S. et al. Significant association between Toll-like receptor gene polymorphisms and posttransplantation diabetes mellitus. Nephron 133, 279–286 (2016).

    CAS  PubMed  Google Scholar 

  55. Hjelmesaeth, J. et al. Glucose intolerance after renal transplantation depends upon prednisolone dose and recipient age. Transplantation 64, 979–983 (1997).

    CAS  PubMed  Google Scholar 

  56. Cheungpasitporn, W., Thongprayoon, C., Vijayvargiya, P., Anthanont, P. & Erickson, S. B. The risk for new-onset diabetes mellitus after kidney transplantation in patients with autosomal dominant polycystic kidney disease: a systematic review and meta-analysis. Can. J. Diabetes 40, 521–528 (2016).

    PubMed  Google Scholar 

  57. Okumi, M. et al. Diabetes mellitus after kidney transplantation in Japanese patients: the Japan Academic Consortium of Kidney Transplantation study. Int. J. Urol. 24, 197–204 (2017).

    CAS  PubMed  Google Scholar 

  58. Peracha, J. et al. Risk of post-transplantation diabetes mellitus is greater in South Asian versus Caucasian kidney allograft recipients. Transpl. Int. 29, 727–739 (2016).

    PubMed  Google Scholar 

  59. Sepehri, Z. et al. Inflammasomes and type 2 diabetes: an updated systematic review. Immunol. Lett. 192, 97–103 (2017).

    CAS  PubMed  Google Scholar 

  60. Cantarin, M. P. et al. Association of inflammation prior to kidney transplantation with post-transplant diabetes mellitus. Cardiorenal Med. 6, 289–300 (2016).

    PubMed  PubMed Central  Google Scholar 

  61. Rodriguez-Moran, M. & Guerrero-Romero, F. Oral magnesium supplementation improves insulin sensitivity and metabolic control in type 2 diabetic subjects: a randomized double-blind controlled trial. Diabetes Care 26, 1147–1152 (2003).

    CAS  PubMed  Google Scholar 

  62. Song, Y., He, K., Levitan, E. B., Manson, J. E. & Liu, S. Effects of oral magnesium supplementation on glycaemic control in Type 2 diabetes: a meta-analysis of randomized double-blind controlled trials. Diabet. Med. 23, 1050–1056 (2006).

    CAS  PubMed  Google Scholar 

  63. Barton, C. H., Vaziri, N. D., Martin, D. C., Choi, S. & Alikhani, S. Hypomagnesemia and renal magnesium wasting in renal transplant recipients receiving cyclosporine. Am. J. Med. 83, 693–699 (1987).

    CAS  PubMed  Google Scholar 

  64. Garg, N. et al. Lower magnesium level associated with new-onset diabetes and pre-diabetes after kidney transplantation. J. Nephrol. 27, 339–344 (2014).

    CAS  PubMed  Google Scholar 

  65. Huang, J. W., Famure, O., Li, Y. & Kim, S. J. Hypomagnesemia and the risk of new-onset diabetes mellitus after kidney transplantation. J. Am. Soc. Nephrol. 27, 1793–1800 (2016).

    CAS  PubMed  Google Scholar 

  66. Van Laecke, S. et al. Effect of magnesium supplements on insulin secretion after kidney transplantation: a randomized controlled trial. Ann. Transplant. 22, 524–531 (2017).

    PubMed  Google Scholar 

  67. Van Laecke, S. et al. The effect of magnesium supplements on early post-transplantation glucose metabolism: a randomized controlled trial. Transpl. Int. 27, 895–902 (2014).

    PubMed  Google Scholar 

  68. Baid, S. et al. Posttransplant diabetes mellitus in liver transplant recipients: risk factors, temporal relationship with hepatitis C virus allograft hepatitis, and impact on mortality. Transplantation 72, 1066–1072 (2001).

    CAS  PubMed  Google Scholar 

  69. Chen, T. et al. New onset diabetes mellitus after liver transplantation and hepatitis C virus infection: meta-analysis of clinical studies. Transpl. Int. 22, 408–415 (2009).

    PubMed  Google Scholar 

  70. Delaunay, F. et al. Pancreatic beta cells are important targets for the diabetogenic effects of glucocorticoids. J. Clin. Invest. 100, 2094–2098 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Andrews, R. C. & Walker, B. R. Glucocorticoids and insulin resistance: old hormones, new targets. Clin. Sci. 96, 513–523 (1999).

    CAS  PubMed  Google Scholar 

  72. Schacke, H., Docke, W. D. & Asadullah, K. Mechanisms involved in the side effects of glucocorticoids. Pharmacol. Ther. 96, 23–43 (2002).

    CAS  PubMed  Google Scholar 

  73. Boots, J. M., van Duijnhoven, E. M., Christiaans, M. H., Wolffenbuttel, B. H. & van Hooff, J. P. Glucose metabolism in renal transplant recipients on tacrolimus: the effect of steroid withdrawal and tacrolimus trough level reduction. J. Am. Soc. Nephrol. 13, 221–227 (2002).

    CAS  PubMed  Google Scholar 

  74. Midtvedt, K. et al. Insulin resistance after renal transplantation: the effect of steroid dose reduction and withdrawal. J. Am. Soc. Nephrol. 15, 3233–3239 (2004).

    PubMed  Google Scholar 

  75. Cohen, D. J. et al. Cyclosporine: a new immunosuppressive agent for organ transplantation. Ann. Intern. Med. 101, 667–682 (1984).

    CAS  PubMed  Google Scholar 

  76. Ozbay, L. A. et al. Cyclosporin and tacrolimus impair insulin secretion and transcriptional regulation in INS-1E beta-cells. Br. J. Pharmacol. 162, 136–146 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ekberg, H. et al. Reduced exposure to calcineurin inhibitors in renal transplantation. N. Engl. J. Med. 357, 2562–2575 (2007).

    CAS  PubMed  Google Scholar 

  78. Vincenti, F. et al. Results of an international, randomized trial comparing glucose metabolism disorders and outcome with cyclosporine versus tacrolimus. Am. J. Transplant. 7, 1506–1514 (2007).

    CAS  PubMed  Google Scholar 

  79. Webster, A. C., Woodroffe, R. C., Taylor, R. S., Chapman, J. R. & Craig, J. C. Tacrolimus versus ciclosporin as primary immunosuppression for kidney transplant recipients: meta-analysis and meta-regression of randomised trial data. BMJ 331, 810 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Chakkera, H. A. & Mandarino, L. J. Calcineurin inhibition and new-onset diabetes mellitus after transplantation. Transplantation 95, 647–652 (2013).

    CAS  PubMed  Google Scholar 

  81. Heit, J. J. et al. Calcineurin/NFAT signalling regulates pancreatic beta-cell growth and function. Nature 443, 345–349 (2006).

    CAS  PubMed  Google Scholar 

  82. Hernandez-Fisac, I. et al. Tacrolimus-induced diabetes in rats courses with suppressed insulin gene expression in pancreatic islets. Am. J. Transplant. 7, 2455–2462 (2007).

    CAS  PubMed  Google Scholar 

  83. Trinanes, J. et al. Deciphering tacrolimus-induced toxicity in pancreatic beta cells. Am. J. Transplant. 17, 2829–2840 (2017).

    CAS  PubMed  Google Scholar 

  84. Johnston, O., Rose, C. L., Webster, A. C. & Gill, J. S. Sirolimus is associated with new-onset diabetes in kidney transplant recipients. J. Am. Soc. Nephrol. 19, 1411–1418 (2008).

    PubMed  PubMed Central  Google Scholar 

  85. Teutonico, A., Schena, P. F. & Di Paolo, S. Glucose metabolism in renal transplant recipients: effect of calcineurin inhibitor withdrawal and conversion to sirolimus. J. Am. Soc. Nephrol. 16, 3128–3135 (2005).

    CAS  PubMed  Google Scholar 

  86. Bell, E. et al. Rapamycin has a deleterious effect on MIN-6 cells and rat and human islets. Diabetes 52, 2731–2739 (2003).

    CAS  PubMed  Google Scholar 

  87. Zahr, E. et al. Rapamycin impairs in vivo proliferation of islet beta-cells. Transplantation 84, 1576–1583 (2007).

    CAS  PubMed  Google Scholar 

  88. Shivaswamy, V. et al. Tacrolimus and sirolimus have distinct effects on insulin signaling in male and female rats. Transl Res. 163, 221–231 (2014).

    CAS  PubMed  Google Scholar 

  89. Fraenkel, M. et al. mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes 57, 945–957 (2008).

    CAS  PubMed  Google Scholar 

  90. Taniguchi, C. M., Emanuelli, B. & Kahn, C. R. Critical nodes in signalling pathways: insights into insulin action. Nat. Rev. Mol. Cell Biol. 7, 85–96 (2006).

    CAS  PubMed  Google Scholar 

  91. Vanrenterghem, Y. et al. Belatacept-based regimens are associated with improved cardiovascular and metabolic risk factors compared with cyclosporine in kidney transplant recipients (BENEFIT and BENEFIT-EXT studies). Transplantation 91, 976–983 (2011).

    CAS  PubMed  Google Scholar 

  92. Delgado-Borrego, A. et al. Hepatitis C virus is independently associated with increased insulin resistance after liver transplantation. Transplantation 77, 703–710 (2004).

    PubMed  Google Scholar 

  93. Fabrizi, F. et al. Post-transplant diabetes mellitus and HCV seropositive status after renal transplantation: meta-analysis of clinical studies. Am. J. Transplant. 5, 2433–2440 (2005).

    PubMed  Google Scholar 

  94. Hjelmesaeth, J. et al. Asymptomatic cytomegalovirus infection is associated with increased risk of new-onset diabetes mellitus and impaired insulin release after renal transplantation. Diabetologia 47, 1550–1556 (2004).

    CAS  PubMed  Google Scholar 

  95. Einollahi, B., Motalebi, M., Salesi, M., Ebrahimi, M. & Taghipour, M. The impact of cytomegalovirus infection on new-onset diabetes mellitus after kidney transplantation: a review on current findings. J. Nephropathol. 3, 139–148 (2014).

    PubMed  PubMed Central  Google Scholar 

  96. Valderhaug, T. G. et al. Reduced incidence of new-onset posttransplantation diabetes mellitus during the last decade. Transplantation 84, 1125–1130 (2007).

    PubMed  Google Scholar 

  97. Kasiske, B. L., Snyder, J. J., Gilbertson, D. & Matas, A. J. Diabetes mellitus after kidney transplantation in the United States. Am. J. Transplant. 3, 178–185 (2003).

    PubMed  Google Scholar 

  98. Cosio, F. G. et al. New onset hyperglycemia and diabetes are associated with increased cardiovascular risk after kidney transplantation. Kidney Int. 67, 2415–2421 (2005).

    PubMed  Google Scholar 

  99. Valderhaug, T. G. et al. Early posttransplantation hyperglycemia in kidney transplant recipients is associated with overall long-term graft losses. Transplantation 94, 714–720 (2012).

    CAS  PubMed  Google Scholar 

  100. Nieuwenhuis, M. G. & Kirkels, J. H. Predictability and other aspects of post-transplant diabetes mellitus in heart transplant recipients. J. Heart Lung Transplant. 20, 703–708 (2001).

    CAS  PubMed  Google Scholar 

  101. Depczynski, B., Daly, B., Campbell, L. V., Chisholm, D. J. & Keogh, A. Predicting the occurrence of diabetes mellitus in recipients of heart transplants. Diabet Med. 17, 15–19 (2000).

    CAS  PubMed  Google Scholar 

  102. Ye, X. et al. Risk factors for development of new-onset diabetes mellitus in adult heart transplant recipients. Transplantation 89, 1526–1532 (2010).

    PubMed  Google Scholar 

  103. Sehgal, S. et al. New-onset diabetes mellitus after heart transplantation in children - Incidence and risk factors. Pediatr. Transplant. 20, 963–969 (2016).

    PubMed  Google Scholar 

  104. Foroutan, F. et al. Predictors of 1-year mortality in heart transplant recipients: a systematic review and meta-analysis. Heart 104, 151–160 (2018).

    CAS  PubMed  Google Scholar 

  105. Stehlik, J. et al. The Registry of the International Society for Heart and Lung Transplantation: twenty-seventh official adult heart transplant report—2010. J. Heart Lung Transplant. 29, 1089–1103 (2010).

    PubMed  Google Scholar 

  106. Linder, K. E. et al. Evaluation of posttransplantation diabetes mellitus after liver transplantation: assessment of insulin administration as a risk factor. Ann. Pharmacother. 50, 369–375 (2016).

    CAS  PubMed  Google Scholar 

  107. Moon, J. I., Barbeito, R., Faradji, R. N., Gaynor, J. J. & Tzakis, A. G. Negative impact of new-onset diabetes mellitus on patient and graft survival after liver transplantation: long-term follow up. Transplantation 82, 1625–1628 (2006).

    PubMed  Google Scholar 

  108. Xue, M. et al. Effect of interleukin-2 receptor antagonists on new-onset diabetes after liver transplantation: a retrospective cohort study. J. Diabetes 8, 579–587 (2016).

    CAS  PubMed  Google Scholar 

  109. Xue, M. et al. Donor liver steatosis: a risk factor for early new-onset diabetes after liver transplantation. J. Diabetes Investig. 8, 181–187 (2017).

    PubMed  Google Scholar 

  110. Stepanova, M. et al. Risk of de novo post-transplant type 2 diabetes in patients undergoing liver transplant for non-alcoholic steatohepatitis. BMC Gastroenterol. 15, 175 (2015).

    PubMed  PubMed Central  Google Scholar 

  111. Ling, Q. et al. New-onset diabetes after liver transplantation: a national report from China Liver Transplant Registry. Liver Int. 36, 705–712 (2016).

    PubMed  Google Scholar 

  112. Honda, M. et al. Incidence and risk factors for new-onset diabetes in living-donor liver transplant recipients. Clin. Transplant. 27, 426–435 (2013).

    PubMed  Google Scholar 

  113. Liu, F. C., Lin, J. R., Chen, H. P., Tsai, Y. F. & Yu, H. P. Prevalence, predictive factors, and survival outcome of new-onset diabetes after liver transplantation: a population-based cohort study. Medicine (Baltimore) 95, e3829 (2016).

    Google Scholar 

  114. Morbitzer, K. A. et al. The impact of diabetes mellitus and glycemic control on clinical outcomes following liver transplant for hepatitis C. Clin. Transplant. 28, 862–868 (2014).

    CAS  PubMed  Google Scholar 

  115. Lv, C. et al. New-onset diabetes after liver transplantation and its impact on complications and patient survival. J. Diabetes 7, 881–890 (2015).

    CAS  PubMed  Google Scholar 

  116. Hackman, K. L., Snell, G. I. & Bach, L. A. Prevalence and predictors of diabetes after lung transplantation: a prospective, longitudinal study. Diabetes Care 37, 2919–2925 (2014).

    PubMed  Google Scholar 

  117. Belle-van Meerkerk, G. et al. Diabetes before and after lung transplantation in patients with cystic fibrosis and other lung diseases. Diabet. Med. 29, e159–e162 (2012).

    CAS  PubMed  Google Scholar 

  118. Ollech, J. E. et al. Post-transplant diabetes mellitus in lung transplant recipients: incidence and risk factors. Eur. J. Cardiothorac. Surg. 33, 844–848 (2008).

    PubMed  Google Scholar 

  119. Savioli, G. et al. Early development of metabolic syndrome in patients subjected to lung transplantation. Clin. Transplant. 27, E237–E243 (2013).

    PubMed  Google Scholar 

  120. Yusen, R. D. et al. The Registry of the International Society for Heart and Lung Transplantation: thirty-third adult lung and heart-lung transplant report-2016; focus theme: primary diagnostic indications for transplant. J. Heart Lung Transplant. 35, 1170–1184 (2016).

    PubMed  Google Scholar 

  121. Klomjit, N., Mehrnia, A., Sampaio, M. & Bunnapradist, S. Impact of diabetes mellitus on survival outcome of lung transplant recipients: an analysis of OPTN/UNOS data. Clin. Transpl. 31, 43–55 (2015).

    PubMed  Google Scholar 

  122. Hackman, K. L., Bailey, M. J., Snell, G. I. & Bach, L. A. Diabetes is a major risk factor for mortality after lung transplantation. Am. J. Transplant. 14, 438–445 (2014).

    CAS  PubMed  Google Scholar 

  123. Bergrem, H. A. et al. Glucose tolerance before and after renal transplantation. Nephrol. Dial. Transplant. 25, 985–992 (2010).

    CAS  PubMed  Google Scholar 

  124. Hornum, M., Lindahl, J. P., von Zur-Mühlen, B., Jenssen, T. & Feldt-Rasmussen, B. Diagnosis, management and treatment of glucometabolic disorders emerging after kidney transplantation: a position statement from the Nordic Transplantation Societies. Transpl. Int. 26, 1049–1060 (2013).

    PubMed  Google Scholar 

  125. Costanzo, M. R. et al. The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. J. Heart Lung Transplant. 29, 914–956 (2010).

    PubMed  Google Scholar 

  126. Wanner, C. & Tonelli, M. & The Kidney Disease: Improving Global Outcomes Lipid Guideline Development Work Group Members. KDIGO Clinical Practice Guideline for lipid management in CKD: summary of recommendation statements and clinical approach to the patient. Kidney Int. 85, 1303–1309 (2014).

    CAS  PubMed  Google Scholar 

  127. Kahn, S. E., Cooper, M. E. & Del Prato, S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet 383, 1068–1083 (2014).

    CAS  PubMed  Google Scholar 

  128. Hecking, M. et al. Early basal insulin therapy decreases new-onset diabetes after renal transplantation. J. Am. Soc. Nephrol. 23, 739–749 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Werzowa, J. et al. Vildagliptin and pioglitazone in patients with impaired glucose tolerance after kidney transplantation: a randomized, placebo-controlled clinical trial. Transplantation 95, 456–462 (2013).

    CAS  PubMed  Google Scholar 

  130. Lane, J. T. et al. Sitagliptin therapy in kidney transplant recipients with new-onset diabetes after transplantation. Transplantation 92, e56–e57 (2011).

    PubMed  Google Scholar 

  131. Strom Halden, T. A., Asberg, A., Vik, K., Hartmann, A. & Jenssen, T. Short-term efficacy and safety of sitagliptin treatment in long-term stable renal recipients with new-onset diabetes after transplantation. Nephrol. Dial. Transplant. 29, 926–933 (2014).

    CAS  PubMed  Google Scholar 

  132. Alnasrallah, B., Pilmore, H. & Manley, P. Protocol for a pilot randomised controlled trial of metformin in pre-diabetes after kidney transplantation: the transplantation and diabetes (Transdiab) study. BMJ Open 7, e016813 (2017).

    PubMed  PubMed Central  Google Scholar 

  133. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03157414 (2018).

  134. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03113110 (2017).

  135. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02233491 (2017).

  136. Luan, F. L., Steffick, D. E. & Ojo, A. O. New-onset diabetes mellitus in kidney transplant recipients discharged on steroid-free immunosuppression. Transplantation 91, 334–341 (2011).

    CAS  PubMed  Google Scholar 

  137. Rizzari, M. D. et al. Ten-year outcome after rapid discontinuation of prednisone in adult primary kidney transplantation. Clin. J. Am. Soc. Nephrol. 7, 494–503 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Pirsch, J. D. et al. New-onset diabetes after transplantation: results from a double-blind early corticosteroid withdrawal trial. Am. J. Transplant. 15, 1982–1990 (2015).

    CAS  PubMed  Google Scholar 

  139. Woodle, E. S. et al. A prospective, randomized, double-blind, placebo-controlled multicenter trial comparing early (7 day) corticosteroid cessation versus long-term, low-dose corticosteroid therapy. Ann. Surg. 248, 564–577 (2008).

    PubMed  Google Scholar 

  140. Yates, C. J., Fourlanos, S., Colman, P. G. & Cohney, S. J. Divided dosing reduces prednisolone-induced hyperglycaemia and glycaemic variability: a randomized trial after kidney transplantation. Nephrol. Dial. Transplant. 29, 698–705 (2014).

    CAS  PubMed  Google Scholar 

  141. Handisurya, A. et al. Conversion from tacrolimus to cyclosporine A improves glucose tolerance in HCV-positive renal transplant recipients. PLOS ONE 11, e0145319 (2016).

    PubMed  PubMed Central  Google Scholar 

  142. Wissing, K. M. et al. Prospective randomized study of conversion from tacrolimus to cyclosporine A to improve glucose metabolism in patients with posttransplant diabetes mellitus after renal transplantation. Am. J. Transplant. 18, 1726–1734 (2018).

    CAS  PubMed  Google Scholar 

  143. Andreassen, A. K. et al. Everolimus initiation with early calcineurin inhibitor withdrawal in de novo heart transplant recipients: three-year results from the randomized SCHEDULE study. Am. J. Transplant. 16, 1238–1247 (2016).

    CAS  PubMed  Google Scholar 

  144. Ar’Rajab, A. & Ahren, B. Prevention of hyperglycemia improves the long-term result of islet transplantation in streptozotocin-diabetic rats. Pancreas 7, 435–442 (1992).

    PubMed  Google Scholar 

  145. Koh, A. et al. Insulin-heparin infusions peritransplant substantially improve single-donor clinical islet transplant success. Transplantation 89, 465–471 (2010).

    CAS  PubMed  Google Scholar 

  146. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01683331 (2018).

  147. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03507829 (2018).

  148. Gerstein, H. C. et al. Basal insulin and cardiovascular and other outcomes in dysglycemia. N. Engl. J. Med. 367, 319–328 (2012).

    CAS  PubMed  Google Scholar 

  149. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352, 837–853 (1998).

    Google Scholar 

  150. Burroughs, T. E. et al. Diabetic complications associated with new-onset diabetes mellitus in renal transplant recipients. Transplantation 83, 1027–1034 (2007).

    PubMed  Google Scholar 

  151. Zoungas, S. et al. Severe hypoglycemia and risks of vascular events and death. N. Engl. J. Med. 363, 1410–1418 (2010).

    CAS  PubMed  Google Scholar 

  152. Gerstein, H. C. et al. Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA 286, 421–426 (2001).

    CAS  PubMed  Google Scholar 

  153. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 352, 854–865 (1998).

    Google Scholar 

  154. Boussageon, R. et al. Are concomitant treatments confounding factors in randomized controlled trials on intensive blood-glucose control in type 2 diabetes? a systematic review. BMC Med. Res. Methodol. 13, 107 (2013).

    PubMed  PubMed Central  Google Scholar 

  155. Hemmingsen, B. et al. Comparison of metformin and insulin versus insulin alone for type 2 diabetes: systematic review of randomised clinical trials with meta-analyses and trial sequential analyses. BMJ 344, e1771 (2012).

    PubMed  Google Scholar 

  156. Sharif, A. Should metformin be our antiglycemic agent of choice post-transplantation? Am. J. Transplant. 11, 1376–1381 (2011).

    CAS  PubMed  Google Scholar 

  157. Dichtwald, S., Weinbroum, A. A., Sorkine, P., Ekstein, M. P. & Dahan, E. Metformin-associated lactic acidosis following acute kidney injury. Efficacious treatment with continuous renal replacement therapy. Diabet. Med. 29, 245–250 (2012).

    CAS  PubMed  Google Scholar 

  158. Turk, T. et al. Repaglinide in the management of new-onset diabetes mellitus after renal transplantation. Am. J. Transplant. 6, 842–846 (2006).

    CAS  PubMed  Google Scholar 

  159. Voytovich, M. H. et al. Nateglinide improves postprandial hyperglycemia and insulin secretion in renal transplant recipients. Clin. Transplant. 21, 246–251 (2007).

    PubMed  Google Scholar 

  160. Haidinger, M. et al. Efficacy and safety of vildagliptin in new-onset diabetes after kidney transplantation — a randomized, double-blind, placebo-controlled trial. Am. J. Transplant. 14, 115–123 (2014).

    CAS  PubMed  Google Scholar 

  161. Green, J. B. et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 373, 232–242 (2015).

    CAS  PubMed  Google Scholar 

  162. Luther, P. & Baldwin, D. Jr. Pioglitazone in the management of diabetes mellitus after transplantation. Am. J. Transplant. 4, 2135–2138 (2004).

    CAS  PubMed  Google Scholar 

  163. Lo, C. et al. Glucose-lowering agents for treating pre-existing and new-onset diabetes in kidney transplant recipients. Cochrane Database Syst. Rev. 2, CD009966 (2017).

    PubMed  Google Scholar 

  164. Conte, C. & Secchi, A. Post-transplantation diabetes in kidney transplant recipients: an update on management and prevention. Acta Diabetol. 55, 763–779 (2018).

    PubMed  Google Scholar 

  165. Ojo, A. O. et al. Chronic renal failure after transplantation of a nonrenal organ. N. Engl. J. Med. 349, 931–940 (2003).

    CAS  PubMed  Google Scholar 

  166. Gaede, P., Lund-Andersen, H., Parving, H. H. & Pedersen, O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N. Engl. J. Med. 358, 580–591 (2008).

    CAS  PubMed  Google Scholar 

  167. Gaede, P. et al. Years of life gained by multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: 21 years follow-up on the Steno-2 randomised trial. Diabetologia 59, 2298–2307 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Marso, S. P. et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 375, 1834–1844 (2016).

    CAS  PubMed  Google Scholar 

  169. Marso, S. P. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 375, 311–322 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Neal, B. et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med. 377, 644–657 (2017).

    CAS  PubMed  Google Scholar 

  171. Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 373, 2117–2128 (2015).

    CAS  PubMed  Google Scholar 

  172. Wiviott, S. D. et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa1812389 (2018).

    Article  PubMed  Google Scholar 

  173. Heerspink, H. J. et al. Canagliflozin slows progression of renal function decline independently of glycemic effects. J. Am. Soc. Nephrol. 28, 368–375 (2017).

    CAS  PubMed  Google Scholar 

  174. Wanner, C. et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N. Engl. J. Med. 375, 323–334 (2016).

    CAS  PubMed  Google Scholar 

  175. Dubois-Laforgue, D., Boutboul, D., Levy, D. J., Joly, D. & Timsit, J. Severe acute renal failure in patients treated with glucagon-like peptide-1 receptor agonists. Diabetes Res. Clin. Pract. 103, e53–e55 (2014).

    CAS  PubMed  Google Scholar 

  176. Jabbour, S. et al. Dapagliflozin in patients with type 2 diabetes mellitus: a pooled analysis of safety data from phase IIb/III clinical trials. Diabetes Obes. Metab. 20, 620–628 (2018).

    CAS  PubMed  Google Scholar 

  177. Yale, J. F. et al. Efficacy and safety of canagliflozin in subjects with type 2 diabetes and chronic kidney disease. Diabetes Obes. Metab. 15, 463–473 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Christians, U., Jacobsen, W., Benet, L. Z. & Lampen, A. Mechanisms of clinically relevant drug interactions associated with tacrolimus. Clin. Pharmacokinet. 41, 813–851 (2002).

    CAS  PubMed  Google Scholar 

  179. Dai, Y. et al. Effect of CYP3A5 polymorphism on tacrolimus metabolic clearance in vitro. Drug Metab. Dispos. 34, 836–847 (2006).

    CAS  PubMed  Google Scholar 

  180. Wallia, A., Illuri, V. & Molitch, M. E. Diabetes care after transplant: definitions, risk factors, and clinical management. Med. Clin. North Am. 100, 535–550 (2016).

    PubMed  Google Scholar 

  181. Wiggins, B. S. et al. Recommendations for management of clinically significant drug-drug interactions with statins and select agents used in patients with cardiovascular disease: a scientific statement from the american heart association. Circulation 134, e468–e495 (2016).

    Google Scholar 

  182. Chang, S. H. et al. Association between use of non-vitamin K oral anticoagulants with and without concurrent medications and risk of major bleeding in nonvalvular atrial fibrillation. JAMA 318, 1250–1259 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Wannhoff, A., Weiss, K. H., Schemmer, P., Stremmel, W. & Gotthardt, D. N. Increased levels of rivaroxaban in patients after liver transplantation treated with cyclosporine A. Transplantation 98, e12–e13 (2014).

    PubMed  Google Scholar 

  184. Poulsen, B. K., Grove, E. L. & Husted, S. E. New oral anticoagulants: a review of the literature with particular emphasis on patients with impaired renal function. Drugs 72, 1739–1753 (2012).

    CAS  PubMed  Google Scholar 

  185. Kothari, J., Nash, M., Zaltzman, J. & Ramesh Prasad, G. V. Diltiazem use in tacrolimus-treated renal transplant recipients. J. Clin. Pharm. Ther. 29, 425–430 (2004).

    CAS  PubMed  Google Scholar 

  186. Zhou, S. F., Xue, C. C., Yu, X. Q., Li, C. & Wang, G. Clinically important drug interactions potentially involving mechanism-based inhibition of cytochrome P450 3A4 and the role of therapeutic drug monitoring. Ther. Drug Monit. 29, 687–710 (2007).

    CAS  PubMed  Google Scholar 

  187. Zimmerman, J. J. Exposure-response relationships and drug interactions of sirolimus. AAPS J. 6, e28 (2004).

    PubMed  Google Scholar 

  188. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01928199 (2018).

  189. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01680185 (2018).

  190. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02095418 (2014).

  191. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03304626 (2018).

  192. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02083991 (2016).

  193. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01560572 (2015).

  194. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01265537 (2016).

  195. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02316938 (2018).

  196. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02036554 (2014).

  197. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01875224 (2013).

  198. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01431430 (2017).

  199. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01291030 (2017).

Download references

Acknowledgements

Reviewer information

Nature Reviews Endocrinology thanks L. Rostaing, A. Secchi and other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to researching the data for the article, discussion of content, writing the article and reviewing and/or editing the manuscript.

Corresponding author

Correspondence to Trond Jenssen.

Ethics declarations

Competing interests

T.J. has received lecture honoraria from AstraZeneca, Boehringer Ingelheim, Merck Sharpe and Dohme and Novo Nordisk. He also has received an unrestricted research grant from Boehringer Ingelheim Norway. A.H. has received lecture honoraria from AstraZeneca.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jenssen, T., Hartmann, A. Post-transplant diabetes mellitus in patients with solid organ transplants. Nat Rev Endocrinol 15, 172–188 (2019). https://doi.org/10.1038/s41574-018-0137-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-018-0137-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing