Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Melatonin in type 2 diabetes mellitus and obesity

Abstract

Despite considerable advances in the past few years, obesity and type 2 diabetes mellitus (T2DM) remain two major challenges for public health systems globally. In the past 9 years, genome-wide association studies (GWAS) have established a major role for genetic variation within the MTNR1B locus in regulating fasting plasma levels of glucose and in affecting the risk of T2DM. This discovery generated a major interest in the melatonergic system, in particular the melatonin MT2 receptor (which is encoded by MTNR1B). In this Review, we discuss the effect of melatonin and its receptors on glucose homeostasis, obesity and T2DM. Preclinical and clinical post-GWAS evidence of frequent and rare variants of the MTNR1B locus confirmed its importance in regulating glucose homeostasis and T2DM risk with minor effects on obesity. However, these studies did not solve the question of whether melatonin is beneficial or detrimental, an issue that will be discussed in the context of the peculiarities of the melatonergic system. Melatonin receptors might have therapeutic potential as they belong to the highly druggable G protein-coupled receptor superfamily. Clarifying the precise role of melatonin and its receptors on glucose homeostasis is urgent, as melatonin is widely used for other indications, either as a prescribed medication or as a supplement without medical prescription, in many countries in Europe and in the USA.

Key points

  • The rs10830963 single-nucleotide polymorphism (SNP) in the MTNR1B locus is associated with increased fasting plasma glucose levels and impaired insulin secretion, as well as increased risk of type 2 diabetes mellitus (T2DM) and gestational diabetes mellitus.

  • Obesity seems to not be associated with the rs10830963 SNP in adults but might have a role in fetal birth weight.

  • The phenotype of rs10830963 risk allele carriers includes increased MTNR1B mRNA expression, altered melatonin secretion and possibly further effects associated with the enhancer activity of the region surrounding the rs10830963 SNP.

  • Loss-of-function of rare MT2 receptor variants, in particular of melatonin-induced Gi1 and Gz and spontaneous β-arrestin 2 recruitment, is associated with increased risk of T2DM.

  • Lifestyle recommendations are emerging for rs10830963 risk allele carriers and further clinical evidence has to be gathered to evaluate the prescription of melatonin for patients with T2DM.

  • The wide use of melatonin by millions of people, both as a supplement and as a medicine, calls for a rapid assessment of the effect of melatonin on glucose homeostasis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Metabolic processes influenced by melatonin signalling in peripheral and central tissues.
Fig. 2: Melatonin MT2 receptor mutants and signalling defects associated with type 2 diabetes mellitus.

References

  1. 1.

    Jockers, R. et al. Update on melatonin receptors: IUPHAR review 20. Br. J. Pharmacol. 173, 2702–2725 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Bouatia-Naji, N. et al. A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat. Genet. 41, 89–94 (2009).

    CAS  PubMed  Google Scholar 

  3. 3.

    Lyssenko, V. et al. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat. Genet. 41, 82–88 (2009).

    CAS  PubMed  Google Scholar 

  4. 4.

    Prokopenko, I. et al. Variants in MTNR1B influence fasting glucose levels. Nat. Genet. 41, 77–81 (2009).

    CAS  PubMed  Google Scholar 

  5. 5.

    Zisapel, N. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br. J. Pharmacol. 175, 3190–3199 (2018).

    CAS  PubMed Central  Google Scholar 

  6. 6.

    Cipolla-Neto, J., Amaral, F. G., Afeche, S. C., Tan, D. X. & Reiter, R. J. Melatonin, energy metabolism, and obesity: a review. J. Pineal Res. 56, 371–381 (2014).

    CAS  PubMed  Google Scholar 

  7. 7.

    Manchester, L. C. et al. Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J. Pineal Res. 59, 403–419 (2015).

    CAS  PubMed  Google Scholar 

  8. 8.

    Bernard, M. et al. Melatonin synthesis pathway: circadian regulation of the genes encoding the key enzymes in the chicken pineal gland and retina. Reprod. Nutr. Dev. 39, 325–334 (1999).

    CAS  PubMed  Google Scholar 

  9. 9.

    Arendt, J. Melatonin and the pineal gland: influence on mammalian seasonal and circadian physiology. Rev. Reprod. 3, 13–22 (1998).

    CAS  PubMed  Google Scholar 

  10. 10.

    Tricoire, H., Locatelli, A., Chemineau, P. & Malpaux, B. Melatonin enters the cerebrospinal fluid through the pineal recess. Endocrinology 143, 84–90 (2002).

    CAS  PubMed  Google Scholar 

  11. 11.

    Legros, C., Chesneau, D., Boutin, J. A., Barc, C. & Malpaux, B. Melatonin from cerebrospinal fluid but not from blood reaches sheep cerebral tissues under physiological conditions. J. Neuroendocrinol. 26, 151–163 (2014).

    CAS  PubMed  Google Scholar 

  12. 12.

    Pevet, P. & Challet, E. Melatonin: both master clock output and internal time-giver in the circadian clocks network. J. Physiol. Paris 105, 170–182 (2011).

    PubMed  Google Scholar 

  13. 13.

    Pevet, P., Klosen, P. & Felder-Schmittbuhl, M. P. The hormone melatonin: animal studies. Best Pract. Res. Clin. Endocrinol. Metab. 31, 547–559 (2017).

    CAS  PubMed  Google Scholar 

  14. 14.

    Zlotos, D. P., Jockers, R., Cecon, E., Rivara, S. & Witt-Enderby, P. A. MT1 and MT2 melatonin receptors: ligands, models, oligomers, and therapeutic potential. J. Med. Chem. 57, 3161–3185 (2014).

    CAS  PubMed  Google Scholar 

  15. 15.

    Baba, K. et al. Heteromeric MT1/MT2 melatonin receptors modulate photoreceptor function. Sci. Signal. 6, ra89 (2013).

    PubMed  Google Scholar 

  16. 16.

    Conti, A. et al. Evidence for melatonin synthesis in mouse and human bone marrow cells. J. Pineal Res. 28, 193–202 (2000).

    CAS  PubMed  Google Scholar 

  17. 17.

    Markus, R. P., Fernandes, P. A., Kinker, G. S., da Silveira Cruz-Machado, S. & Marcola, M. Immune-pineal axis — acute inflammatory responses coordinate melatonin synthesis by pinealocytes and phagocytes. Br. J. Pharmacol. 175, 3239–3250 (2017).

    Google Scholar 

  18. 18.

    Yi, W. J. & Kim, T. S. Melatonin protects mice against stress-induced inflammation through enhancement of M2 macrophage polarization. Int. Immunopharmacol. 48, 146–158 (2017).

    CAS  PubMed  Google Scholar 

  19. 19.

    Bertrand, P. P., Polglaze, K. E., Bertrand, R. L., Sandow, S. L. & Pozo, M. J. Detection of melatonin production from the intestinal epithelium using electrochemical methods. Curr. Pharm. Des. 20, 4802–4806 (2014).

    CAS  PubMed  Google Scholar 

  20. 20.

    Chen, C. Q., Fichna, J., Bashashati, M., Li, Y. Y. & Storr, M. Distribution, function and physiological role of melatonin in the lower gut. World J. Gastroenterol. 17, 3888–3898 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Suofu, Y. et al. Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc. Natl Acad. Sci. USA 114, E7997–E8006 (2017).

    CAS  PubMed  Google Scholar 

  22. 22.

    He, C. et al. Mitochondria synthesize melatonin to ameliorate its function and improve mice oocyte’s quality under in vitro conditions. Int. J. Mol. Sci. 17, 939 (2016).

    PubMed Central  Google Scholar 

  23. 23.

    Tan, D. X. et al. Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes. J. Pineal Res. 54, 127–138 (2013).

    CAS  PubMed  Google Scholar 

  24. 24.

    Dubocovich, M. L. et al. International union of basic and clinical pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol. Rev. 62, 343–380 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Bondi, C. D. et al. MT1 melatonin receptor internalization underlies melatonin-induced morphologic changes in Chinese hamster ovary cells and these processes are dependent on Gi proteins, MEK 1/2 and microtubule modulation. J. Pineal Res. 44, 288–298 (2008).

    CAS  PubMed  Google Scholar 

  26. 26.

    Hong, L. J. et al. Valproic acid influences MTNR1A intracellular trafficking and signaling in a beta-arrestin 2-dependent manner. Mol. Neurobiol. 53, 1237–1246 (2016).

    CAS  PubMed  Google Scholar 

  27. 27.

    Levoye, A. et al. The orphan GPR50 receptor specifically inhibits MT(1) melatonin receptor function through heterodimerization. EMBO J. 25, 3012–3023 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Benleulmi-Chaachoua, A. et al. Protein interactome mining defines melatonin MT1 receptors as integral component of presynaptic protein complexes of neurons. J. Pineal Res. 60, 95–108 (2016).

    CAS  PubMed  Google Scholar 

  29. 29.

    Guillaume, J. L. et al. The PDZ protein mupp1 promotes Gi coupling and signaling of the Mt1 melatonin receptor. J. Biol. Chem. 283, 16762–16771 (2008).

    CAS  PubMed  Google Scholar 

  30. 30.

    Maurice, P. et al. Molecular organization and dynamics of the melatonin MT receptor/RGS20/G(i) protein complex reveal asymmetry of receptor dimers for RGS and G(i) coupling. EMBO J. 29, 3646–3659 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Cecon, E., Oishi, A. & Jockers, R. Melatonin receptors: molecular pharmacology and signalling in the context of system bias. Br. J. Pharmacol. 175, 3263–3280 (2017).

    Google Scholar 

  32. 32.

    Oishi, A., Cecon, E. & Jockers, R. Melatonin receptor signaling: impact of receptor oligomerization on receptor function. Int. Rev. Cell. Mol. Biol. 338, 59–77 (2018).

    PubMed  Google Scholar 

  33. 33.

    Chen, L. et al. Melatonin receptor type 1 signals to extracellular signal-regulated kinase 1 and 2 via Gi and Gs dually coupled pathways in HEK-293 cells. Biochemistry 53, 2827–2839 (2014).

    CAS  PubMed  Google Scholar 

  34. 34.

    Chan, A. S. et al. Melatonin mt1 and MT2 receptors stimulate c-Jun N-terminal kinase via pertussis toxin-sensitive and -insensitive G proteins. Cell. Signal. 14, 249–257 (2002).

  35. 35.

    Sack, R. L., Brandes, R. W., Kendall, A. R. & Lewy, A. J. Entrainment of free-running circadian rhythms by melatonin in blind people. N. Engl. J. Med. 343, 1070–1077 (2000).

    CAS  PubMed  Google Scholar 

  36. 36.

    Isherwood, C. M., Van der Veen, D. R., Johnston, J. D. & Skene, D. J. Twenty-four-hour rhythmicity of circulating metabolites: effect of body mass and type 2 diabetes. FASEB J. 31, 5557–5567 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Qian, J. & Scheer, F. Circadian system and glucose metabolism: implications for physiology and disease. Trends Endocrinol. Metab. 27, 282–293 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Bass, J. in A Time for Metabolism and Hormones (eds Sassone-Corsi, P. & Christen, Y.) 25–32 (Springer International Publishing, 2016).

  39. 39.

    von Gall, C., Weaver, D. R., Kock, M., Korf, H. W. & Stehle, J. H. Melatonin limits transcriptional impact of phosphoCREB in the mouse SCN via the Mel1a receptor. Neuroreport 11, 1803–1807 (2000).

    Google Scholar 

  40. 40.

    Mc Arthur, A., Hunt, A. & Gillette, M. Melatonin action and signal transduction in the rat suprachiasmatic circadian clock: activation of protein kinase C at dusk and dawn. Endocrinology 138, 627–634 (1997).

    Google Scholar 

  41. 41.

    Hunt, A. E., AlGhoul, W. M., Gillette, M. U. & Dubocovich, M. L. Activation of MT2 melatonin receptors in rat suprachiasmatic nucleus phase advances the circadian clock. Amer. J. Physiol. Cell Physiol. 280, C110–C118 (2001).

    CAS  Google Scholar 

  42. 42.

    Nelson, C. S., Marino, J. L. & Allen, C. N. Melatonin receptors activate heteromeric G-protein coupled Kir3 channels. Neuroreport 7, 717–720 (1996).

    CAS  PubMed  Google Scholar 

  43. 43.

    Hablitz, L. M. et al. GIRK channels mediate the nonphotic effects of exogenous melatonin. J. Neurosci. 35, 14957–14965 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Pfeffer, M., Rauch, A., Korf, H. W. & von Gall, C. The endogenous melatonin (MT) signal facilitates reentrainment of the circadian system to light-induced phase advances by acting upon MT2 receptors. Chronobiol. Int. 29, 415–429 (2012).

    CAS  PubMed  Google Scholar 

  45. 45.

    Nagy, A. D. et al. Melatonin adjusts the expression pattern of clock genes in the suprachiasmatic nucleus and induces antidepressant-like effect in a mouse model of seasonal affective disorder. Chronobiol. Int. 32, 447–457 (2015).

    CAS  PubMed  Google Scholar 

  46. 46.

    Kandalepas, P. C., Mitchell, J. W. & Gillette, M. U. Melatonin signal transduction pathways require E-box-mediated transcription of Per1 and Per2 to reset the SCN clock at dusk. PLOS ONE 11, e0157824 (2016).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Ha, E. et al. Melatonin stimulates glucose transport via insulin receptor substrate-1/phosphatidylinositol 3-kinase pathway in C2C12 murine skeletal muscle cells. J. Pineal Res. 41, 67–72 (2006).

    CAS  PubMed  Google Scholar 

  48. 48.

    Poon, A. M., Choy, E. H. & Pang, S. F. Modulation of blood glucose by melatonin: a direct action on melatonin receptors in mouse hepatocytes. Biol. Signals Recept. 10, 367–379 (2001).

    CAS  PubMed  Google Scholar 

  49. 49.

    Sauer, L. A., Dauchy, R. T. & Blask, D. E. Melatonin inhibits fatty acid transport in inguinal fat pads of hepatoma 7288CTC-bearing and normal Buffalo rats via receptor-mediated signal transduction. Life Sci. 68, 2835–2844 (2001).

    CAS  PubMed  Google Scholar 

  50. 50.

    Muhlbauer, E., Albrecht, E., Bazwinsky-Wutschke, I. & Peschke, E. Melatonin influences insulin secretion primarily via MT(1) receptors in rat insulinoma cells (INS-1) and mouse pancreatic islets. J. Pineal Res. 52, 446–459 (2012).

    PubMed  Google Scholar 

  51. 51.

    Zalatan, F., Krause, J. A. & Blask, D. E. Inhibition of isoproterenol-induced lipolysis in rat inguinal adipocytes in vitro by physiological melatonin via a receptor-mediated mechanism. Endocrinology 142, 3783–3790 (2001).

    CAS  PubMed  Google Scholar 

  52. 52.

    Stumpf, I., Muhlbauer, E. & Peschke, E. Involvement of the cGMP pathway in mediating the insulin-inhibitory effect of melatonin in pancreatic beta-cells. J. Pineal Res. 45, 318–327 (2008).

    CAS  PubMed  Google Scholar 

  53. 53.

    Kemp, D. M., Ubeda, M. & Habener, J. F. Identification and functional characterization of inelatonin Mel 1a receptors in pancreatic beta cells: potential role in incretin-mediated cell function by sensitization of cAMP signaling. Mol. Cell. Endocrinol. 191, 157–166 (2002).

    CAS  PubMed  Google Scholar 

  54. 54.

    Shieh, J. M., Wu, H. T., Cheng, K. C. & Cheng, J. T. Melatonin ameliorates high fat diet-induced diabetes and stimulates glycogen synthesis via a PKCzeta-Akt-GSK3beta pathway in hepatic cells. J. Pineal Res. 47, 339–344 (2009).

    CAS  PubMed  Google Scholar 

  55. 55.

    Owino, S. et al. Nocturnal activation of melatonin receptor type 1 signaling modulates diurnal insulin sensitivity via regulation of PI3K activity. J. Pineal Res. 64, e12462 (2018).

    Google Scholar 

  56. 56.

    Tuomi, T. et al. Increased melatonin signaling is a risk factor for type 2 diabetes. Cell Metab. 23, 1067–1077 (2016).

    CAS  PubMed  Google Scholar 

  57. 57.

    Brydon, L., Petit, L., Delagrange, P., Strosberg, A. D. & Jockers, R. Functional expression ofmt2 (mel1b) melatonin receptors in human paz6 adipocytes. Endocrinology 142, 4264–4271 (2001).

    CAS  PubMed  Google Scholar 

  58. 58.

    Karamitri, A., Renault, N., Clement, N., Guillaume, J. L. & Jockers, R. Minireview: toward the establishment of a link between melatonin and glucose homeostasis: association of melatonin MT2 receptor variants with type 2 diabetes. Mol. Endocrinol. 27, 1217–1233 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Peschke, E., Bahr, I. & Muhlbauer, E. Melatonin and pancreatic islets: interrelationships between melatonin, insulin and glucagon. Int. J. Mol. Sci. 14, 6981–7015 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Bahr, I., Muhlbauer, E., Schucht, H. & Peschke, E. Melatonin stimulates glucagon secretion in vitro and in vivo. J. Pineal Res. 50, 336–344 (2011).

    PubMed  Google Scholar 

  61. 61.

    Ramracheya, R. D. et al. Function and expression of melatonin receptors on human pancreatic islets. J. Pineal Res. 44, 273–279 (2008).

    CAS  PubMed  Google Scholar 

  62. 62.

    Costes, S., Boss, M., Thomas, A. P. & Matveyenko, A. V. Activation of melatonin signaling promotes beta-cell survival and function. Mol. Endocrinol. 29, 682–692 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Ruiz, L. et al. Proteasomal degradation of the histone acetyl transferase p300 contributes to beta-cell injury in a diabetes environment. Cell Death Dis. 9, 600 (2018).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Zibolka, J., Muhlbauer, E. & Peschke, E. Melatonin influences somatostatin secretion from human pancreatic delta-cells via MT1 and MT2 receptors. J. Pineal Res. 58, 198–209 (2015).

    CAS  PubMed  Google Scholar 

  65. 65.

    Zibolka, J., Bazwinsky-Wutschke, I., Muhlbauer, E. & Peschke, E. Distribution and density of melatonin receptors in human main pancreatic islet cell types. J. Pineal Res. 65, e12480 (2018).

    PubMed  Google Scholar 

  66. 66.

    Bartness, T. J., Powers, J. B., Hastings, M. H., Bittman, E. L. & Goldman, B. D. The timed infusion paradigm for melatonin delivery: what has it taught us about the melatonin signal, its reception, and the photoperiodic control of seasonal responses? J. Pineal Res. 15, 161–190 (1993).

    CAS  PubMed  Google Scholar 

  67. 67.

    Reiter, R. J. Photoperiod: its importance as an impeller of pineal and seasonal reproductive rhythms. Int. J. Biometeorol. 24, 57–63 (1980).

    CAS  PubMed  Google Scholar 

  68. 68.

    Peschke, E. & Muhlbauer, E. New evidence for a role of melatonin in glucose regulation. Best Pract. Res. Clin. Endocrinol. Metab. 24, 829–841 (2010).

    CAS  PubMed  Google Scholar 

  69. 69.

    Wade, G. N. & Bartness, T. J. Effects of photoperiod and gonadectomy on food intake, body weight, and body composition in Siberian hamsters. Am. J. Physiol. 246, R26–R30 (1984).

    CAS  PubMed  Google Scholar 

  70. 70.

    Le Gouic, S. et al. Characterization of a melatonin binding site in Siberian hamster brown adipose tissue. Eur. J. Pharmacol. 339, 271–278 (1997).

    PubMed  Google Scholar 

  71. 71.

    Prunet, M. B. et al. Evidence for a direct effect of melatonin on mitochondrial genome expression of Siberian hamster brown adipocytes. J. Pineal Res. 30, 108–115 (2001).

    Google Scholar 

  72. 72.

    Lima, F. B. et al. The regulation of insulin action in isolated adipocytes. Role of the periodicity of food intake, time of day and melatonin. Braz. J. Med. Biol. Res. 27, 995–1000 (1994).

    CAS  PubMed  Google Scholar 

  73. 73.

    Contreras-Alcantara, S., Baba, K. & Tosini, G. Removal of melatonin receptor type 1 induces insulin resistance in the mouse. Obesity 18, 1861–1863 (2010).

    CAS  PubMed  Google Scholar 

  74. 74.

    Zhao, J. et al. Examination of all type 2 diabetes GWAS loci reveals HHEX-IDE as a locus influencing pediatric BMI. Diabetes 59, 751–755 (2010).

    CAS  PubMed  Google Scholar 

  75. 75.

    Bonnefond, A. et al. Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat. Genet. 44, 297–301 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Yang, J. et al. Genetic association study with metabolic syndrome and metabolic-related traits in a cross-sectional sample and a 10-year longitudinal sample of chinese elderly population. PLOS ONE 9, e100548 (2014).

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Goni, L. et al. Macronutrient-specific effect of the MTNR1B genotype on lipid levels in response to 2 year weight-loss diets. J. Lipid Res. 59, 155–161 (2018).

    CAS  PubMed  Google Scholar 

  78. 78.

    Goni, L. et al. A circadian rhythm-related MTNR1B genetic variant modulates the effect of weight-loss diets on changes in adiposity and body composition: the POUNDS LOST trial. Eur. J. Nutr. https://doi.org/10.1007/s00394-018-1660-y (2018).

    Article  PubMed  Google Scholar 

  79. 79.

    Andersson, E. A. et al. MTNR1B G24E variant associates With BMI and fasting plasma glucose in the general population in studies of 22,142 Europeans. Diabetes 59, 1539–1548 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Karamitri, A. et al. Type 2 diabetes-associated variants of the MT2 melatonin receptor affect distinct modes of signaling. Sci. Signal. 11, eaan6622 (2018).

    PubMed  Google Scholar 

  81. 81.

    Beaumont, R. N. et al. Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics. Hum. Mol. Genet. 27, 742–756 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Lane, J. M. et al. Impact of common diabetes risk variant in MTNR1B on sleep, circadian, and melatonin physiology. Diabetes 65, 1741–1751 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Okatani, Y. et al. Maternal-fetal transfer of melatonin in pregnant women near term. J. Pineal Res. 25, 129–134 (1998).

    CAS  PubMed  Google Scholar 

  84. 84.

    Reiter, R. J., Tan, D. X., Korkmaz, A. & Rosales-Corral, S. A. Melatonin and stable circadian rhythms optimize maternal, placental and fetal physiology. Hum. Reprod. Update 20, 293–307 (2014).

    CAS  PubMed  Google Scholar 

  85. 85.

    Peter, I. et al. Association of type 2 diabetes susceptibility loci with one-year weight loss in the look AHEAD clinical trial. Obesity 20, 1675–1682 (2012).

    CAS  PubMed  Google Scholar 

  86. 86.

    Mirzaei, K. et al. Variants in glucose- and circadian rhythm-related genes affect the response of energy expenditure to weight-loss diets: the POUNDS LOST Trial. Am. J. Clin. Nutr. 99, 392–399 (2014).

    CAS  PubMed  Google Scholar 

  87. 87.

    Goni, L., Cuervo, M., Milagro, F. I. & Martinez, J. A. Gene-gene interplay and gene-diet interactions involving the MTNR1B rs10830963 variant with body weight loss. J. Nutrigenet. Nutrigenom. 7, 232–242 (2014).

    CAS  Google Scholar 

  88. 88.

    Grotenfelt, N. E. et al. Interaction between rs10830963 polymorphism in MTNR1B and lifestyle intervention on occurrence of gestational diabetes. Diabetologia 59, 1655–1658 (2016).

  89. 89.

    Lima, F. B. et al. Pinealectomy causes glucose intolerance and decreases adipose cell responsiveness to insulin in rats. Am. J. Physiol. 275, E934–E941 (1998).

    CAS  PubMed  Google Scholar 

  90. 90.

    Nogueira, T. C. et al. Absence of melatonin induces night-time hepatic insulin resistance and increased gluconeogenesis due to stimulation of nocturnal unfolded protein response. Endocrinology 152, 1253–1263 (2011).

    CAS  PubMed  Google Scholar 

  91. 91.

    Oliveira, A. C. et al. Combined treatment with melatonin and insulin improves glycemic control, white adipose tissue metabolism and reproductive axis of diabetic male rats. Life Sci. 199, 158–166 (2018).

    PubMed  Google Scholar 

  92. 92.

    Champney, T. H., Brainard, G. C., Richardson, B. A. & Reiter, R. J. Experimentally-induced diabetes reduces nocturnal pineal melatonin content in the Syrian hamster. Comp. Biochem. Physiol. A 76, 199–201 (1983).

    CAS  PubMed  Google Scholar 

  93. 93.

    Peschke, E. et al. Diabetic Goto Kakizaki rats as well as type 2 diabetic patients show a decreased diurnal serum melatonin level and an increased pancreatic melatonin-receptor status. J. Pineal Res. 40, 135–143 (2006).

    CAS  PubMed  Google Scholar 

  94. 94.

    Sartori, C. et al. Melatonin improves glucose homeostasis and endothelial vascular function in high-fat diet-fed insulin-resistant mice. Endocrinology 150, 5311–5317 (2009).

    CAS  PubMed  Google Scholar 

  95. 95.

    McMullan, C. J., Schernhammer, E. S., Rimm, E. B., Hu, F. B. & Forman, J. P. Melatonin secretion and the incidence of type 2 diabetes. JAMA 309, 1388–1396 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Cagnacci, A. et al. Influence of melatonin administration on glucose tolerance and insulin sensitivity of postmenopausal women. Clin. Endocrinol. 54, 339–346 (2001).

    CAS  Google Scholar 

  97. 97.

    Rubio-Sastre, P., Scheer, F. A., Gomez-Abellan, P., Madrid, J. A. & Garaulet, M. Acute melatonin administration in humans impairs glucose tolerance in both the morning and evening. Sleep 37, 1715–1719 (2014).

    PubMed  PubMed Central  Google Scholar 

  98. 98.

    Garfinkel, D. et al. Efficacy and safety of prolonged-release melatonin in insomnia patients with diabetes: a randomized, double-blind, crossover study. Diabetes Metab. Syndr. Obes. 4, 307–313 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Kadhim, H. M. et al. Effects of melatonin and zinc on lipid profile and renal function in type 2 diabetic patients poorly controlled with metformin. J. Pineal Res. 41, 189–193 (2006).

    CAS  PubMed  Google Scholar 

  100. 100.

    Gonciarz, M. et al. Plasma insulin, leptin, adiponectin, resistin, ghrelin, and melatonin in nonalcoholic steatohepatitis patients treated with melatonin. J. Pineal Res. 54, 154–161 (2013).

    PubMed  Google Scholar 

  101. 101.

    Sparso, T. et al. G-Allele of intronic rs10830963 in MTNR1B confers increased risk of impaired fasting glycemia and type 2 diabetes through an impaired glucose-stimulated insulin release: studies involving 19,605 Europeans. Diabetes 58, 1450–1456 (2009).

    PubMed  PubMed Central  Google Scholar 

  102. 102.

    Voight, B. F. et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat. Genet. 42, 579–589 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Dietrich, K. et al. Association and evolutionary studies of the melatonin receptor 1B gene (MTNR1B) in the self-contained population of Sorbs from Germany. Diabet. Med. 28, 1373–1380 (2011).

    CAS  PubMed  Google Scholar 

  104. 104.

    Marouli, E. et al. Evaluating the glucose raising effect of established loci via a genetic risk score. PLOS ONE 12, e0186669 (2017).

    PubMed  PubMed Central  Google Scholar 

  105. 105.

    Sabatti, C. et al. Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat. Genet. 41, 35–46 (2009).

    CAS  PubMed  Google Scholar 

  106. 106.

    Ohshige, T. et al. Association of new loci identified in European genome-wide association studies with susceptibility to type 2 diabetes in the Japanese. PLOS ONE 6, e26911 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Fujita, H. et al. Variations with modest effects have an important role in the genetic background of type 2 diabetes and diabetes-related traits. J. Hum. Genet. 57, 776–779 (2012).

    CAS  PubMed  Google Scholar 

  108. 108.

    Ramos, E. et al. Replication of genome-wide association studies (GWAS) loci for fasting plasma glucose in African-Americans. Diabetologia 54, 783–788 (2011).

    CAS  PubMed  Google Scholar 

  109. 109.

    Liu, C. T. et al. Transferability and fine-mapping of glucose and insulin quantitative trait loci across populations: CARe, the Candidate Gene Association Resource. Diabetologia 55, 2970–2984 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Palmer, N. D. et al. Genetic variants associated with quantitative glucose homeostasis traits translate to type 2 diabetes in mexican americans: the GUARDIAN (Genetics Underlying Diabetes in Hispanics) consortium. Diabetes 64, 1853–1866 (2015).

    CAS  PubMed  Google Scholar 

  111. 111.

    Rönn, T. et al. A common variant in MTNR1B, encoding melatonin receptor 1B, is associated with type 2 diabetes and fasting plasma glucose in Han Chinese individuals. Diabetologia 52, 830–833 (2009).

    PubMed  Google Scholar 

  112. 112.

    Liu, C. et al. MTNR1B rs10830963 is associated with fasting plasma glucose, HbA1C and impaired beta-cell function in Chinese Hans from Shanghai. BMC Med. Genet. 11, 59 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Hu, C. et al. Effects of GCK, GCKR, G6PC2 and MTNR1B variants on glucose metabolism and insulin secretion. PLOS ONE 5, e11761 (2010).

    PubMed  PubMed Central  Google Scholar 

  114. 114.

    Kan, M. Y. et al. Two susceptible diabetogenic variants near/in MTNR1B are associated with fasting plasma glucose in a Han Chinese cohort. Diabet Med. 27, 598–602 (2010).

    CAS  PubMed  Google Scholar 

  115. 115.

    Takeuchi, F. et al. Common variants at the GCK, GCKR, G6PC2-ABCB11 and MTNR1B loci are associated with fasting glucose in two Asian populations. Diabetologia 53, 299–308 (2010).

    CAS  PubMed  Google Scholar 

  116. 116.

    Salman, M. et al. MTNR1B gene polymorphisms and susceptibility to type 2 diabetes: a pilot study in South Indians. Gene 566, 189–193 (2015).

    CAS  PubMed  Google Scholar 

  117. 117.

    Chambers, J. C. et al. Common genetic variation near melatonin receptor MTNR1B contributes to raised plasma glucose and increased risk of type 2 diabetes among Indian Asians and European Caucasians. Diabetes 58, 2703–2708 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Rees, S. D. et al. Effects of 16 genetic variants on fasting glucose and type 2 diabetes in South Asians: ADCY5 and GLIS3 variants may predispose to type 2 diabetes. PLOS ONE 6, e24710 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Kelliny, C. et al. Common genetic determinants of glucose homeostasis in healthy children: the European Youth Heart Study. Diabetes 58, 2939–2945 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Barker, A. et al. Association of genetic loci with glucose levels in childhood and adolescence: a meta-analysis of over 6,000 children. Diabetes 60, 1805–1812 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Song, J. Y. et al. Association of the rs10830963 polymorphism in MTNR1B with fasting glucose levels in Chinese children and adolescents. Obes. Facts 4, 197–203 (2011).

    CAS  PubMed  Google Scholar 

  122. 122.

    Langlois, C. et al. Evaluating the transferability of 15 European-derived fasting plasma glucose SNPs in Mexican children and adolescents. Sci. Rep. 6, 36202 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Holzapfel, C. et al. Association of a MTNR1B gene variant with fasting glucose and HOMA-B in children and adolescents with high BMI-SDS. Eur. J. Endocrinol. 164, 205–212 (2011).

    CAS  PubMed  Google Scholar 

  124. 124.

    Zheng, C. et al. A common variant in the MTNR1b gene is associated with increased risk of impaired fasting glucose (IFG) in youth with obesity. Obesity 23, 1022–1029 (2015).

    PubMed  Google Scholar 

  125. 125.

    Reinehr, T. et al. Relationship between MTNR1B (melatonin receptor 1B gene) polymorphism rs10830963 and glucose levels in overweight children and adolescents. Pediatr. Diabetes 12, 435–441 (2011).

    CAS  PubMed  Google Scholar 

  126. 126.

    Soranzo, N. et al. Common variants at 10 genomic loci influence hemoglobin A1(C) levels via glycemic and nonglycemic pathways. Diabetes 59, 3229–3239 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Stancáková, A. et al. Association of 18 confirmed susceptibility loci for type 2 diabetes with indices of insulin release, proinsulin conversion, and insulin sensitivity in 5,327 nondiabetic Finnish men. Diabetes 58, 2129–2136 (2009).

    PubMed  PubMed Central  Google Scholar 

  128. 128.

    Langenberg, C. et al. Common genetic variation in the melatonin receptor 1B gene (MTNR1B) is associated with decreased early-phase insulin response. Diabetologia 52, 1537–1542 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    ‘t Hart, L. M. et al. Combined risk allele score of eight type 2 diabetes genes is associated with reduced first-phase glucose-stimulated insulin secretion during hyperglycemic clamps. Diabetes 59, 287–292 (2010).

    PubMed  Google Scholar 

  130. 130.

    Jonsson, A. et al. Effects of common genetic variants associated with type 2 diabetes and glycemic traits on α- and β-cell function and insulin action in humans. Diabetes 62, 2978–2983 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Prokopenko, I. et al. A central role for GRB10 in regulation of islet function in man. PLOS Genet. 10, e1004235 (2014).

    PubMed  PubMed Central  Google Scholar 

  132. 132.

    Wood, A. R. et al. A Genome-wide association study of IVGTT-based measures of first-phase insulin secretion refines the underlying physiology of type 2 diabetes variants. Diabetes 66, 2296–2309 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Walford, G. A. et al. Common genetic variants differentially influence the transition from clinically defined states of fasting glucose metabolism. Diabetologia 55, 331–339 (2012).

    CAS  PubMed  Google Scholar 

  134. 134.

    Vangipurapu, J. et al. Association of indices of liver and adipocyte insulin resistance with 19 confirmed susceptibility loci for type 2 diabetes in 6,733 non-diabetic Finnish men. Diabetologia 54, 563–571 (2011).

    CAS  PubMed  Google Scholar 

  135. 135.

    Ahlqvist, E. et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 6, 361–369 (2018).

    PubMed  Google Scholar 

  136. 136.

    Kwak, S. H. et al. A genome-wide association study of gestational diabetes mellitus in Korean women. Diabetes 61, 531–541 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Vlassi, M. et al. The rs10830963 variant of melatonin receptor MTNR1B is associated with increased risk for gestational diabetes mellitus in a Greek population. Hormones 11, 70–76 (2012).

    PubMed  Google Scholar 

  138. 138.

    Huopio, H. et al. Association of risk variants for type 2 diabetes and hyperglycemia with gestational diabetes. Eur. J. Endocrinol. 169, 291–297 (2013).

    CAS  PubMed  Google Scholar 

  139. 139.

    Wang, Y. et al. Association of six single nucleotide polymorphisms with gestational diabetes mellitus in a Chinese population. PLOS ONE 6, e26953 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140.

    Rosta, K. et al. Association study with 77 SNPs confirms the robust role for the rs10830963/G of MTNR1B variant and identifies two novel associations in gestational diabetes mellitus development. PLOS ONE 12, e0169781 (2017).

    PubMed  PubMed Central  Google Scholar 

  141. 141.

    Junior, J. P. et al. The MTNR1B gene polymorphism rs10830963 is associated with gestational diabetes in a Brazilian population. Gene 568, 114–115 (2015).

    CAS  PubMed  Google Scholar 

  142. 142.

    Wu, L., Cui, L., Tam, W. H., Ma, R. C. & Wang, C. C. Genetic variants associated with gestational diabetes mellitus: a meta-analysis and subgroup analysis. Sci. Rep. 6, 30539 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. 143.

    Robitaille, J. & Grant, A. M. The genetics of gestational diabetes mellitus: evidence for relationship with type 2 diabetes mellitus. Genet. Med. 10, 240–250 (2008).

    CAS  PubMed  Google Scholar 

  144. 144.

    Hinton, D. R. et al. Novel localization of a G protein, Gz-alpha, in neurons of brain and retina. J. Neurosci. 10, 2763–2770 (1990).

    CAS  PubMed  Google Scholar 

  145. 145.

    Slominski, R. M., Reiter, R. J., Schlabritz-Loutsevitch, N., Ostrom, R. S. & Slominski, A. T. Melatonin membrane receptors in peripheral tissues: distribution and functions. Mol. Cell Endocrinol. 351, 152–166 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146.

    Mulder, H. Melatonin signalling and type 2 diabetes risk: too little, too much or just right? Diabetologia 60, 826–829 (2017).

    CAS  PubMed  Google Scholar 

  147. 147.

    Bonnefond, A., Karamitri, A., Jockers, R. & Froguel, P. The difficult journey from genome-wide association studies to pathophysiology: the melatonin receptor 1B (MT2) paradigm. Cell Metab. 24, 345–347 (2016).

    CAS  PubMed  Google Scholar 

  148. 148.

    Bonnefond, A. & Froguel, P. Disentangling the role of melatonin and its receptor MTNR1B in type 2 diabetes: still a long way to go? Curr. Diab. Rep. 17, 122 (2017).

    PubMed  Google Scholar 

  149. 149.

    Bonnefond, A. & Froguel, P. The case for too little melatonin signalling in increased diabetes risk. Diabetologia 60, 823–825 (2017).

    CAS  PubMed  Google Scholar 

  150. 150.

    Hardeland, R. Melatonin and the pathologies of weakened or dysregulated circadian oscillators. J. Pineal Res. 62, e12377 (2017).

    Google Scholar 

  151. 151.

    Ben-Dyke, R. Diurnal variation of oral glucose tolerance in volunteers and laboratory animals. Diabetologia 7, 156–159 (1971).

    CAS  PubMed  Google Scholar 

  152. 152.

    Barrett, P., Schuster, C., Mercer, J. & Morgan, P. J. Sensitization: a mechanism for melatonin action in the pars tuberalis. J. Neuroendocrinol. 15, 415–421 (2003).

    CAS  PubMed  Google Scholar 

  153. 153.

    Bach, A. G., Wolgast, S., Muhlbauer, E. & Peschke, E. Melatonin stimulates inositol-1,4,5-trisphosphate and Ca2+ release from INS1 insulinoma cells. J. Pineal Res. 39, 316–323 (2005).

    CAS  PubMed  Google Scholar 

  154. 154.

    Depner, C. M., Melanson, E. L., McHill, A. W. & Wright, K. P. Jr. Mistimed food intake and sleep alters 24-hour time-of-day patterns of the human plasma proteome. Proc. Natl Acad. Sci. USA 115, E5390–E5399 (2018).

    CAS  PubMed  Google Scholar 

  155. 155.

    Simsek, N. et al. Effects of melatonin on islet neogenesis and beta cell apoptosis in streptozotocin-induced diabetic rats: an immunohistochemical study. Domest. Anim. Endocrinol. 43, 47–57 (2012).

    CAS  PubMed  Google Scholar 

  156. 156.

    Kanter, M., Uysal, H., Karaca, T. & Sagmanligil, H. O. Depression of glucose levels and partial restoration of pancreatic beta-cell damage by melatonin in streptozotocin-induced diabetic rats. Arch. Toxicol. 80, 362–369 (2006).

    CAS  PubMed  Google Scholar 

  157. 157.

    de Lima, L. M., dos Reis, L. C. & de Lima, M. A. Influence of the pineal gland on the physiology, morphometry and morphology of pancreatic islets in rats. Braz. J. Biol. 61, 333–340 (2001).

    PubMed  Google Scholar 

  158. 158.

    Kimple, M. E. et al. Deletion of GalphaZ protein protects against diet-induced glucose intolerance via expansion of beta-cell mass. J. Biol. Chem. 287, 20344–20355 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. 159.

    Suofu, Y., Carlisle, D. L., Vilardaga, J. P. & Friedlander, R. M. Reply to Ahluwalia et al.: Contributions of melatonin receptors are tissue-dependent. Proc. Natl Acad. Sci. USA 115, E1944 (2018).

    CAS  PubMed  Google Scholar 

  160. 160.

    Savaskan, E. et al. Reduced hippocampal MT2 melatonin receptor expression in Alzheimer’s disease. J. Pineal Res. 38, 10–16 (2005).

    CAS  PubMed  Google Scholar 

  161. 161.

    Dubocovich, M. L. Melatonin receptors: role on sleep and circadian rhythm regulation. Sleep Med. 8 (Suppl. 3), 34–42 (2007).

    Google Scholar 

  162. 162.

    Fadista, J. et al. Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. Proc. Natl Acad. Sci. USA 111, 13924–13929 (2014).

    CAS  PubMed  Google Scholar 

  163. 163.

    van de Bunt, M. et al. Transcript expression data from human islets links regulatory signals from genome-wide association studies for type 2 diabetes and glycemic traits to their downstream effectors. PLOS Genet. 11, e1005694 (2015).

    PubMed  PubMed Central  Google Scholar 

  164. 164.

    Segerstolpe, A. et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab. 24, 593–607 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. 165.

    Thomsen, S. K. et al. Systematic functional characterization of candidate causal genes for type 2 diabetes risk variants. Diabetes 65, 3805–3811 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. 166.

    Gerdin, M. J., Masana, M. I., Ren, D., Miller, R. J. & Dubocovich, M. L. Short-term exposure to melatonin differentially affects the functional sensitivity and trafficking of the hMT(1) and hMT(2) melatonin receptors. J. Pharmacol. Exp. Ther. 304, 931–939 (2003).

    CAS  PubMed  Google Scholar 

  167. 167.

    Solimena, M. et al. Systems biology of the IMIDIA biobank from organ donors and pancreatectomised patients defines a novel transcriptomic signature of islets from individuals with type 2 diabetes. Diabetologia 61, 641–657 (2018).

    CAS  PubMed  Google Scholar 

  168. 168.

    Gaulton, K. J. et al. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat. Genet. 47, 1415–1425 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. 169.

    Fagerberg, L. et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell Proteomics 13, 397–406 (2014).

    CAS  PubMed  Google Scholar 

  170. 170.

    Lewy, A. J., Ahmed, S., Jackson, J. M. & Sack, R. L. Melatonin shifts human circadian rhythms according to a phase-response curve. Chronobiol. Int. 9, 380–392 (1992).

    CAS  PubMed  Google Scholar 

  171. 171.

    Burgess, H. J., Revell, V. L., Molina, T. A. & Eastman, C. I. Human phase response curves to three days of daily melatonin: 0.5 mg versus 3.0 mg. J. Clin. Endocrinol. Metab. 95, 3325–3331 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. 172.

    Gerdin, M. J. et al. Melatonin desensitizes endogenous MT2 melatonin receptors in the rat suprachiasmatic nucleus: relevance for defining the periods of sensitivity of the mammalian circadian clock to melatonin. FASEB J. 18, 1646–1656 (2004).

    CAS  PubMed  Google Scholar 

  173. 173.

    Witt-Enderby, P. A., Masana, M. I. & Dubocovich, M. L. Physiological exposure to melatonin supersensitizes the cyclic adenosine 3ʹ,5ʹ-monophosphate-dependent signal transduction cascade in Chinese hamster ovary cells expressing the human mt1 melatonin receptor. Endocrinology 139, 3064–3071 (1998).

    CAS  PubMed  Google Scholar 

  174. 174.

    Owino, S., Contreras-Alcantara, S., Baba, K. & Tosini, G. Melatonin signaling controls the daily rhythm in blood glucose levels independent of peripheral clocks. PLOS ONE 11, e0148214 (2016).

    PubMed  PubMed Central  Google Scholar 

  175. 175.

    Gbahou, F. et al. Design and validation of the first cell-impermeant melatonin receptor agonist. Br. J. Pharmacol. 174, 2409–2421 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. 176.

    Oishi, A. et al. Orphan GPR61, GPR62 and GPR135 receptors and the melatonin MT2 receptor reciprocally modulate their signaling functions. Sci. Rep. 7, 8990 (2017).

    PubMed  PubMed Central  Google Scholar 

  177. 177.

    Kamal, M. et al. Convergence of melatonin and serotonin (5-HT) signaling at MT2/5-HT2C receptor heteromers. J. Biol. Chem. 290, 11537–11546 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. 178.

    Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2017).

    CAS  PubMed  Google Scholar 

  179. 179.

    Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schioth, H. B. & Gloriam, D. E. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16, 829–842 (2017).

    CAS  PubMed  Google Scholar 

  180. 180.

    Liu, J. et al. MT1 and MT2 melatonin receptors: a therapeutic perspective. Annu. Rev. Pharmacol. Toxicol. 56, 361–383 (2016).

    CAS  PubMed  Google Scholar 

  181. 181.

    Millan, M. J. et al. The melatonergic agonist and clinically active antidepressant, agomelatine, is a neutral antagonist at 5-HT2C receptors. Int. J. Neuropsychopharmacol. 14, 768–783 (2011).

    CAS  PubMed  Google Scholar 

  182. 182.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02615002 (2018).

  183. 183.

    Neurim Pharmaceuticals. Piromelatine. Neurim Pharmaceuticals http://www.neurim.com/products/piromelatine (2018).

  184. 184.

    Clarke, T. C., Black, L. I., Stussman, B. J., Barnes, P. M. & Nahin, R. L. Trends in the use of complementary health approaches among adults: United States, 2002–2012. Natl Health Stat. Rep. 79, 1–16 (2015).

    Google Scholar 

  185. 185.

    Black, L. I., Clarke, T. C., Barnes, P. M., Stussman, B. J. & Nahin, R. L. Use of complementary health approaches among children aged 4–17 years in the United States: National Health Interview Survey, 2007–2012. Natl Health Stat. Rep. 78, 1–19 (2015).

    Google Scholar 

  186. 186.

    Syndicat National des Compléments Alimentaires. Du marché des compléments alimentaires en France. Synadiet.org http://www.synadiet.org/sites/default/files/page/files/chiffres_cles_2016_version_pdf.pdf (2016).

  187. 187.

    Hauser, A. S. et al. Pharmacogenomics of GPCR drug targets. Cell 172, 41–54 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. 188.

    Trades Union Congress. Number of people working night shifts up by more than 250,000 since 2011, new TUC analysis reveals. TUC.org.uk http://www.tuc.org.uk/news/number-people-working-night-shifts-more-250000-2011-new-tuc-analysis-reveals (2016).

  189. 189.

    Striegel-Moore, R. H. et al. Exploring the typology of night eating syndrome. Int. J. Eat. Disord. 41, 411–418 (2008).

    PubMed  Google Scholar 

  190. 190.

    Forrestel, A. C., Miedlich, S. U., Yurcheshen, M., Wittlin, S. D. & Sellix, M. T. Chronomedicine and type 2 diabetes: shining some light on melatonin. Diabetologia 60, 808–822 (2017).

    CAS  PubMed  Google Scholar 

  191. 191.

    Simonis-Bik, A. M. et al. Gene variants in the novel type 2 diabetes loci CDC123/CAMK1D, THADA, ADAMTS9, BCL11A, and MTNR1B affect different aspects of pancreatic beta-cell function. Diabetes 59, 293–301 (2010).

    CAS  PubMed  Google Scholar 

  192. 192.

    Florez, J. C. et al. Effects of genetic variants previously associated with fasting glucose and insulin in the Diabetes Prevention Program. PLOS ONE 7, e44424 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. 193.

    Garaulet, M. et al. Common type 2 diabetes risk variant in MTNR1B worsens the deleterious effect of melatonin on glucose tolerance in humans. Metabolism 64, 1650–1657 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. 194.

    Lopez-Minguez, J., Saxena, R., Bandin, C., Scheer, F. A. & Garaulet, M. Late dinner impairs glucose tolerance in MTNR1B risk allele carriers: a randomized, cross-over study. Clin. Nutr. 37, 1133–1140 (2017).

    PubMed  Google Scholar 

  195. 195.

    Eze, I. C. et al. Exposure to night-time traffic noise, melatonin-regulating gene variants and change in glycemia in adults. Int. J. Environ. Res. Public Health 14, 1492 (2017).

    PubMed Central  Google Scholar 

  196. 196.

    Stoschitzky, K. et al. Influence of beta-blockers on melatonin release. Eur. J. Clin. Pharmacol. 55, 111–115 (1999).

    CAS  PubMed  Google Scholar 

  197. 197.

    Ying, S. W. et al. Melatonin analogues as agonists and antagonists in the circadian system and other brain areas. Eur. J. Pharmacol. 296, 33–42 (1996).

    CAS  PubMed  Google Scholar 

  198. 198.

    Melke, J. et al. Abnormal melatonin synthesis in autism spectrum disorders. Mol. Psychiatry 13, 90–98 (2008).

    CAS  PubMed  Google Scholar 

  199. 199.

    Chaste, P. et al. Genetic variations of the melatonin pathway in patients with attention-deficit and hyperactivity disorders. J. Pineal Res. 51, 394–399 (2011).

    CAS  PubMed  Google Scholar 

  200. 200.

    Chaste, P. et al. Identification of pathway-biased and deleterious melatonin receptor mutants in autism spectrum disorders and in the general population. PLOS ONE 5, e11495 (2010).

    PubMed  PubMed Central  Google Scholar 

  201. 201.

    Reiter, R. J. et al. Mitochondria: central organelles for melatonin’s antioxidant and anti-aging actions. Molecules 23, 509 (2018).

    PubMed Central  Google Scholar 

  202. 202.

    Aschoff, J. Circadian rhythms in man. Science 148, 1427–1432 (1965).

    CAS  PubMed  Google Scholar 

  203. 203.

    Mayeuf-Louchart, A., Zecchin, M., Staels, B. & Duez, H. Circadian control of metabolism and pathological consequences of clock perturbations. Biochimie 143, 42–50 (2017).

    CAS  PubMed  Google Scholar 

  204. 204.

    Perelis, M. et al. Pancreatic beta cell enhancers regulate rhythmic transcription of genes controlling insulin secretion. Science 350, aac4250 (2015).

    PubMed  PubMed Central  Google Scholar 

  205. 205.

    Ruiter, M. et al. The daily rhythm in plasma glucagon concentrations in the rat is modulated by the biological clock and by feeding behavior. Diabetes 52, 1709–1715 (2003).

    CAS  PubMed  Google Scholar 

  206. 206.

    Marcheva, B. et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466, 627–631 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. 207.

    Saini, C. et al. A functional circadian clock is required for proper insulin secretion by human pancreatic islet cells. Diabetes Obes. Metab. 18, 355–365 (2016).

    CAS  PubMed  Google Scholar 

  208. 208.

    West, A. C. & Bechtold, D. A. The cost of circadian desynchrony: evidence, insights and open questions. Bioessays 37, 777–788 (2015).

    PubMed  PubMed Central  Google Scholar 

  209. 209.

    Simonneaux, V. Naughty melatonin: how mothers tick off their fetus. Endocrinology 152, 1734–1738 (2011).

    CAS  PubMed  Google Scholar 

  210. 210.

    Muhlbauer, E., Gross, E., Labucay, K., Wolgast, S. & Peschke, E. Loss of melatonin signalling and its impact on circadian rhythms in mouse organs regulating blood glucose. Eur. J. Pharmacol. 606, 61–71 (2009).

    PubMed  Google Scholar 

  211. 211.

    de Farias Tda, S. et al. Pinealectomy interferes with the circadian clock genes expression in white adipose tissue. J. Pineal Res. 58, 251–261 (2015).

    PubMed  Google Scholar 

  212. 212.

    Sun, M. et al. Meta-analysis on shift work and risks of specific obesity types. Obes. Rev. 19, 28–40 (2018).

    CAS  PubMed  Google Scholar 

  213. 213.

    Anothaisintawee, T., Reutrakul, S., Van Cauter, E. & Thakkinstian, A. Sleep disturbances compared to traditional risk factors for diabetes development: systematic review and meta-analysis. Sleep Med. Rev. 30, 11–24 (2016).

    PubMed  Google Scholar 

  214. 214.

    Da Silva Xavier, G. The cells of the islets of Langerhans. J. Clin. Med. 7, E54 (2018).

    PubMed  Google Scholar 

  215. 215.

    Rorsman, P. & Ashcroft, F. M. Pancreatic beta-cell electrical activity and insulin secretion: of mice and men. Physiol. Rev. 98, 117–214 (2018).

    CAS  PubMed  Google Scholar 

  216. 216.

    Szewczyk-Golec, K. et al. Melatonin supplementation lowers oxidative stress and regulates adipokines in obese patients on a calorie-restricted diet. Oxid. Med. Cell. Longev. 2017, 8494107 (2017).

    PubMed  PubMed Central  Google Scholar 

  217. 217.

    Chojnacki, C. et al. Effects of fluoxetine and melatonin on mood, sleep quality and body mass index in postmenopausal women. J. Physiol. Pharmacol. 66, 665–671 (2015).

    CAS  PubMed  Google Scholar 

  218. 218.

    Goyal, A. et al. Melatonin supplementation to treat the metabolic syndrome: a randomized controlled trial. Diabetol. Metab. Syndr. 6, 124 (2014).

    PubMed  PubMed Central  Google Scholar 

  219. 219.

    Mesri Alamdari, N. et al. A double-blind, placebo-controlled trial related to the effects of melatonin on oxidative stress and inflammatory parameters of obese women. Horm. Metab. Res. 47, 504–508 (2015).

    CAS  PubMed  Google Scholar 

  220. 220.

    Romo-Nava, F. et al. Melatonin attenuates antipsychotic metabolic effects: an eight-week randomized, double-blind, parallel-group, placebo-controlled clinical trial. Bipolar Disord. 16, 410–421 (2014).

    CAS  PubMed  Google Scholar 

  221. 221.

    Cichoz-Lach, H., Celinski, K., Konturek, P. C., Konturek, S. J. & Slomka, M. The effects of L-tryptophan and melatonin on selected biochemical parameters in patients with steatohepatitis. J. Physiol. Pharmacol. 61, 577–580 (2010).

    CAS  PubMed  Google Scholar 

  222. 222.

    Celinski, K. et al. Effects of treatment with melatonin and tryptophan on liver enzymes, parameters of fat metabolism and plasma levels of cytokines in patients with non-alcoholic fatty liver disease — 14 months follow up. J. Physiol. Pharmacol. 65, 75–82 (2014).

    CAS  PubMed  Google Scholar 

  223. 223.

    Koziróg, M. et al. Melatonin treatment improves blood pressure, lipid profile, and parameters of oxidative stress in patients with metabolic syndrome. J. Pineal Res. 50, 261–266 (2011).

    PubMed  Google Scholar 

  224. 224.

    Borba, C. P. et al. Placebo-controlled pilot study of ramelteon for adiposity and lipids in patients with schizophrenia. J. Clin. Psychopharmacol 31, 653–658 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. 225.

    Kedziora-Kornatowska, K. et al. Melatonin improves oxidative stress parameters measured in the blood of elderly type 2 diabetic patients. J. Pineal Res. 46, 333–337 (2009).

    CAS  PubMed  Google Scholar 

  226. 226.

    Cavallo, A., Daniels, S. R., Dolan, L. M., Bean, J. A. & Khoury, J. C. Blood pressure-lowering effect of melatonin in type 1 diabetes. J. Pineal Res. 36, 262–266 (2004).

    CAS  PubMed  Google Scholar 

  227. 227.

    Wakatsuki, A., Okatani, Y., Ikenoue, N., Kaneda, C. & Fukaya, T. Effects of short-term melatonin administration on lipoprotein metabolism in normolipidemic postmenopausal women. Maturitas 38, 171–177 (2001).

    CAS  PubMed  Google Scholar 

  228. 228.

    Tamura, H. et al. Melatonin treatment in peri- and postmenopausal women elevates serum high-density lipoprotein cholesterol levels without influencing total cholesterol levels. J. Pineal Res. 45, 101–105 (2008).

    CAS  PubMed  Google Scholar 

  229. 229.

    Amstrup, A. K. et al. Reduced fat mass and increased lean mass in response to 1 year of melatonin treatment in postmenopausal women: a randomized placebo-controlled trial. Clin. Endocrinol. 84, 342–347 (2016).

    CAS  Google Scholar 

  230. 230.

    Tsunoda, T. et al. The effects of ramelteon on glucose metabolism and sleep quality in type 2 diabetic patients with insomnia: a pilot prospective randomized controlled trial. J. Clin. Med. Res. 8, 878–887 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. 231.

    Walecka-Kapica, E. et al. The effect of melatonin supplementation on the quality of sleep and weight status in postmenopausal women. Prz. Menopauzalny 13, 334–338 (2014).

    PubMed  PubMed Central  Google Scholar 

  232. 232.

    Gonciarz, M. et al. The pilot study of 3-month course of melatonin treatment of patients with nonalcoholic steatohepatitis: effect on plasma levels of liver enzymes, lipids and melatonin. J. Physiol. Pharmacol. 61, 705–710 (2010).

    CAS  PubMed  Google Scholar 

  233. 233.

    Gonciarz, M. et al. The effects of long-term melatonin treatment on plasma liver enzymes levels and plasma concentrations of lipids and melatonin in patients with nonalcoholic steatohepatitis: a pilot study. J. Physiol. Pharmacol. 63, 35–40 (2012).

    CAS  PubMed  Google Scholar 

  234. 234.

    Kedziora-Kornatowska, K. et al. Antioxidative effects of melatonin administration in elderly primary essential hypertension patients. J. Pineal Res. 45, 312–317 (2008).

    CAS  PubMed  Google Scholar 

  235. 235.

    Mostafavi, A. et al. Melatonin decreases olanzapine induced metabolic side-effects in adolescents with bipolar disorder: a randomized double-blind placebo-controlled trial. Acta Med. Iran. 52, 734–739 (2014).

    PubMed  Google Scholar 

  236. 236.

    Cavallo, A., Daniels, S. R., Dolan, L. M., Khoury, J. C. & Bean, J. A. Blood pressure response to melatonin in type 1 diabetes. Pediatr. Diabetes 5, 26–31 (2004).

    PubMed  Google Scholar 

  237. 237.

    Rindone, J. P. & Achacoso, R. Effect of melatonin on serum lipids in patients with hypercholesterolemia: a pilot study. Am. J. Ther. 4, 409–411 (1997).

    CAS  PubMed  Google Scholar 

  238. 238.

    Scheer, F. A., Van Montfrans, G. A., van Someren, E. J., Mairuhu, G. & Buijs, R. M. Daily nighttime melatonin reduces blood pressure in male patients with essential hypertension. Hypertension 43, 192–197 (2004).

    CAS  PubMed  Google Scholar 

  239. 239.

    Cagnacci, A. et al. Prolonged melatonin administration decreases nocturnal blood pressure in women. Am. J. Hypertens. 18, 1614–1618 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Julie Dam and Erika Cecon (Institut Cochin, France) for their valuable expert advice during the preparation of the manuscript. The authors were supported by the Agence Nationale de la Recherche (ANR-2011-BSV1-012-01 “MLT2D” and ANR-2011-META “MELA-BETES”), the Fondation de la Recherche Médicale (Equipe FRM DEQ20130326503), Institut National de la Santé et de la Recherche Médicale (INSERM) and Centre National de la Recherche Scientifique (CNRS).

Reviewer information

Nature Reviews Endocrinology thanks J. Cipolla-Neto and other anonymous reviewers for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Contributions

Both authors contributed to all aspects of the manuscript.

Corresponding author

Correspondence to Ralf Jockers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karamitri, A., Jockers, R. Melatonin in type 2 diabetes mellitus and obesity. Nat Rev Endocrinol 15, 105–125 (2019). https://doi.org/10.1038/s41574-018-0130-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing