Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Inhibiting PCSK9 — biology beyond LDL control

Abstract

Clinical trials have unequivocally shown that inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) efficaciously and safely prevents cardiovascular events by lowering levels of LDL cholesterol. PCSK9 in the circulation is derived mainly from the liver, but the protein is also expressed in the pancreas, the kidney, the intestine and the central nervous system. Although PCSK9 modulates cholesterol metabolism by regulating LDL receptor expression in the liver, in vitro and in vivo studies have suggested that PCSK9 is involved in various other physiological processes. Although therapeutic PCSK9 inhibition could theoretically have undesired effects by interfering with these non-cholesterol-related processes, studies of individuals with genetically determined reduced PCSK9 function and clinical trials of PCSK9 inhibitors have not revealed clinically meaningful adverse consequences of almost completely eradicating PCSK9 from the circulation. The clinical implications of PCSK9 functions beyond lipid metabolism in terms of wanted or unwanted effects of therapeutic PCSK9 inhibition therefore appear to be limited. The objective of this Review is to describe the physiological role of PCSK9 beyond the LDL receptor to provide a rational basis for monitoring the effects of PCSK9 inhibition as these drugs gain traction in the clinic.

Key points

  • PCSK9 is expressed in several tissues other than the liver, including the pancreas, the kidney, the intestine and the brain.

  • Although PCSK9 might be involved in various pathophysiological and physiological processes in different organ systems, the clinical implications for therapeutic PCSK9 inhibition seem to be limited.

  • Clinical trials of PCSK9 inhibitors and studies of individuals with genetically determined reduced PCSK9 activity have provided reassurance regarding the safety of therapeutic PCSK9 inhibition.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: PCSK9 targets the LDL receptor towards endolysosomal degradation.
Fig. 2: Statins and PCSK9 do not modulate lipoprotein(a) cellular uptake in human primary lymphocytes.

References

  1. 1.

    Abifadel, M. et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34, 154–156 (2003).

    CAS  PubMed  Google Scholar 

  2. 2.

    Cohen, J. et al. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat. Genet. 37, 161–165 (2005).

    CAS  PubMed  Google Scholar 

  3. 3.

    Cohen, J. C., Boerwinkle, E., Mosley Jr, T. H. & Hobbs, H. H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354, 1264–1272 (2006).

    CAS  PubMed  Google Scholar 

  4. 4.

    Stein, E. A. et al. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N. Engl. J. Med. 366, 1108–1118 (2012).

    CAS  PubMed  Google Scholar 

  5. 5.

    Zhang, X.-L. et al. Safety and efficacy of anti-PCSK9 antibodies: a meta-analysis of 25 randomized, controlled trials. BMC Med. 13, 123 (2015).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Navarese, E. et al. Effects of proprotein convertase subtilisin/kexin type 9 antibodies in adults with hypercholesterolemia: a systematic review and meta-analysis. Ann. Intern. Med. 163, 40–51 (2015).

    PubMed  Google Scholar 

  7. 7.

    Steg, P. G. in Evaluation of cardiovascular outcomes after an acute coronary syndrome during treatment with alirocumab — ODYSSEY outcomes. Presented at American College of Cardiology Scientific Sessions 2018 in Orlando, USA (10 Mar 2018).

  8. 8.

    Sabatine, M. S. et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med. 376, 1713–1722 (2017).

    CAS  PubMed  Google Scholar 

  9. 9.

    Fitzgerald, K. et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N. Engl. J. Med. 376, 41–51 (2017).

    CAS  PubMed  Google Scholar 

  10. 10.

    Ray, K. K. et al. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N. Engl. J. Med. 376, 1430–1440 (2017).

    CAS  PubMed  Google Scholar 

  11. 11.

    Dias, C. S. et al. Effects of AMG 145 on low-density lipoprotein cholesterol levels: results from 2 randomized, double-blind, placebo-controlled, ascending-dose phase 1 studies in healthy volunteers and hypercholesterolemic subjects on statins. J. Am. Coll. Cardiol. 60, 1888–1898 (2012).

    CAS  PubMed  Google Scholar 

  12. 12.

    US Department of Health and Human Services. Repatha (evolocumab) injection. FDA.gov https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/125522Orig1s000TOC.cfm (2015).

  13. 13.

    US Department of Health and Human Services. Praluent alirocumab. FDA.gov https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/125559Orig1s000TOC.cfm (2015).

  14. 14.

    Lambert, G., Sjouke, B., Choque, B., Kastelein, J. J. P. & Hovingh, G. K. The PCSK9 decade. J. Lipid Res. 53, 2515–2524 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Seidah, N. G. & Prat, A. The biology and therapeutic targeting of the proprotein convertases. Nat. Rev. Drug Discov. 11, 367–383 (2012).

    CAS  PubMed  Google Scholar 

  16. 16.

    Poirier, S. et al. Dissection of the endogenous cellular pathways of PCSK9-induced low density lipoprotein receptor degradation: evidence for an intracellular route. J. Biol. Chem. 284, 28856–28864 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Poirier, S., Mamarbachi, M., Chen, W. T., Lee, A. S. & Mayer, G. GRP94 regulates circulating cholesterol levels through blockade of PCSK9-induced LDLR degradation. Cell Rep. 13, 2064–2071 (2015).

    CAS  PubMed  Google Scholar 

  18. 18.

    Ray, K. K. et al. Effect of an siRNA therapeutic targeting PCSK9 on atherogenic lipoproteins: pre-specified secondary end points in ORION 1. Circulation https://doi.org/10.1161/CIRCULATIONAHA.118.034710 (2018).

    Article  PubMed  Google Scholar 

  19. 19.

    Seidah, N. G., Awan, Z., Chrétien, M. & Mbikay, M. PCSK9: a key modulator of cardiovascular health. Circ. Res. 114, 1022–1036 (2014).

    CAS  PubMed  Google Scholar 

  20. 20.

    Roth, E. M., McKenney, J. M., Hanotin, C., Asset, G. & Stein, E. A. Atorvastatin with or without an antibody to PCSK9 in primary hypercholesterolemia. N. Engl. J. Med. 367, 1891–1900 (2012).

    CAS  PubMed  Google Scholar 

  21. 21.

    Sullivan, D. et al. Effect of a monoclonal antibody to PCSK9 on low-density lipoprotein cholesterol levels in statin-intolerant patients: the GAUSS randomized trial. JAMA 308, 2497–2506 (2012).

    CAS  PubMed  Google Scholar 

  22. 22.

    Raal, F. et al. Low-density lipoprotein cholesterol-lowering effects of AMG 145, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease in patients with heterozygous familial hypercholesterolemia: the reduction of LDL-C with PCSK9 inhibition in heterozygous familial hypercholesterolemia disorder (RUTHERFORD) randomized trial. Circulation 126, 2408–2417 (2012).

    CAS  PubMed  Google Scholar 

  23. 23.

    McKenney, J. M. et al. Safety and efficacy of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease, SAR236553/REGN727, in patients with primary hypercholesterolemia receiving ongoing stable atorvastatin therapy. J. Am. Coll. Cardiol. 59, 2344–2353 (2012).

    CAS  PubMed  Google Scholar 

  24. 24.

    Le May, C. et al. Proprotein convertase subtilisin kexin type 9 null mice are protected from postprandial triglyceridemia. Arterioscler. Thromb. Vasc. Biol. 29, 684–690 (2009).

    PubMed  Google Scholar 

  25. 25.

    Lambert, G. et al. Fasting induces hyperlipidemia in mice overexpressing proprotein convertase subtilisin kexin type 9: lack of modulation of very-low-density lipoprotein hepatic output by the low-density lipoprotein receptor. Endocrinology 147, 4985–4995 (2006).

    CAS  PubMed  Google Scholar 

  26. 26.

    Herbert, B. et al. Increased secretion of lipoproteins in transgenic mice expressing human D374Y PCSK9 under physiological genetic control. Arterioscler. Thromb. Vasc. Biol. 30, 1333–1339 (2010).

    CAS  PubMed  Google Scholar 

  27. 27.

    Reyes-Soffer, G. et al. Effects of PCSK9 inhibition with alirocumab on lipoprotein metabolism in healthy humans. Circulation 135, 352–362 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Ouguerram, K. et al. Apolipoprotein B100 metabolism in autosomal-dominant hypercholesterolemia related to mutations in PCSK9. Arterioscler. Thromb. Vasc. Biol. 24, 1448–1453 (2004).

    CAS  PubMed  Google Scholar 

  29. 29.

    Lambert, G. et al. The complexity of lipoprotein (a) lowering by PCSK9 monoclonal antibodies. Clin. Sci. 131, 261–268 (2017).

    CAS  PubMed  Google Scholar 

  30. 30.

    Kronenberg, F. & Utermann, G. Lipoprotein(a): resurrected by genetics. J. Intern. Med. 273, 6–30 (2013).

    CAS  PubMed  Google Scholar 

  31. 31.

    Tsimikas, S. et al. NHLBI Working Group recommendations to reduce lipoprotein(a)-mediated risk of cardiovascular disease and aortic stenosis. J. Am. Coll. Cardiol. 71, 177–192 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Tsimikas, S. A test in context: lipoprotein(a): diagnosis, prognosis, controversies, and emerging therapies. J. Am. Coll. Cardiol. 69, 692–711 (2017).

    CAS  PubMed  Google Scholar 

  33. 33.

    Yu, B. et al. Lipoprotein(a) induces human aortic valve interstitial cell calcification. JACC Basic Transl Sci. 2, 358–371 (2017).

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Raal, F. J. et al. PCSK9 inhibition-mediated reduction in Lp(a) with evolocumab: an analysis of 10 clinical trials and the LDL receptor’s role. J. Lipid Res. 57, 1086–1096 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Ference, B. A. et al. Reduction of low density lipoprotein-cholesterol and cardiovascular events with proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors and statins: an analysis of FOURIER, SPIRE, and the Cholesterol Treatment Trialists Collaboration. Eur. Heart J. 39, 2540–2545 (2018).

    CAS  PubMed  Google Scholar 

  36. 36.

    Gaudet, D. et al. Effect of alirocumab, a monoclonal proprotein convertase subtilisin/kexin 9 antibody, on lipoprotein(a) concentrations (a pooled analysis of 150 mg every two weeks dosing from phase 2 trials). Am. J. Cardiol. 114, 711–715 (2014).

    CAS  PubMed  Google Scholar 

  37. 37.

    Edmiston, J. B. et al. Discordant response of low-density lipoprotein cholesterol and lipoprotein(a) levels to monoclonal antibodies targeting proprotein convertase subtilisin/kexin type 9. J. Clin. Lipidol. 11, 667–673 (2017).

    PubMed  Google Scholar 

  38. 38.

    Raal, F. J. et al. Reduction in lipoprotein(a) with PCSK9 monoclonal antibody evolocumab (AMG 145): a pooled analysis of more than 1,300 patients in 4 phase II trials. J. Am. Coll. Cardiol. 63, 1278–1288 (2014).

    CAS  PubMed  Google Scholar 

  39. 39.

    Khera, A. V. et al. Lipoprotein(a) concentrations, rosuvastatin therapy, and residual vascular risk: an analysis from the JUPITER trial (justification for the use of statins in prevention: an intervention trial evaluating rosuvastatin). Circulation 129, 635–642 (2014).

    CAS  PubMed  Google Scholar 

  40. 40.

    Arsenault, B. J. et al. Effect of atorvastatin, cholesterol ester transfer protein inhibition, and diabetes mellitus on circulating proprotein subtilisin kexin type 9 and lipoprotein(a) levels in patients at high cardiovascular risk. J. Clin. Lipidol. 12, 130–136 (2018).

    PubMed  Google Scholar 

  41. 41.

    Stein, E. A. et al. Effect of the proprotein convertase subtilisin/kexin 9 monoclonal antibody, AMG 145, in homozygous familial hypercholesterolemia. Circulation 128, 2113–2120 (2013).

    CAS  PubMed  Google Scholar 

  42. 42.

    Thedrez, A. et al. Proprotein convertase subtilisin kexin type 9 inhibition for autosomal recessive hypercholesterolemia—brief report. Arterioscler. Thromb. Vasc. Biol. 36, 1647–1650 (2016).

    CAS  PubMed  Google Scholar 

  43. 43.

    Thedrez, A. et al. Homozygous familial hypercholesterolemia patients with identical mutations variably express the LDLR (low-density lipoprotein receptor): implications for the efficacy of evolocumab. Arterioscler. Thromb. Vasc. Biol. 38, 592–598 (2018).

    CAS  PubMed  Google Scholar 

  44. 44.

    Romagnuolo, R. et al. Lipoprotein(a) catabolism is regulated by proprotein convertase subtilisin/kexin type 9 through the low density lipoprotein receptor. J. Biol. Chem. 290, 11649–11662 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Romagnuolo, R. et al. Roles of the low density lipoprotein receptor and related receptors in inhibition of lipoprotein(a) internalization by proprotein convertase subtilisin/kexin type 9. PLOS ONE 12, e0180869 (2017).

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Sharma, M., Redpath, G. M., Williams, M. J. & McCormick, S. P. Recycling of apolipoprotein(a) after PlgRKT-mediated endocytosis of lipoprotein(a). Circ. Res. 120, 1091–1102 (2017).

    Google Scholar 

  47. 47.

    Villard, E. F. et al. PCSK9 modulates the secretion but not the cellular uptake of lipoprotein (a) ex vivo: an effect blunted by alirocumab. JACC Basic Transl Sci. 1, 419–427 (2016).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Kotani, K. & Banach, M. Lipoprotein(a) and inhibitors of proprotein convertase subtilisin/kexin type 9. J. Thorac. Dis. 9, E78–E82 (2017).

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Rader, D. J., Cain, W., Zech, L. A., Usher, D. & Brewer, H. B. Jr Variation in lipoprotein(a) concentrations among individuals with the same apolipoprotein (a) isoform is determined by the rate of lipoprotein(a) production. J. Clin. Invest. 91, 443–447 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Croyal, M. et al. PCSK9 inhibition with alirocumab reduces lipoprotein(a) levels in non-human primates by lowering apolipoprotein(a) production rate. Clin. Sci. 132, 1075–1083 (2018).

    CAS  PubMed  Google Scholar 

  51. 51.

    Watts, G. F. et al. Factorial effects of evolocumab and atorvastatin on lipoprotein metabolism. Circulation 135, 338–351 (2017).

    CAS  PubMed  Google Scholar 

  52. 52.

    Jeong, H. J. et al. Sterol-dependent regulation of proprotein convertase subtilisin/kexin type 9 expression by sterol-regulatory element binding protein-2. J. Lipid Res. 49, 399–409 (2008).

    CAS  PubMed  Google Scholar 

  53. 53.

    Dubuc, G. et al. Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 24, 1454–1459 (2004).

    CAS  PubMed  Google Scholar 

  54. 54.

    Dong, B. et al. Strong induction of PCSK9 gene expression through HNF1alpha and SREBP2: mechanism for the resistance to LDL-cholesterol lowering effect of statins in dyslipidemic hamsters. J. Lipid Res. 51, 1486–1495 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Costet, P. et al. Hepatic PCSK9 expression is regulated by nutritional status via insulin and sterol regulatory element-binding protein 1c. J. Biol. Chem. 281, 6211–6218 (2006).

    CAS  PubMed  Google Scholar 

  56. 56.

    Persson, L. et al. Circulating proprotein convertase subtilisin kexin type 9 has a diurnal rhythm synchronous with cholesterol synthesis and is reduced by fasting in humans. Arterioscler. Thromb. Vasc. Biol. 30, 2666–2672 (2010).

    CAS  PubMed  Google Scholar 

  57. 57.

    Persson, L. et al. Endogenous estrogens lower plasma PCSK9 and LDL cholesterol but not Lp(a) or bile acid synthesis in women. Arterioscler. Thromb. Vasc. Biol. 32, 810–814 (2012).

    CAS  PubMed  Google Scholar 

  58. 58.

    Ghosh, M., Galman, C., Rudling, M. & Angelin, B. Influence of physiological changes in endogenous estrogen on circulating PCSK9 and LDL cholesterol. J. Lipid Res. 56, 463–469 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Bonde, Y. et al. Thyroid hormone reduces PCSK9 and stimulates bile acid synthesis in humans. J. Lipid Res. 55, 2408–2415 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Cariou, B., Benoit, I. & Le May, C. Preserved adrenal function in fully PCSK9-deficient subject. Int. J. Cardiol. 176, 499–500 (2014).

    PubMed  Google Scholar 

  61. 61.

    Blom, D. J. et al. Effects of evolocumab on vitamin E and steroid hormone levels: results from the 52-week, phase 3, double-blind, randomized, placebo-controlled DESCARTES study. Circ. Res. 117, 731–741 (2015).

    CAS  PubMed  Google Scholar 

  62. 62.

    Illingworth, D. R., Kenny, T. A. & Orwoll, E. S. Adrenal function in heterozygous and homozygous hypobetalipoproteinemia. J. Clin. Endocrinol. Metab. 54, 27–33 (1982).

    CAS  PubMed  Google Scholar 

  63. 63.

    Robinson, J. G. Statins and diabetes risk: how real is it and what are the mechanisms? Curr. Opin. Lipidol. 26, 228–235 (2015).

    CAS  PubMed  Google Scholar 

  64. 64.

    Schmidt, A. F. et al. PCSK9 genetic variants and risk of type 2 diabetes: a mendelian randomisation study. Lancet Diabetes Endocrinol. 5, 97–105 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Ference, B. A. et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N. Engl. J. Med. 375, 2144–2153 (2016).

    CAS  PubMed  Google Scholar 

  66. 66.

    Swerdlow, D. I. et al. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials. Lancet 385, 351–361 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Besseling, J., Kastelein, J. J., Defesche, J. C., Hutten, B. A. & Hovingh, G. K. Association between familial hypercholesterolemia and prevalence of type 2 diabetes mellitus. JAMA 313, 1029–1036 (2015).

    CAS  PubMed  Google Scholar 

  68. 68.

    Kruit, J. K., Brunham, L. R., Verchere, C. B. & Hayden, M. R. HDL and LDL cholesterol significantly influence beta-cell function in type 2 diabetes mellitus. Curr. Opin. Lipidol. 21, 178–185 (2010).

    CAS  PubMed  Google Scholar 

  69. 69.

    Rutti, S. et al. Low- and high-density lipoproteins modulate function, apoptosis, and proliferation of primary human and murine pancreatic beta-cells. Endocrinology 150, 4521–4530 (2009).

    CAS  PubMed  Google Scholar 

  70. 70.

    Mbikay, M. et al. PCSK9-deficient mice exhibit impaired glucose tolerance and pancreatic islet abnormalities. FEBS Lett. 584, 701–706 (2010).

    CAS  PubMed  Google Scholar 

  71. 71.

    Grupping, A. Y. et al. Low density lipoprotein binding and uptake by human and rat islet beta cells. Endocrinology 138, 4064–4068 (1997).

    CAS  PubMed  Google Scholar 

  72. 72.

    Cnop, M., Hannaert, J. C., Grupping, A. Y. & Pipeleers, D. G. Low density lipoprotein can cause death of islet beta-cells by its cellular uptake and oxidative modification. Endocrinology 143, 3449–3453 (2002).

    CAS  PubMed  Google Scholar 

  73. 73.

    Roehrich, M.-E. et al. Insulin-secreting beta-cell dysfunction induced by human lipoproteins. J. Biol. Chem. 278, 18368–18375 (2003).

    CAS  PubMed  Google Scholar 

  74. 74.

    Hao, M., Head, W. S., Gunawardana, S. C., Hasty, A. H. & Piston, D. W. Direct effect of cholesterol on insulin secretion: a novel mechanism for pancreatic beta-cell dysfunction. Diabetes 56, 2328–2338 (2007).

    CAS  PubMed  Google Scholar 

  75. 75.

    Langhi, C. et al. PCSK9 is expressed in pancreatic δ-cells and does not alter insulin secretion. Biochem. Biophys. Res. Commun. 390, 1288–1293 (2009).

    CAS  PubMed  Google Scholar 

  76. 76.

    Seidah, N. G. et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc. Natl Acad. Sci. USA 100, 928–933 (2003).

    CAS  PubMed  Google Scholar 

  77. 77.

    Brunham, L. R. et al. Beta-cell ABCA1 influences insulin secretion, glucose homeostasis and response to thiazolidinedione treatment. Nat. Med. 13, 340–347 (2007).

    CAS  PubMed  Google Scholar 

  78. 78.

    Baragetti, A. et al. PCSK9 deficiency results in increased ectopic fat accumulation in experimental models and in humans. Eur. J. Prev. Cardiol. 24, 1870–1877 (2017).

    PubMed  Google Scholar 

  79. 79.

    Roubtsova, A. et al. Circulating proprotein convertase subtilisin/kexin 9 (PCSK9) regulates VLDLR protein and triglyceride accumulation in visceral adipose tissue. Arterioscler. Thromb. Vasc. Biol. 31, 785–791 (2011).

    CAS  PubMed  Google Scholar 

  80. 80.

    Cariou, B. et al. Plasma PCSK9 concentrations during an oral fat load and after short term high-fat, high-fat high-protein and high-fructose diets. Nutr. Metab. 10, 4 (2013).

    CAS  Google Scholar 

  81. 81.

    Lakoski, S. G., Lagace, T. A., Cohen, J. C., Horton, J. D. & Hobbs, H. H. Genetic and metabolic determinants of plasma PCSK9 levels. J. Clin. Endocrinol. Metab. 94, 2537–2543 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Baass, A. et al. Plasma PCSK9 is associated with age, sex, and multiple metabolic markers in a population-based sample of children and adolescents. Clin. Chem. 55, 1637–1645 (2009).

    CAS  PubMed  Google Scholar 

  83. 83.

    Levy, E. et al. PCSK9 plays a significant role in cholesterol homeostasis and lipid transport in intestinal epithelial cells. Atherosclerosis 227, 297–306 (2013).

    CAS  PubMed  Google Scholar 

  84. 84.

    Zaid, A. et al. Proprotein convertase subtilisin/kexin type 9 (PCSK9): hepatocyte-specific low-density lipoprotein receptor degradation and critical role in mouse liver regeneration. Hepatology 48, 646–654 (2008).

    CAS  PubMed  Google Scholar 

  85. 85.

    Le May, C. et al. Transintestinal cholesterol excretion is an active metabolic process modulated by PCSK9 and statin involving ABCB1. Arterioscler. Thromb. Vasc. Biol. 33, 1484–1493 (2013).

    PubMed  Google Scholar 

  86. 86.

    Rashid, S. et al. Proprotein convertase subtilisin kexin type 9 promotes intestinal overproduction of triglyceride-rich apolipoprotein B lipoproteins through both low-density lipoprotein receptor-dependent and -independent mechanisms. Circulation 130, 431–441 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Reeskamp, L. F., Meessen, E. C. E. & Groen, A. K. Transintestinal cholesterol excretion in humans. Curr. Opin. Lipidol. 29, 10–17 (2018).

    CAS  PubMed  Google Scholar 

  88. 88.

    Dugardin, C. et al. Retrograde cholesterol transport in the human Caco-2/TC7 cell line: a model to study trans-intestinal cholesterol excretion in atherogenic and diabetic dyslipidemia. Acta Diabetol. 54, 191–199 (2017).

    CAS  PubMed  Google Scholar 

  89. 89.

    Ooi, T. C. et al. The effect of PCSK9 loss-of-function variants on the postprandial lipid and ApoB-lipoprotein response. J. Clin. Endocrinol. Metab. 102, 3452–3460 (2017).

    PubMed  Google Scholar 

  90. 90.

    Boren, J., Matikainen, N., Adiels, M. & Taskinen, M.-R. Postprandial hypertriglyceridemia as a coronary risk factor. Clin. Chim. Acta 431, 131–142 (2014).

    CAS  PubMed  Google Scholar 

  91. 91.

    Veilleux, A. et al. Intestinal lipid handling: evidence and implication of insulin signaling abnormalities in human obese subjects. Arterioscler. Thromb. Vasc. Biol. 34, 644–653 (2014).

    CAS  PubMed  Google Scholar 

  92. 92.

    Grefhorst, A., McNutt, M. C., Lagace, T. A. & Horton, J. D. Plasma PCSK9 preferentially reduces liver LDL receptors in mice. J. Lipid Res. 49, 1303–1311 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Schmidt, R. J. et al. Secreted proprotein convertase subtilisin/kexin type 9 reduces both hepatic and extrahepatic low-density lipoprotein receptors in vivo. Biochem. Biophys. Res. Commun. 370, 634–640 (2008).

    CAS  PubMed  Google Scholar 

  94. 94.

    Sharotri, V., Collier, D. M., Olson, D. R., Zhou, R. & Snyder, P. M. Regulation of epithelial sodium channel trafficking by proprotein convertase subtilisin/kexin type 9 (PCSK9). J. Biol. Chem. 287, 19266–19274 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Berger, J.-M. et al. PCSK9-deficiency does not alter blood pressure and sodium balance in mouse models of hypertension. Atherosclerosis 239, 252–259 (2015).

    CAS  PubMed  Google Scholar 

  96. 96.

    Rogacev, K. S. et al. PCSK9 plasma concentrations are independent of GFR and do not predict cardiovascular events in patients with decreased GFR. PLOS ONE 11, e0146920 (2016).

    PubMed  PubMed Central  Google Scholar 

  97. 97.

    Morena, M. et al. Plasma PCSK9 concentrations during the course of nondiabetic chronic kidney disease: relationship with glomerular filtration rate and lipid metabolism. J. Clin. Lipidol. 11, 87–93 (2017).

    PubMed  Google Scholar 

  98. 98.

    Konarzewski, M. et al. Elevated circulating PCSK-9 concentration in renal failure patients is corrected by renal replacement therapy. Am. J. Nephrol. 40, 157–163 (2014).

    CAS  PubMed  Google Scholar 

  99. 99.

    Haas, M. E. et al. The role of proprotein convertase subtilisin/kexin type 9 in nephrotic syndrome-associated hypercholesterolemia. Circulation 134, 61–72 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Poirier, S. et al. Implication of the proprotein convertase NARC-1/PCSK9 in the development of the nervous system. J. Neurochem. 98, 838–850 (2006).

    CAS  PubMed  Google Scholar 

  101. 101.

    Rashid, S. et al. Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc. Natl Acad. Sci. USA 102, 5374–5379 (2005).

    CAS  PubMed  Google Scholar 

  102. 102.

    An, D. et al. Identification of PCSK9 as a novel serum biomarker for the prenatal diagnosis of neural tube defects using iTRAQ quantitative proteomics. Sci. Rep. 5, 17559 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Rousselet, E. et al. PCSK9 reduces the protein levels of the LDL receptor in mouse brain during development and after ischemic stroke. J. Lipid Res. 52, 1383–1391 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Zimetti, F. et al. Increased PCSK9 cerebrospinal fluid concentrations in Alzheimer’s disease. J. Alzheimers. Dis. 55, 315–320 (2017).

    CAS  PubMed  Google Scholar 

  105. 105.

    Courtemanche, H. et al. PCSK9 concentrations in cerebrospinal fluid are not specifically increased in Alzheimer’s disease. J. Alzheimers Dis. 62, 1519–1525 (2018).

    CAS  PubMed  Google Scholar 

  106. 106.

    Bingham, B. et al. Proapoptotic effects of NARC 1 (=PCSK9), the gene encoding a novel serine proteinase. Cytometry A 69, 1123–1131 (2006).

    PubMed  Google Scholar 

  107. 107.

    Wu, Q. et al. The dual behavior of PCSK9 in the regulation of apoptosis is crucial in Alzheimer’s disease progression (review). Biomed. Rep. 2, 167–171 (2014).

    CAS  PubMed  Google Scholar 

  108. 108.

    Liu, M. et al. PCSK9 is not involved in the degradation of LDL receptors and BACE1 in the adult mouse brain. J. Lipid Res. 51, 2611–2618 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Benn, M., Nordestgaard, B. G., Frikke-Schmidt, R. & Tybjærg-Hansen, A. Low LDL cholesterol, PCSK9 and HMGCR genetic variation, and risk of Alzheimer’s disease and Parkinson’s disease: Mendelian randomisation study. BMJ 357, j1648 (2017).

    PubMed  PubMed Central  Google Scholar 

  110. 110.

    Muldoon, M. F. et al. Effects of lovastatin on cognitive function and psychological well-being. Am. J. Med. 108, 538–546 (2000).

    CAS  PubMed  Google Scholar 

  111. 111.

    US Department of Health and Human Services. Important safety label changes to cholesterol-lowering statin drugs. FDA.gov https://www.fda.gov/Drugs/DrugSafety/ucm293101.htm (2012).

  112. 112.

    Ott, B. R. et al. Do statins impair cognition? A systematic review and meta-analysis of randomized controlled trials. J. Gen. Intern. Med. 30, 348–358 (2015).

    PubMed  PubMed Central  Google Scholar 

  113. 113.

    Everett, B. M., Mora, S., Glynn, R. J., MacFadyen, J. & Ridker, P. M. Safety profile of subjects treated to very low low-density lipoprotein cholesterol levels (<30 mg/dl) with rosuvastatin 20 mg daily (from JUPITER). Am. J. Cardiol. 114, 1682–1689 (2014).

    CAS  PubMed  Google Scholar 

  114. 114.

    Collins, R. et al. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet 388, 2532–2561 (2016).

    CAS  PubMed  Google Scholar 

  115. 115.

    Giugliano, R. P. et al. Cognitive function in a randomized trial of evolocumab. N. Engl. J. Med. 377, 633–643 (2017).

    CAS  PubMed  Google Scholar 

  116. 116.

    Khan, A. R. et al. Increased risk of adverse neurocognitive outcomes with proprotein convertase subtilisin-kexin type 9 inhibitors. Circ. Cardiovasc. Qual. Outcomes 10, e003153 (2017).

    PubMed  Google Scholar 

  117. 117.

    Harvey, P. D. et al. No evidence of neurocognitive adverse events associated with alirocumab treatment in 3340 patients from 14 randomized phase 2 and 3 controlled trials: a meta-analysis of individual patient data. Eur. Heart J. 39, 374–381 (2018).

    CAS  PubMed  Google Scholar 

  118. 118.

    Mefford, M. T. et al. PCSK9 variants, LDL-cholesterol, and neurocognitive impairment: reasons for geographic and racial differences in stroke (REGARDS) study. Circulation 137, 1260–1269 (2018).

    CAS  PubMed  Google Scholar 

  119. 119.

    Zhao, Z. et al. Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am. J. Hum. Genet. 79, 514–523 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Reynolds, C. A. et al. Analysis of lipid pathway genes indicates association of sequence variation near SREBF1/TOM1L2/ATPAF2 with dementia risk. Hum. Mol. Genet. 19, 2068–2078 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Shibata, N. et al. No genetic association between PCSK9 polymorphisms and Alzheimer’s disease and plasma cholesterol level in Japanese patients. Psychiatr. Genet. 15, 239 (2005).

    PubMed  Google Scholar 

  122. 122.

    Filippatos, T. D., Christopoulou, E. C. & Elisaf, M. S. Pleiotropic effects of proprotein convertase subtilisin/kexin type 9 inhibitors? Curr. Opin. Lipidol. 29, 333–339 (2018).

    CAS  PubMed  Google Scholar 

  123. 123.

    Ding, Z. et al. Cross-talk between LOX-1 and PCSK9 in vascular tissues. Cardiovasc. Res. 107, 556–567 (2015).

    PubMed  Google Scholar 

  124. 124.

    Ilaria, G. et al. Local effects of human PCSK9 on the atherosclerotic lesion. J. Pathol. 238, 52–62 (2015).

    Google Scholar 

  125. 125.

    Tang, Z.-H. et al. New role of PCSK9 in atherosclerotic inflammation promotion involving the TLR4/NF-kappaB pathway. Atherosclerosis 262, 113–122 (2017).

    CAS  PubMed  Google Scholar 

  126. 126.

    Yvan-Charvet, L. & Cariou, B. Poststatin era in atherosclerosis management: lessons from epidemiologic and genetic studies. Curr. Opin. Lipidol. 29, 246–258 (2018).

    CAS  PubMed  Google Scholar 

  127. 127.

    Proto, J. D. et al. Hypercholesterolemia induces T cell expansion in humanized immune mice. J. Clin. Invest. 128, 2370–2375 (2018).

    PubMed  PubMed Central  Google Scholar 

  128. 128.

    Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    CAS  Google Scholar 

  129. 129.

    Feingold, K. R., Moser, A. H., Shigenaga, J. K., Patzek, S. M. & Grunfeld, C. Inflammation stimulates the expression of PCSK9. Biochem. Biophys. Res. Commun. 374, 341–344 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Ruscica, M. et al. Suppressor of cytokine signaling-3 (SOCS-3) induces proprotein convertase subtilisin kexin type 9 (PCSK9) expression in hepatic HepG2 cell line. J. Biol. Chem. 291, 3508–3519 (2016).

    CAS  PubMed  Google Scholar 

  131. 131.

    Shende, V. R. et al. Reduction of circulating PCSK9 and LDL-C levels by liver-specific knockdown of HNF1α in normolipidemic mice. J. Lipid Res. 56, 801–809 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Boyd, J. H. et al. Increased plasma PCSK9 levels are associated with reduced endotoxin clearance and the development of acute organ failures during sepsis. J. Innate Immun. 8, 211–220 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Le Bras, M. et al. Plasma PCSK9 is a late biomarker of severity in patients with severe trauma injury. J. Clin. Endocrinol. Metab. 98, E732–E736 (2013).

    PubMed  Google Scholar 

  134. 134.

    Gencer, B. et al. Prognostic value of PCSK9 levels in patients with acute coronary syndromes. Eur. Heart J. 37, 546–553 (2016).

    CAS  PubMed  Google Scholar 

  135. 135.

    Cariou, B. et al. Circulating PCSK9 levels in acute coronary syndrome: results from the PC-SCA-9 prospective study. Diabetes Metab. 43, 529–535 (2017).

    CAS  PubMed  Google Scholar 

  136. 136.

    Li, S. et al. Association of plasma PCSK9 levels with white blood cell count and its subsets in patients with stable coronary artery disease. Atherosclerosis 234, 441–445 (2014).

    CAS  PubMed  Google Scholar 

  137. 137.

    Sahebkar, A. et al. Effect of monoclonal antibodies to PCSK9 on high-sensitivity C-reactive protein levels: a meta-analysis of 16 randomized controlled treatment arms. Br. J. Clin. Pharmacol. 81, 1175–1190 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Giunzioni, I. et al. Local effects of human PCSK9 on the atherosclerotic lesion. J. Pathol. 238, 52–62 (2016).

    CAS  PubMed  Google Scholar 

  139. 139.

    Ricci, C. et al. PCSK9 induces a pro-inflammatory response in macrophages. Sci. Rep. 8, 2267 (2018).

    PubMed  PubMed Central  Google Scholar 

  140. 140.

    Tang, Z. et al. PCSK9 siRNA suppresses the inflammatory response induced by oxLDL through inhibition of NF-kappaB activation in THP-1-derived macrophages. Int. J. Mol. Med. 30, 931–938 (2012).

    CAS  PubMed  Google Scholar 

  141. 141.

    Topchiy, E. et al. Lipopolysaccharide is cleared from the circulation by hepatocytes via the low density lipoprotein receptor. PLOS ONE 11, e0155030 (2016).

    PubMed  PubMed Central  Google Scholar 

  142. 142.

    Dwivedi, D. J. et al. Differential expression of PCSK9 modulates infection, inflammation, and coagulation in a murine model of sepsis. Shock 46, 672–680 (2016).

    CAS  PubMed  Google Scholar 

  143. 143.

    Walley, K. R. et al. PCSK9 is a critical regulator of the innate immune response and septic shock outcome. Sci. Transl Med. 6, 258ra143 (2014).

    PubMed  PubMed Central  Google Scholar 

  144. 144.

    Berger, J.-M., Loza Valdes, A., Gromada, J., Anderson, N. & Horton, J. D. Inhibition of PCSK9 does not improve lipopolysaccharide-induced mortality in mice. J. Lipid Res. 58, 1661–1669 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145.

    Mazumdar, B., Banerjee, A., Meyer, K. & Ray, R. Hepatitis C virus E1 envelope glycoprotein interacts with apolipoproteins in facilitating entry into hepatocytes. Hepatology 54, 1149–1156 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146.

    Le, Q.-T., Blanchet, M., Seidah, N. G. & Labonte, P. Plasma membrane tetraspanin CD81 complexes with proprotein convertase subtilisin/kexin type 9 (PCSK9) and low density lipoprotein receptor (LDLR), and its levels are reduced by PCSK9. J. Biol. Chem. 290, 23385–23400 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147.

    Labonte, P. et al. PCSK9 impedes hepatitis C virus infection in vitro and modulates liver CD81 expression. Hepatology 50, 17–24 (2009).

    CAS  PubMed  Google Scholar 

  148. 148.

    Ramanathan, A., Gusarova, V., Stahl, N., Gurnett-Bander, A. & Kyratsous, C. A. Alirocumab, a therapeutic human antibody to PCSK9, does not affect CD81 levels or hepatitis C virus entry and replication into hepatocytes. PLOS ONE 11, e0154498 (2016).

    PubMed  PubMed Central  Google Scholar 

  149. 149.

    Dai, C.-Y. et al. Associations between hepatitis C viremia and low serum triglyceride and cholesterol levels: a community-based study. J. Hepatol. 49, 9–16 (2008).

    CAS  PubMed  Google Scholar 

  150. 150.

    Gopal, K. et al. Correlation between beta-lipoprotein levels and outcome of hepatitis C treatment. Hepatology 44, 335–340 (2006).

    CAS  PubMed  Google Scholar 

  151. 151.

    Bridge, S. H. et al. PCSK9, apolipoprotein E and lipoviral particles in chronic hepatitis C genotype 3: evidence for genotype-specific regulation of lipoprotein metabolism. J. Hepatol. 62, 763–770 (2015).

    CAS  PubMed  Google Scholar 

  152. 152.

    Kohli, P. et al. HIV and hepatitis C-coinfected patients have lower low-density lipoprotein cholesterol despite higher proprotein convertase subtilisin kexin 9 (PCSK9): an apparent “PCSK9-lipid paradox”. J. Am. Heart Assoc. 5, e002683 (2016).

    PubMed  PubMed Central  Google Scholar 

  153. 153.

    Boccara, F. et al. Impact of protease inhibitors on circulating PCSK9 levels in HIV-infected antiretroviral-naive patients from an ongoing prospective cohort. AIDS 31, 2367–2376 (2017).

    CAS  PubMed  Google Scholar 

  154. 154.

    Schlegel, V. et al. Low PCSK9 levels are correlated with mortality in patients with end-stage liver disease. PLOS ONE 12, e0181540 (2017).

    PubMed  PubMed Central  Google Scholar 

  155. 155.

    Mbikay, M., Mayne, J., Seidah, N. G. & Chretien, M. Of PCSK9, cholesterol homeostasis and parasitic infections: possible survival benefits of loss-of-function PCSK9 genetic polymorphisms. Med. Hypotheses 69, 1010–1017 (2007).

    CAS  PubMed  Google Scholar 

  156. 156.

    Hooper, A. J., Marais, A. D., Tanyanyiwa, D. M. & Burnett, J. R. The C679X mutation in PCSK9 is present and lowers blood cholesterol in a Southern African population. Atherosclerosis 193, 445–448 (2007).

    CAS  PubMed  Google Scholar 

  157. 157.

    Arama, C. et al. Malaria severity: possible influence of the E670G PCSK9 polymorphism: a preliminary case-control study in Malian children. PLOS ONE 13, e0192850 (2018).

    PubMed  PubMed Central  Google Scholar 

  158. 158.

    Lan, H. et al. Proprotein convertase subtilisin/kexin type 9 (PCSK9) affects gene expression pathways beyond cholesterol metabolism in liver cells. J. Cell. Physiol. 224, 273–281 (2010).

    CAS  PubMed  Google Scholar 

  159. 159.

    Lee, S. et al. Network analyses identify liver-specific targets for treating liver diseases. Mol. Syst. Biol. 13, 938 (2017).

    PubMed  PubMed Central  Google Scholar 

  160. 160.

    Marimuthu, A. et al. SILAC-based quantitative proteomic analysis of gastric cancer secretome. Proteomics Clin. Appl. 7, 355–366 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161.

    Bhat, M. et al. Decreased PCSK9 expression in human hepatocellular carcinoma. BMC Gastroenterol. 15, 176 (2015).

    PubMed  PubMed Central  Google Scholar 

  162. 162.

    Huang, J. et al. Tumor-induced hyperlipidemia contributes to tumor growth. Cell Rep. 15, 336–348 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. 163.

    Sun, X. et al. Proprotein convertase subtilisin/kexin type 9 deficiency reduces melanoma metastasis in liver. Neoplasia 14, 1122–1131 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. 164.

    Benn, M. et al. Low-density lipoprotein cholesterol levels, and risk of ischemic heart disease: 3 independent studies and meta-analyses. J. Am. Coll. Cardiol. 55, 2833–2842 (2010).

    CAS  PubMed  Google Scholar 

  165. 165.

    Langsted, A., Nordestgaard, B. G., Benn, M., Tybjærg-Hansen, A. & Kamstrup, P. R. PCSK9 R46L loss-of-function mutation reduces lipoprotein(a), LDL cholesterol, and risk of aortic valve stenosis. J. Clin. Endocrinol. Metab. 101, 3281–3287 (2016).

    CAS  PubMed  Google Scholar 

  166. 166.

    Fantus, D., Awan, Z., Seidah, N. G. & Genest, J. Aortic calcification: novel insights from familial hypercholesterolemia and potential role for the low-density lipoprotein receptor. Atherosclerosis 226, 9–15 (2013).

    CAS  PubMed  Google Scholar 

  167. 167.

    Awan, Z. et al. Vascular calcifications in homozygote familial hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 28, 777–785 (2008).

    CAS  PubMed  Google Scholar 

  168. 168.

    Cowell, S. J. et al. A randomized trial of intensive lipid-lowering therapy in calcific aortic stenosis. N. Engl. J. Med. 352, 2389–2397 (2005).

    CAS  PubMed  Google Scholar 

  169. 169.

    Cariou, B. et al. PCSK9 dominant negative mutant results in increased LDL catabolic rate and familial hypobetalipoproteinemia. Arterioscler. Thromb. Vasc. Biol. 29, 2191–2197 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by grants from the Fondation LEDUCQ (13CVD03) to B.C. and by the French national project CHOPIN (Cholesterol Personalized Innovation) to B.C. and G.L., which was granted by the Agence Nationale de la Recherche (ANR-16-RHUS-0007) and coordinated by the Centre hospitalier universitaire de Nantes. G.K.H. is holder of a Vidi grant (016.156.445) from the Netherlands Organisation for Scientific Research (NWO), and is supported by a grant from the European Union (TransCard: FP7-603091-2).

Reviewer information

Nature Reviews Endocrinology thanks N. Seidah and other anonymous reviewers for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to G. Kees Hovingh.

Ethics declarations

Competing interests

G.L. has received research funding, honoraria and consulting fees from Affiris, Amgen, Pfizer, Regeneron and Sanofi. B.C. has received research funding from Pfizer, Regeneron and Sanofi and honoraria from Amgen, Merck Sharpe & Dohme (Merck & Co.), Regeneron and Sanofi. G.K.H.’s institution has received payment for conducting clinical trials from Aegerion, Amgen, AstraZeneca, Eli Lilly, Genzyme, Ionis Pharmaceuticals, Kowa, Pfizer, Regeneron, Roche, Sanofi and Synageva and for lectures and/or advisory panel participation from Amgen, Pfizer, Roche and Sanofi. R.M.S. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stoekenbroek, R.M., Lambert, G., Cariou, B. et al. Inhibiting PCSK9 — biology beyond LDL control. Nat Rev Endocrinol 15, 52–62 (2019). https://doi.org/10.1038/s41574-018-0110-5

Download citation

Further reading

Search

Quick links