Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Optical tools for understanding the complexity of β-cell signalling and insulin release

Abstract

Following stimulation, pancreatic β-cells must orchestrate a plethora of signalling events to ensure the appropriate release of insulin and maintenance of normal glucose homeostasis. Failure at any point in this cascade leads to impaired insulin secretion, elevated blood levels of glucose and eventually type 2 diabetes mellitus. Likewise, β-cell replacement or regeneration strategies for the treatment of both type 1 and type 2 diabetes mellitus might fail if the correct cell signalling phenotype cannot be faithfully recreated. However, current understanding of β-cell function is complicated because of the highly dynamic nature of their intracellular and intercellular signalling as well as insulin release itself. β-Cells must precisely integrate multiple signals stemming from multiple cues, often with differing intensities, frequencies and cellular and subcellular localizations, before converging these signals onto insulin exocytosis. In this respect, optical approaches with high resolution in space and time are extremely useful for properly deciphering the complexity of β-cell signalling. An increased understanding of β-cell signalling might identify new mechanisms underlying insulin release, with relevance for future drug therapy and de novo stem cell engineering of functional islets.

Key points

  • β-Cells are capable of integrating signals that vary over space and time.

  • The conventional view of β-cells does not fully consider the dynamic nature of β-cell stimulus–secretion coupling and insulin secretion.

  • The mechanisms by which β-cells dynamically integrate multiple signals or cues might be implicated in metabolic disease.

  • Optical approaches possess the necessary spatial and temporal resolution to unravel the complexity of β-cell signalling.

  • Restoring normal β-cell signalling dynamics might allow improved treatment of type 2 diabetes mellitus (T2DM).

  • β-Cell engineering, reprogramming or regeneration studies should consider the normal signalling phenotype to provide optimal type 1 diabetes mellitus and T2DM therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: β-Cell signalling is dynamic and localized.
Fig. 2: β-Cells receive and integrate multiple signalling inputs.
Fig. 3: β-Cell signalling is shaped by the islet context.
Fig. 4: Methods for optically reporting β-cell signalling and secretion.
Fig. 5: Methods for optical control of β-cell signalling and secretion.
Fig. 6: Schematic of all-optical interrogation of β-cell signalling and secretion.

Similar content being viewed by others

References

  1. Halban, P. A. et al. β-cell failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment. Diabetes Care 37, 1751–1758 (2014).

    PubMed  PubMed Central  Google Scholar 

  2. Eizirik, D. L., Colli, M. L. & Ortis, F. The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat. Rev. Endocrinol. 5, 219–226 (2009).

    CAS  PubMed  Google Scholar 

  3. World Health Organization in Comparative Quantification of Health Risks: Global and Regional Burden of Disease Attributable to Selected Major Risk Factors (eds Ezzati, M., Lopez, A. D., Rodgers, A. A., Murray, C. J. L.) (WHO, Geneva, 2004).

  4. Porte, D. & Kahn, S. E. Beta-cell dysfunction and failure in type 2 diabetes: potential mechanisms. Diabetes 50, S160–S163 (2001).

    CAS  PubMed  Google Scholar 

  5. Prentki, M. & Nolan, C. J. Islet beta cell failure in type 2 diabetes. J. Clin. Invest. 116, 1802–1812 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Simmons, K. M., Gottlieb, P. A. & Michels, A. W. Immune intervention and preservation of pancreatic beta cell function in type 1 diabetes. Curr. Diab. Rep. 16, 97 (2016).

    PubMed  PubMed Central  Google Scholar 

  7. Chaudhury, A. et al. Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Front. Endocrinol. 8, 6 (2017).

    Google Scholar 

  8. Li, W. et al. Long-term persistence and development of induced pancreatic beta cells generated by lineage conversion of acinar cells. Nat. Biotechnol. 32, 1223–1230 (2014).

    CAS  PubMed  Google Scholar 

  9. Chera, S. et al. Diabetes recovery by age-dependent conversion of pancreatic δ-cells into insulin producers. Nature 514, 503–507 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Thorel, F. et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 464, 1149–1154 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Rezania, A. et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotechnol. 32, 1121–1133 (2014).

    CAS  PubMed  Google Scholar 

  12. Vegas, A. J. et al. Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat. Med. 22, 306–311 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Rutter, G. A., Pullen, T. J., Hodson, D. J. & Martinez-Sanchez, A. Pancreatic β-cell identity, glucose sensing and the control of insulin secretion. Biochem. J. 466, 203–218 (2015).

    CAS  PubMed  Google Scholar 

  14. Rorsman, P. & Ashcroft, F. M. Pancreatic β-cell electrical activity and insulin secretion: of mice and men. Physiol. Rev. 98, 117–214 (2018).

    PubMed  Google Scholar 

  15. Merrins, M. J. et al. Phase analysis of metabolic oscillations and membrane potential in pancreatic islet β-cells. Biophys. J. 110, 691–699 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Watts, M. et al. Calcium and metabolic oscillations in pancreatic islets: who’s driving the bus? SIAM J. Appl. Dyn. Syst. 13, 683–703 (2014).

    PubMed  PubMed Central  Google Scholar 

  17. Jacobson, D. A. et al. Calcium-activated and voltage-gated potassium channels of the pancreatic islet impart distinct and complementary roles during secretagogue induced electrical responses. J. Physiol. 588, 3525–3537 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gilon, P., Ravier, M. A., Jonas, J. C. & Henquin, J. C. Control mechanisms of the oscillations of insulin secretion in vitro and in vivo. Diabetes 51, S144–S151 (2002).

    CAS  PubMed  Google Scholar 

  19. Henquin, J. C. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49, 1751–1760 (2000).

    CAS  PubMed  Google Scholar 

  20. Kalwat, M. A. & Cobb, M. H. Mechanisms of the amplifying pathway of insulin secretion in the β cell. Pharmacol. Ther. 179, 17–30 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Dyachok, O., Isakov, Y., Sagetorp, J. & Tengholm, A. Oscillations of cyclic AMP in hormone-stimulated insulin-secreting beta-cells. Nature 439, 349–352 (2006). The article presents the first study that revealed the dynamics of cAMP in β-cells and provides an early glimpse of the signalling complexity inherent to these cells.

    CAS  PubMed  Google Scholar 

  22. Wuttke, A., Idevall-Hagren, O. & Tengholm, A. P2Y1 receptor-dependent diacylglycerol signaling microdomains in beta cells promote insulin secretion. FASEB J. 27, 1610–1620 (2013).

    CAS  PubMed  Google Scholar 

  23. Seino, S. & Shibasaki, T. PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis. Physiol. Rev. 85, 1303–1342 (2005).

    CAS  PubMed  Google Scholar 

  24. Seino, S., Takahashi, H., Fujimoto, W. & Shibasaki, T. Roles of cAMP signalling in insulin granule exocytosis. Diabetes Obes. Metab. 11 (Suppl. 4), 180–188 (2009).

    CAS  PubMed  Google Scholar 

  25. Biden Trevor, J. et al. The diverse roles of protein kinase C in pancreatic β-cell function. Biochem. Soc. Trans. 36, 916–919 (2008).

    CAS  PubMed  Google Scholar 

  26. Tian, G., Sol, E. R., Xu, Y., Shuai, H. & Tengholm, A. Impaired cAMP generation contributes to defective glucose-stimulated insulin secretion after long-term exposure to palmitate. Diabetes 64, 904–915 (2015).

    CAS  PubMed  Google Scholar 

  27. Chen, C. et al. Alterations in β-cell calcium dynamics and efficacy outweigh islet mass adaptation in compensation of insulin resistance and prediabetes onset. Diabetes 65, 2676–2685 (2016).

    CAS  PubMed  Google Scholar 

  28. Hoppa, M. B. et al. Chronic palmitate exposure inhibits insulin secretion by dissociation of Ca2+ channels from secretory granules. Cell Metab. 10, 455–465 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gandasi, N. R. et al. Ca2+ channel clustering with insulin-containing granules is disturbed in type 2 diabetes. J. Clin. Invest. 127, 2353–2364 (2017). Super-resolution imaging reveals the clustering of VDCCs in microdomains with insulin granules, adding a hitherto unknown element to the regulation of Ca 2+ fluxes in β-cells.

    PubMed  PubMed Central  Google Scholar 

  30. Rutter, G. A. et al. Local and regional control of calcium dynamics in the pancreatic islet. Diabetes Obes. Metab. 19, 30–41 (2017).

    CAS  PubMed  Google Scholar 

  31. Spiegel, S., Foster, D. & Kolesnick, R. Signal transduction through lipid second messengers. Curr. Opin. Cell Biol. 8, 159–167 (1996).

    CAS  PubMed  Google Scholar 

  32. O’Neill, C. M. et al. Circulating levels of IL-1B + IL-6 cause ER stress and dysfunction in islets from prediabetic male mice. Endocrinology 154, 3077–3088 (2013).

    PubMed  PubMed Central  Google Scholar 

  33. Hara, T. et al. Calcium efflux from the endoplasmic reticulum leads to beta-cell death. Endocrinology 155, 758–768 (2014).

    CAS  PubMed  Google Scholar 

  34. Kuchenov, D. et al. High-content imaging platform for profiling intracellular signaling network activity in living cells. Cell Chem. Biol. 23, 1550–1559 (2016). This paper presents a novel imaging platform for screening the effects of ligands or drugs on multiple pathways.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Benninger, R. K. & Piston, D. W. Cellular communication and heterogeneity in pancreatic islet insulin secretion dynamics. Trends Endocrinol. Metab. 25, 399–406 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, Q. et al. Cell coupling in mouse pancreatic beta-cells measured in intact islets of Langerhans. Philos. Trans. A Math. Phys. Eng. Sci. 366, 3503–3523 (2008).

    PubMed  Google Scholar 

  37. Benninger, R. K., Zhang, M., Head, W. S., Satin, L. S. & Piston, D. W. Gap junction coupling and calcium waves in the pancreatic islet. Biophys. J. 95, 5048–5061 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Nunemaker, C. S. et al. Glucose metabolism, islet architecture, and genetic homogeneity in imprinting of [Ca2+]i and insulin rhythms in mouse islets. PLOS ONE 4, e8428 (2009).

    PubMed  PubMed Central  Google Scholar 

  39. Tian, G., Sandler, S., Gylfe, E. & Tengholm, A. Glucose- and hormone-induced cAMP oscillations in alpha- and beta-cells within intact pancreatic islets. Diabetes 60, 1535–1543 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Westacott, M. J. et al. Age-dependent decline in the coordinated [Ca2+] and insulin secretory dynamics in human pancreatic islets. Diabetes 66, 2436–2445 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Martin, F. & Soria, B. Glucose-induced [Ca2+]i oscillations in single human pancreatic islets. Cell Calcium 20, 409–414 (1996).

    CAS  PubMed  Google Scholar 

  42. Cabrera, O. et al. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl Acad. Sci. USA 103, 2334–2339 (2006). This early study points to critical differences in islet architecture and β-cell Ca 2+ signalling in rodent versus porcine versus human islets.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Low, J. T. et al. Glucose principally regulates insulin secretion in mouse islets by controlling the numbers of granule fusion events per cell. Diabetologia 56, 2629–2637 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Almaca, J. et al. Spatial and temporal coordination of insulin granule exocytosis in intact human pancreatic islets. Diabetologia 58, 2810–2818 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hodson, D. J. et al. Lipotoxicity disrupts incretin-regulated human beta cell connectivity. J. Clin. Invest. 123, 4182–4194 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Head, W. S. et al. Connexin-36 gap junctions regulate in vivo first- and second-phase insulin secretion dynamics and glucose tolerance in the conscious mouse. Diabetes 61, 1700–1707 (2012). This landmark study links β-cell-specific loss of connexin 36 gap junction channels with defective Ca 2+ signals and loss of pulsatile insulin secretion in mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hauke, S., Keutler, K., Phapale, P., Yushchenko, D. A. & Schultz, C. Endogenous fatty acids are essential signaling factors of pancreatic β-cells and insulin secretion. Diabetes 67, 1986–1998 (2018).

    Google Scholar 

  48. Braun, M., Ramracheya, R. & Rorsman, P. Autocrine regulation of insulin secretion. Diabetes Obes. Metab. 14 (Suppl. 3), 143–151 (2012).

    CAS  PubMed  Google Scholar 

  49. Caicedo, A. Paracrine and autocrine interactions in the human islet: more than meets the eye. Semin. Cell Dev. Biol. 24, 11–21 (2013).

    CAS  PubMed  Google Scholar 

  50. van der Meulen, T. et al. Urocortin3 mediates somatostatin-dependent negative feedback control of insulin secretion. Nat. Med. 21, 769–776 (2015).

    PubMed  PubMed Central  Google Scholar 

  51. Salomon, D. & Meda, P. Heterogeneity and contact-dependent regulation of hormone secretion by individual B cells. Exp. Cell Res. 162, 507–520 (1986).

    CAS  PubMed  Google Scholar 

  52. Maedler, K. et al. Restructuring of pancreatic islets and insulin secretion in a postnatal critical window. PLOS ONE 1, e35 (2006).

    Google Scholar 

  53. Hiriart, M. & Ramirez-Medeles, M. C. Functional subpopulations of individual pancreatic B-cells in culture. Endocrinology 128, 3193–3198 (1991).

    CAS  PubMed  Google Scholar 

  54. Van Schravendijk, C. F., Kiekens, R. & Pipeleers, D. G. Pancreatic beta cell heterogeneity in glucose-induced insulin secretion. J. Biol. Chem. 267, 21344–21348 (1992).

    PubMed  Google Scholar 

  55. Benninger, R. K. P. & Hodson, D. J. New understanding of β-cell heterogeneity and in situ islet function. Diabetes 67, 537–547 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Dorrell, C. et al. Human islets contain four distinct subtypes of β cells. Nat. Commun. 7, 11756 (2016).

    PubMed  PubMed Central  Google Scholar 

  57. Wang Yue, J. et al. Single-cell mass cytometry analysis of the human endocrine pancreas. Cell Metab. 24, 616–626 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Bader, E. et al. Identification of proliferative and mature beta-cells in the islets of Langerhans. Nature 535, 430–434 (2016).

    CAS  PubMed  Google Scholar 

  59. van der Meulen, T. et al. Virgin beta cells persist throughout life at a neogenic niche within pancreatic islets. Cell Metab. 25, 911–926 (2017).

    PubMed  PubMed Central  Google Scholar 

  60. Singh, S. P. et al. Different developmental histories of beta-cells generate functional and proliferative heterogeneity during islet growth. Nat. Commun. 8, 664 (2017).

    PubMed  PubMed Central  Google Scholar 

  61. Ling, Z. et al. Intercellular differences in interleukin 1beta-induced suppression of insulin synthesis and stimulation of noninsulin protein synthesis by rat pancreatic beta-cells. Endocrinology 139, 1540–1545 (1998).

    CAS  PubMed  Google Scholar 

  62. Rui, J. et al. β cells that resist immunological attack develop during progression of autoimmune diabetes in NOD mice. Cell Metab. 25, 727–738 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Janjuha, S. et al. Age-related islet inflammation marks the proliferative decline of pancreatic beta-cells in zebrafish. eLife 7, e32965 (2018).

    PubMed  PubMed Central  Google Scholar 

  64. Dufer, M. Determination of beta-cell function: ion channel function in beta cells. Methods Mol. Biol. 933, 203–217 (2012).

    PubMed  Google Scholar 

  65. Dunlop, J., Bowlby, M., Peri, R., Vasilyev, D. & Arias, R. High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology. Nat. Rev. Drug Discov. 7, 358–368 (2008).

    CAS  PubMed  Google Scholar 

  66. Trammell, S. A. & Brenner, C. Targeted, LCMS-based metabolomics for quantitative measurement of NAD+ metabolites. Comput. Struct. Biotechnol. J. 4, e201301012 (2013).

    PubMed  PubMed Central  Google Scholar 

  67. Han, X. Lipidomics for studying metabolism. Nat. Rev. Endocrinol. 12, 668–679 (2016).

    CAS  PubMed  Google Scholar 

  68. Murray, A. J. Pharmacological PKA inhibition: all may not be what it seems. Sci. Signal. 1, re4 (2008).

    PubMed  Google Scholar 

  69. Paredes, R. M., Etzler, J. C., Watts, L. T., Zheng, W. & Lechleiter, J. D. Chemical calcium indicators. Methods 46, 143–151 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Smith, N. A. et al. Fluorescent Ca2+ indicators directly inhibit the Na, K-ATPase and disrupt cellular functions. Sci. Signal. 11, eaal2039 (2018).

    PubMed  PubMed Central  Google Scholar 

  71. Düfer, M. et al. Activation of the Na+/K+-ATPase by insulin and glucose as a putative negative feedback mechanism in pancreatic beta-cells. Pflugers Arch. 457, 1351–1360 (2008).

    PubMed  Google Scholar 

  72. Miller, E. W. et al. Optically monitoring voltage in neurons by photo-induced electron transfer through molecular wires. Proc. Natl Acad. Sci. USA 109, 2114–2119 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen, L. B. Mitochondrial membrane potential in living cells. Annu. Rev. Cell Biol. 4, 155–181 (1988).

    CAS  PubMed  Google Scholar 

  74. Dolensek, J., Stozer, A., Skelin Klemen, M., Miller, E. W. & Slak Rupnik, M. The relationship between membrane potential and calcium dynamics in glucose-stimulated beta cell syncytium in acute mouse pancreas tissue slices. PLOS ONE 8, e82374 (2013).

    PubMed  PubMed Central  Google Scholar 

  75. Li, L. et al. Defects in β-cell Ca2+ dynamics in age-induced diabetes. Diabetes 63, 4100–4114 (2014).

    CAS  PubMed  Google Scholar 

  76. Lu, H., Koshkin, V., Allister, E. M., Gyulkhandanyan, A. V. & Wheeler, M. B. Molecular and metabolic evidence for mitochondrial defects associated with beta-cell dysfunction in a mouse model of type 2 diabetes. Diabetes 59, 448–459 (2010).

    CAS  PubMed  Google Scholar 

  77. Tour, O. et al. Calcium Green FlAsH as a genetically targeted small-molecule calcium indicator. Nat. Chem. Biol. 3, 423–431 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhao, Y. et al. An expanded palette of genetically encoded Ca2+ indicators. Science 333, 1888–1891 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Akerboom, J. et al. Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front. Mol. Neurosci. 6, 2 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Johnston Natalie, R. et al. Beta cell hubs dictate pancreatic islet responses to glucose. Cell Metab. 24, 389–401 (2016). This study uses all-optical approaches to interrogate the role of β-cell subpopulations in the intact islet, revealing disproportionate control of insulin release.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Fosque, B. F. et al. Labeling of active neural circuits in vivo with designed calcium integrators. Science 347, 755–760 (2015).

    CAS  PubMed  Google Scholar 

  82. Whitaker, M. Genetically encoded probes for measurement of intracellular calcium. Methods Cell Biol. 99, 153–182 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Akemann, W., Mutoh, H., Perron, A., Rossier, J. & Knopfel, T. Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins. Nat. Methods 7, 643–649 (2010).

    CAS  PubMed  Google Scholar 

  84. Berg, J., Hung, Y. P. & Yellen, G. A genetically encoded fluorescent reporter of ATP:ADP ratio. Nat. Methods 6, 161–166 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhao, Y. et al. SoNar, a highly responsive NAD+/NADH sensor, allows high-throughput metabolic screening of anti-tumor agents. Cell Metab. 21, 777–789 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Cambronne, X. A. et al. Biosensor reveals multiple sources for mitochondrial NAD+. Science 352, 1474–1477 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Cameron, W. D. et al. Apollo-NADP+: a spectrally tunable family of genetically encoded sensors for NADP+. Nat. Methods 13, 352–358 (2016).

    PubMed  Google Scholar 

  88. Kitaguchi, T., Oya, M., Wada, Y., Tsuboi, T. & Miyawaki, A. Extracellular calcium influx activates adenylate cyclase 1 and potentiates insulin secretion in MIN6 cells. Biochem. J. 450, 365–373 (2013).

    CAS  PubMed  Google Scholar 

  89. Anderson, K. I. et al. Fourth-generation epac-based FRET sensors for cAMP feature exceptional brightness, photostability and dynamic range: characterization of dedicated sensors for FLIM, for ratiometry and with high affinity. PLOS ONE 10, e0122513 (2015).

    Google Scholar 

  90. Brun, M. A. et al. A semisynthetic fluorescent sensor protein for glutamate. J. Am. Chem. Soc. 134, 7676–7678 (2012).

    CAS  PubMed  Google Scholar 

  91. Li, J., Shuai, H. Y., Gylfe, E. & Tengholm, A. Oscillations of sub-membrane ATP in glucose-stimulated beta cells depend on negative feedback from Ca2+. Diabetologia 56, 1577–1586 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Tarasov, A. I. et al. Frequency-dependent mitochondrial Ca2+ accumulation regulates ATP synthesis in pancreatic beta cells. Pflugers Arch. 465, 543–554 (2012).

    PubMed  PubMed Central  Google Scholar 

  93. Hodson, D. J. et al. Incretin-modulated beta cell energetics in intact islets of Langerhans. Mol. Endocrinol. 28, 860–871 (2014).

    PubMed  PubMed Central  Google Scholar 

  94. Harvey, C. D. et al. A genetically encoded fluorescent sensor of ERK activity. Proc. Natl Acad. Sci. USA 105, 19264–19269 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Pratt, E. P., Salyer, A. E., Guerra, M. L. & Hockerman, G. H. Ca2+ influx through L-type Ca2+ channels and Ca2+-induced Ca2+ release regulate cAMP accumulation and Epac1-dependent ERK 1/2 activation in INS-1 cells. Mol. Cell Endocrinol. 419, 60–71 (2016).

    CAS  PubMed  Google Scholar 

  96. Leduc, M. et al. ERK1 is dispensable for mouse pancreatic beta cell function but is necessary for glucose-induced full activation of MSK1 and CREB. Diabetologia 60, 1999–2010 (2017).

    CAS  PubMed  Google Scholar 

  97. Ni, Q. et al. Signaling diversity of PKA achieved via a Ca2+-cAMP-PKA oscillatory circuit. Nat. Chem. Biol. 7, 34–40 (2011).

    CAS  PubMed  Google Scholar 

  98. Violin, J. D., Zhang, J., Tsien, R. Y. & Newton, A. C. A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C. J. Cell Biol. 161, 899–909 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Codazzi, F., Teruel, M. N. & Meyer, T. Control of astrocyte Ca2+ oscillations and waves by oscillating translocation and activation of protein kinase C. Curr. Biol. 11, 1089–1097 (2001).

    CAS  PubMed  Google Scholar 

  100. Shigeto, M. et al. GLP-1 stimulates insulin secretion by PKC-dependent TRPM4 and TRPM5 activation. J. Clin. Invest. 125, 4714–4728 (2015). GLP1 activates a TRPM4 and TRPM5 pathway; previously, the incretin was assumed to be active only in the nanomolar range, activating cAMP–PKA.

    PubMed  PubMed Central  Google Scholar 

  101. Stauffer, T. P., Ahn, S. & Meyer, T. Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr. Biol. 8, 343–346 (1998).

    CAS  PubMed  Google Scholar 

  102. Xie, B. et al. Plasma membrane phosphatidylinositol 4,5-bisphosphate regulates Ca2+-influx and insulin secretion from pancreatic β cells. Cell Chem. Biol. 23, 816–826 (2016).

    CAS  PubMed  Google Scholar 

  103. Rost, B. R., Schneider-Warme, F., Schmitz, D. & Hegemann, P. Optogenetic tools for subcellular applications in neuroscience. Neuron 96, 572–603 (2017).

    CAS  PubMed  Google Scholar 

  104. Shibasaki, T. et al. Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proc. Natl Acad. Sci. USA 104, 19333–19338 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Takahashi, N., Kishimoto, T., Nemoto, T., Kadowaki, T. & Kasai, H. Fusion pore dynamics and insulin granule exocytosis in the pancreatic islet. Science 297, 1349–1352 (2002).This article presents the first study to show the orientation of insulin granule fusion in intact islets.

    CAS  PubMed  Google Scholar 

  106. Low, J. T. et al. Insulin secretion from beta cells in intact mouse islets is targeted towards the vasculature. Diabetologia 57, 1655–1663 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Do, O. H., Low, J. T., Gaisano, H. Y. & Thorn, P. The secretory deficit in islets from db/db mice is mainly due to a loss of responding beta cells. Diabetologia 57, 1400–1409 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Li, D. et al. Imaging dynamic insulin release using a fluorescent zinc indicator for monitoring induced exocytotic release (ZIMIR). Proc. Natl Acad. Sci. USA 108, 21063–21068 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Pancholi, J. et al. Biologically targeted probes for Zn2+: a diversity oriented modular “click-SNAr-click” approach. Chem. Sci. 5, 3528–3535 (2014).

    CAS  PubMed  Google Scholar 

  110. Rivera-Fuentes, P. et al. A far-red emitting probe for unambiguous detection of mobile zinc in acidic vesicles and deep tissue. Chem. Sci. 6, 1944–1948 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Qian, W.-J., Gee, K. R. & Kennedy, R. T. Imaging of Zn2+ release from pancreatic β-cells at the level of single exocytotic events. Anal. Chem. 75, 3468–3475 (2003).

    CAS  PubMed  Google Scholar 

  112. Li, D., Liu, L. & Li, W. H. Genetic targeting of a small fluorescent zinc indicator to cell surface for monitoring zinc secretion. ACS Chem. Biol. 10, 1054–1063 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Li, D., Huang, Z., Chen, S., Hu, Z. & Li, W. H. GLP-1 receptor mediated targeting of a fluorescent Zn2+ sensor to beta cell surface for imaging insulin/Zn2+ release. Bioconjug. Chem. 26, 1443–1450 (2015).

    CAS  PubMed  Google Scholar 

  114. Tsuboi, T. & Rutter, G. A. Multiple forms of “kiss-and-run” exocytosis revealed by evanescent wave microscopy. Curr. Biol. 13, 563–567 (2003). This paper presents an early study of β-cell granule dynamics and fate using three reporter constructs targeted to the vesicle membrane and cargo.

    CAS  PubMed  Google Scholar 

  115. Martineau, M. et al. Semisynthetic fluorescent pH sensors for imaging exocytosis and endocytosis. Nat. Commun. 8, 1412 (2017).

    PubMed  PubMed Central  Google Scholar 

  116. Schifferer, M., Yushchenko, D. A., Stein, F., Bolbat, A. & Schultz, C. A. Ratiometric sensor for imaging insulin secretion in single β cells. Cell Chem. Biol. 24, 525–531 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Broichhagen, J., Frank, J. A. & Trauner, D. A. Roadmap to success in photopharmacology. Acc. Chem. Res. 48, 1947–1960 (2015).

    CAS  PubMed  Google Scholar 

  118. Broichhagen, J. et al. Optical control of insulin release using a photoswitchable sulfonylurea. Nat. Commun. 5, 5116 (2014).

    CAS  PubMed  Google Scholar 

  119. Broichhagen, J. et al. Allosteric optical control of a class B G-protein-coupled receptor. Angew. Chem. Int. Ed. 55, 5865–5868 (2016).

    CAS  Google Scholar 

  120. Broichhagen, J. et al. Optical control of insulin secretion using an incretin switch. Angew. Chem. Int. Ed. 54, 15565–15569 (2015).

    CAS  Google Scholar 

  121. Jones, B. J. et al. Potent prearranged positive allosteric modulators of the glucagon-like peptide-1 receptor. ChemistryOpen 6, 501–505 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Frank, J. A. et al. Photoswitchable diacylglycerols enable optical control of protein kinase C. Nat. Chem. Biol. 12, 755–762 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Frank, J. A. et al. Optical control of GPR40 signalling in pancreatic β-cells. Chem. Sci. 8, 7604–7610 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Podewin, T. et al. Conditional and reversible activation of class A and B G protein-coupled receptors using tethered pharmacology. ACS Cent. Sci. 4, 166–179 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Berry, M. H. et al. Restoration of patterned vision with an engineered photoactivatable G protein-coupled receptor. Nat. Commun. 8, 1862 (2017).

    PubMed  PubMed Central  Google Scholar 

  126. Ellis-Davies, G. C. Caged compounds: photorelease technology for control of cellular chemistry and physiology. Nat. Methods 4, 619–628 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Gromada, J. et al. Glucagon-like peptide 1 (7–36) amide stimulates exocytosis in human pancreatic beta-cells by both proximal and distal regulatory steps in stimulus-secretion coupling. Diabetes 47, 57–65 (1998).

    CAS  PubMed  Google Scholar 

  128. Renstrom, E., Eliasson, L. & Rorsman, P. Protein kinase A-dependent and -independent stimulation of exocytosis by cAMP in mouse pancreatic B cells. J. Physiol. 502, 105–118 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Höglinger, D., Nadler, A. & Schultz, C. Caged lipids as tools for investigating cellular signaling. Biochim. Biophys. Acta 1841, 1085–1096 (2014).

    PubMed  Google Scholar 

  130. Nadler, A. et al. Exclusive photorelease of signalling lipids at the plasma membrane. Nat. Commun. 6, 10056 (2015).

    CAS  PubMed  Google Scholar 

  131. Westacott, M. J., Ludin, N. W. F. & Benninger, R. K. P. Spatially organized β-cell subpopulations control electrical dynamics across islets of Langerhans. Biophys. J. 113, 1093–1108 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Tkatch, T. et al. Optogenetic control of mitochondrial metabolism and Ca2+ signaling by mitochondria-targeted opsins. Proc. Natl Acad. Sci. USA 114, E5167–E5176 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Reinbothe, T. M., Safi, F., Axelsson, A. S., Mollet, I. G. & Rosengren, A. H. Optogenetic control of insulin secretion in intact pancreatic islets with β-cell-specific expression of Channelrhodopsin-2. Islets 6, e28095 (2014). This article presents the first report showing optogenetic activation of β-cells within islets.

    PubMed  PubMed Central  Google Scholar 

  134. Briant, L. J. B. et al. δ-cells and β-cells are electrically coupled and regulate alpha-cell activity via somatostatin. J. Physiol. 596, 197–215 (2017).

    PubMed  PubMed Central  Google Scholar 

  135. Zhang, F. & Tzanakakis, E. S. Optogenetic regulation of insulin secretion in pancreatic β-cells. Sci. Rep. 7, 9357 (2017).

    PubMed  PubMed Central  Google Scholar 

  136. Grusch, M. et al. Spatio-temporally precise activation of engineered receptor tyrosine kinases by light. EMBO J. 33, 1713–1726 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Masuda, S., Nakatani, Y., Ren, S. & Tanaka, M. Blue light-mediated manipulation of transcription factor activity in vivo. ACS Chem. Biol. 8, 2649–2653 (2013).

    CAS  PubMed  Google Scholar 

  138. Motta-Mena, L. B. et al. An optogenetic gene expression system with rapid activation and deactivation kinetics. Nat. Chem. Biol. 10, 196–202 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Roscioni, S. S., Migliorini, A., Gegg, M. & Lickert, H. Impact of islet architecture on beta-cell heterogeneity, plasticity and function. Nat. Rev. Endocrinol. 12, 695–709 (2016).

    CAS  PubMed  Google Scholar 

  140. Ikegaya, Y. et al. Synfire chains and cortical songs: temporal modules of cortical activity. Science 304, 559–564 (2004).

    CAS  PubMed  Google Scholar 

  141. Roed, S. N. et al. Functional consequences of glucagon-like peptide-1 receptor cross-talk and trafficking. J. Biol. Chem. 290, 1233–1243 (2015).

    CAS  PubMed  Google Scholar 

  142. Kuna, R. S. et al. Glucagon-like peptide-1 receptor-mediated endosomal cAMP generation promotes glucose-stimulated insulin secretion in pancreatic beta-cells. Am. J. Physiol. Endocrinol. Metab. 305, 161–170 (2013).

    Google Scholar 

  143. Calebiro, D. et al. Persistent cAMP-signals triggered by internalized G-protein-coupled receptors. PLOS Biol. 7, e1000172 (2009). This imaging study shows that internalized GPCRs are capable of generating cAMP.

    PubMed  PubMed Central  Google Scholar 

  144. Tsvetanova, N. G. & von Zastrow, M. Spatial encoding of cyclic AMP signaling specificity by GPCR endocytosis. Nat. Chem. Biol. 10, 1061–1065 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Flores-Otero, J. et al. Ligand-specific endocytic dwell times control functional selectivity of the cannabinoid receptor 1. Nat. Commun. 5, 4589 (2014).

    CAS  PubMed  Google Scholar 

  146. Albrecht, T., Zhao, Y., Nguyen, T. H., Campbell, R. E. & Johnson, J. D. Fluorescent biosensors illuminate calcium levels within defined beta-cell endosome subpopulations. Cell Calcium 57, 263–274 (2015).

    CAS  PubMed  Google Scholar 

  147. Höglinger, D. et al. Intracellular sphingosine releases calcium from lysosomes. eLife 4, e10616 (2015).

    PubMed  PubMed Central  Google Scholar 

  148. Walter, A. M. et al. Phosphatidylinositol 4,5-bisphosphate optical uncaging potentiates exocytosis. eLife 6, e30203 (2017).

    PubMed  PubMed Central  Google Scholar 

  149. Nadler, A. et al. The fatty acid composition of diacylglycerols determines local signaling patterns. Angew. Chem. Int. Ed. 52, 6330–6334 (2013).

    CAS  Google Scholar 

  150. Stein, D. T. et al. The insulinotropic potency of fatty acids is influenced profoundly by their chain length and degree of saturation. J. Clin. Invest. 100, 398–403 (1997). This paper presents the first study showing the importance of fatty acid chain length for insulin release.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Brouwers, B. et al. Impaired islet function in commonly used transgenic mouse lines due to human growth hormone minigene expression. Cell Metab. 20, 979–990 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Zhang, Q. et al. Role of KATP channels in glucose-regulated glucagon secretion and impaired counterregulation in type 2 diabetes. Cell Metab. 18, 871–882 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Cabrera, O. et al. Glutamate is a positive autocrine signal for glucagon release. Cell Metab. 7, 545–554 (2008). This in vivo imaging study demonstrates the influence of neural wiring on insulin release.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Ackermann, A. M., Zhang, J., Heller, A., Briker, A. & Kaestner, K. H. High-fidelity Glucagon-CreER mouse line generated by CRISPR-Cas9 assisted gene targeting. Mol. Metab. 6, 236–244 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Rodriguez-Diaz, R. et al. Noninvasive in vivo model demonstrating the effects of autonomic innervation on pancreatic islet function. Proc. Natl Acad. Sci. USA 109, 21456–21461 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Michau, A. et al. Metabolism regulates exposure of pancreatic islets to circulating molecules in vivo. Diabetes 65, 463–475 (2015).

    PubMed  Google Scholar 

  157. Paschen, M. et al. Non-invasive cell type selective in vivo monitoring of insulin resistance dynamics. Sci. Rep. 6, 21448 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Ben-Othman, N. et al. Long-term GABA administration induces alpha cell-mediated beta-like cell neogenesis. Cell 168, 73–85 (2017).

    CAS  PubMed  Google Scholar 

  159. Chen, Y., Saulnier, J. L., Yellen, G. & Sabatini, B. L. A. PKA activity sensor for quantitative analysis of endogenous GPCR signaling via 2-photon FRET-FLIM imaging. Front. Pharmacol. 5, 56 (2014).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

D.J.H. was supported by a Diabetes UK R. D. Lawrence (12/0004431) Fellowship, a Wellcome Trust Institutional Support Award and Medical Research Council (MR/N00275X/1) and Diabetes UK (17/0005681) Project Grants. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Starting Grant 715884 to D.J.H. and Advanced Grant 268795 to D.T.). C.S. is supported by TRR186 of the German Research Council (DFG). The authors apologize to the many authors whose studies could not be cited owing to space limitations.

Reviewer information

Nature Reviews Endocrinology thanks D. Eizirik and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

J.A.F., J.B., D.Y. and D.J.H. researched the data for the article, contributed to discussion of content and reviewed and edited the article before submission. C.S. and D.T. contributed to discussion of content and reviewed and edited the article before submission. D.J.H. wrote the article with input from all the authors.

Corresponding authors

Correspondence to Carsten Schultz or David J. Hodson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frank, J.A., Broichhagen, J., Yushchenko, D.A. et al. Optical tools for understanding the complexity of β-cell signalling and insulin release. Nat Rev Endocrinol 14, 721–737 (2018). https://doi.org/10.1038/s41574-018-0105-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-018-0105-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research