Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Role of biomarker tests for diagnosis of neuroendocrine tumours

Abstract

Neuroendocrine tumours (NETs) are neoplasms that arise from neuroendocrine cells. Neuroendocrine cells and their tumours can secrete a wide range of amines and polypeptide hormones into the systemic circulation. This feature has triggered widespread investigation into circulating biomarkers for the diagnosis of NETs as well as for the prediction of the biological behaviour of tumour cells. Classic examples of circulating biomarkers for gastroenteropancreatic NETs include chromogranin A, neuron-specific enolase and pancreatic polypeptide as well as hormones that elicit clinical syndromes, such as serotonin and its metabolites, insulin, glucagon and gastrin. Biomarker metrics of general markers for diagnosing all gastroenteropancreatic NET subtypes are limited, but specific hormonal measurements can be of diagnostic value in select cases. In the past decade, methods for detecting circulating transcripts and tumour cells have been developed to improve the diagnosis of patients with NETs. Concurrently, modern scanning techniques and superior radiotracers for functional imaging have markedly expanded the options for clinicians dealing with NETs. Here, we review the latest research on biomarkers in the NET field to provide clinicians with a comprehensive overview of relevant diagnostic biomarkers that can be implemented in dedicated situations.

Key points

  • The diagnosis of gastroenteropancreatic neuroendocrine tumours (NETs) should be made by histological evaluation of tumour tissue, as the diagnostic accuracy of current circulating and imaging biomarkers is insufficient.

  • Clinicians should remain vigilant for the presence of hormonal syndromes in each patient with gastroenteropancreatic NETs, as these can attenuate prognosis, uncover specific biomarkers and facilitate tumour-specific management.

  • Chromogranin A, neuron-specific enolase and pancreatic polypeptide are circulating biomarkers with moderate to poor test characteristics for the diagnosis of gastroenteropancreatic NETs and should not be measured in patients as a means to screen for NET.

  • Circulating transcripts represent an emerging opportunity in the diagnosis of gastroenteropancreatic NETs, but whether they can be used to differentiate NETs from other tumours should be subject to further study, while their availability and cost-effectiveness in clinical practice remain to be determined.

  • PET of the somatostatin receptor and glucose metabolism is key to facilitating the delineation of tumour stage and individual treatment options and should be used in conjunction with anatomical imaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An overview of common biomarkers for gastroenteropancreatic NETs.
Fig. 2: An overview of targets for functional imaging in NETs.
Fig. 3: Somatostatin receptor imaging using two modalities.

Similar content being viewed by others

References

  1. Dasari, A. et al. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol. 3, 1335–1342 (2017).

    PubMed  PubMed Central  Google Scholar 

  2. Linan-Rico, A. et al. Mechanosensory signaling in enterochromaffin cells and 5-HT release: potential implications for gut inflammation. Front. Neurosci. 10, 564 (2016).

    PubMed  PubMed Central  Google Scholar 

  3. Bellono, N. W. et al. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 170, 185–198 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gu, X. et al. Chemosensory functions for pulmonary neuroendocrine cells. Am. J. Respir. Cell. Mol. Biol. 50, 637–646 (2014).

    PubMed  PubMed Central  Google Scholar 

  5. Wiedenmann, B., Franke, W. W., Kuhn, C., Moll, R. & Gould, V. E. Synaptophysin: a marker protein for neuroendocrine cells and neoplasms. Proc. Natl Acad. Sci. USA 83, 3500–3504 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Eriksson, B. et al. Chromogranins — new sensitive markers for neuroendocrine tumors. Acta Oncol. 28, 325–329 (1989).

    CAS  PubMed  Google Scholar 

  7. Duan, K. & Mete, O. Algorithmic approach to neuroendocrine tumors in targeted biopsies: practical applications of immunohistochemical markers. Cancer Cytopathol. 124, 871–884 (2016).

    PubMed  Google Scholar 

  8. Schmitt, A. M., Blank, A., Marinoni, I., Komminoth, P. & Perren, A. Histopathology of NET: current concepts and new developments. Best Pract. Res. Clin. Endocrinol. Metab. 30, 33–43 (2016).

    CAS  PubMed  Google Scholar 

  9. Zandee, W. T., Kamp, K., van Adrichem, R. C., Feelders, R. A. & de Herder, W. W. Effect of hormone secretory syndromes on neuroendocrine tumor prognosis. Endocr. Relat. Cancer 24, R261–R274 (2017).

    CAS  PubMed  Google Scholar 

  10. Kanakis, G. & Kaltsas, G. Biochemical markers for gastroenteropancreatic neuroendocrine tumours (GEP-NETs). Best Pract. Res. Clin. Gastroenterol. 26, 791–802 (2012).

    CAS  PubMed  Google Scholar 

  11. Deftos, L. J. Chromogranin A: its role in endocrine function and as an endocrine and neuroendocrine tumor marker. Endocr. Rev. 12, 181–187 (1991).

    CAS  PubMed  Google Scholar 

  12. Sanduleanu, S. et al. Serum chromogranin A as a screening test for gastric enterochromaffin-like cell hyperplasia during acid-suppressive therapy. Eur. J. Clin. Invest. 31, 802–811 (2001).

    CAS  PubMed  Google Scholar 

  13. Marotta, V. et al. Chromogranin A as circulating marker for diagnosis and management of neuroendocrine neoplasms: more flaws than fame. Endocr. Relat. Cancer 25, R11–R29 (2018).

    PubMed  Google Scholar 

  14. Yang, X. et al. Diagnostic value of circulating chromogranin a for neuroendocrine tumors: a systematic review and meta-analysis. PLoS ONE 10, e0124884 (2015).

    PubMed  PubMed Central  Google Scholar 

  15. Molina, R. et al. Evaluation of chromogranin A determined by three different procedures in patients with benign diseases, neuroendocrine tumors and other malignancies. Tumour Biol. 32, 13–22 (2011).

    PubMed  Google Scholar 

  16. Raines, D. et al. A prospective evaluation of the effect of chronic proton pump inhibitor use on plasma biomarker levels in humans. Pancreas 41, 508–511 (2012).

    CAS  PubMed  Google Scholar 

  17. Calhoun, K., Toth-Fejel, S., Cheek, J. & Pommier, R. Serum peptide profiles in patients with carcinoid tumors. Am. J. Surg. 186, 28–31 (2003).

    CAS  PubMed  Google Scholar 

  18. Rustagi, S., Warner, R. R. & Divino, C. M. Serum pancreastatin: the next predictive neuroendocrine tumor marker. J. Surg. Oncol. 108, 126–128 (2013).

    CAS  PubMed  Google Scholar 

  19. Stridsberg, M., Oberg, K., Li, Q., Engstrom, U. & Lundqvist, G. Measurements of chromogranin A, chromogranin B (secretogranin I), chromogranin C (secretogranin II) and pancreastatin in plasma and urine from patients with carcinoid tumours and endocrine pancreatic tumours. J. Endocrinol. 144, 49–59 (1995).

    CAS  PubMed  Google Scholar 

  20. Sherman, S. K., Maxwell, J. E., O’Dorisio, M. S., O’Dorisio, T. M. & Howe, J. R. Pancreastatin predicts survival in neuroendocrine tumors. Ann. Surg. Oncol. 21, 2971–2980 (2014).

    PubMed  PubMed Central  Google Scholar 

  21. Modlin, I. M., Aslanian, H., Bodei, L., Drozdov, I. & Kidd, M. A. PCR blood test outperforms chromogranin A in carcinoid detection and is unaffected by proton pump inhibitors. Endocr. Connect. 3, 215–223 (2014).

    PubMed  PubMed Central  Google Scholar 

  22. Sekiya, K. et al. Production of GAWK (chromogranin-B 420–493)-like immunoreactivity by endocrine tumors and its possible diagnostic value. J. Clin. Invest. 83, 1834–1842 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Monaghan, P. J. et al. Routine measurement of plasma chromogranin B has limited clinical utility in the management of patients with neuroendocrine tumours. Clin. Endocrinol. 84, 348–352 (2016).

    CAS  Google Scholar 

  24. Stridsberg, M., Eriksson, B., Fellstrom, B., Kristiansson, G. & Tiensuu Janson, E. Measurements of chromogranin B can serve as a complement to chromogranin A. Regul. Pept. 139, 80–83 (2007).

    CAS  PubMed  Google Scholar 

  25. Pahlman, S., Esscher, T., Bergvall, P. & Odelstad, L. Purification and characterization of human neuron-specific enolase: radioimmunoassay development. Tumour Biol. 5, 127–139 (1984).

    CAS  PubMed  Google Scholar 

  26. Baudin, E. et al. Neuron-specific enolase and chromogranin A as markers of neuroendocrine tumours. Br. J. Cancer 78, 1102–1107 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Nobels, F. R. et al. Chromogranin A as serum marker for neuroendocrine neoplasia: comparison with neuron-specific enolase and the alpha-subunit of glycoprotein hormones. J. Clin. Endocrinol. Metab. 82, 2622–2628 (1997).

    CAS  PubMed  Google Scholar 

  28. Leja, J. et al. Novel markers for enterochromaffin cells and gastrointestinal neuroendocrine carcinomas. Mod. Pathol. 22, 261–272 (2009).

    CAS  PubMed  Google Scholar 

  29. Melen-Mucha, G. et al. Elevated peripheral blood plasma concentrations of tie-2 and angiopoietin 2 in patients with neuroendocrine tumors. Int. J. Mol. Sci. 13, 1444–1460 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Srirajaskanthan, R. et al. Circulating angiopoietin-2 is elevated in patients with neuroendocrine tumours and correlates with disease burden and prognosis. Endocr. Relat. Cancer 16, 967–976 (2009).

    CAS  PubMed  Google Scholar 

  31. Figueroa-Vega, N. et al. The association of the angiopoietin/Tie-2 system with the development of metastasis and leukocyte migration in neuroendocrine tumors. Endocr. Relat. Cancer 17, 897–908 (2010).

    CAS  PubMed  Google Scholar 

  32. Detjen, K. M. et al. Angiopoietin-2 promotes disease progression of neuroendocrine tumors. Clin. Cancer Res. 16, 420–429 (2010).

    CAS  PubMed  Google Scholar 

  33. Andersson, E. et al. Expression profiling of small intestinal neuroendocrine tumors identifies subgroups with clinical relevance, prognostic markers and therapeutic targets. Mod. Pathol. 29, 616–629 (2016).

    CAS  PubMed  Google Scholar 

  34. Karpathakis, A. et al. Prognostic impact of novel molecular subtypes of small intestinal neuroendocrine tumor. Clin. Cancer Res. 22, 250–258 (2016).

    CAS  PubMed  Google Scholar 

  35. Scarpa, A. et al. Whole-genome landscape of pancreatic neuroendocrine tumours. Nature 543, 65–71 (2017).

    CAS  PubMed  Google Scholar 

  36. Modlin, I. M. et al. Principal component analysis, hierarchical clustering, and decision tree assessment of plasma mRNA and hormone levels as an early detection strategy for small intestinal neuroendocrine (carcinoid) tumors. Ann. Surg. Oncol. 16, 487–498 (2009).

    PubMed  Google Scholar 

  37. Modlin, I. M., Drozdov, I. & Kidd, M. The identification of gut neuroendocrine tumor disease by multiple synchronous transcript analysis in blood. PLoS ONE 8, e63364 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Modlin, I. M. et al. A multianalyte PCR blood test outperforms single analyte ELISAs (chromogranin A, pancreastatin, neurokinin A) for neuroendocrine tumor detection. Endocr. Relat. Cancer 21, 615–628 (2014).

    CAS  PubMed  Google Scholar 

  39. Modlin, I. M., Kidd, M., Bodei, L., Drozdov, I. & Aslanian, H. The clinical utility of a novel blood-based multi-transcriptome assay for the diagnosis of neuroendocrine tumors of the gastrointestinal tract. Am. J. Gastroenterol. 110, 1223–1232 (2015).

    CAS  PubMed  Google Scholar 

  40. Miller, H. C. et al. MicroRNAs associated with small bowel neuroendocrine tumours and their metastases. Endocr. Relat. Cancer 23, 711–726 (2016).

    CAS  PubMed  Google Scholar 

  41. Li, S. C. et al. Global microRNA profiling of well-differentiated small intestinal neuroendocrine tumors. Mod. Pathol. 26, 685–696 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Thorns, C. et al. Global microRNA profiling of pancreatic neuroendocrine neoplasias. Anticancer Res. 34, 2249–2254 (2014).

    PubMed  Google Scholar 

  43. Lee, Y. S. et al. High expression of microRNA-196a indicates poor prognosis in resected pancreatic neuroendocrine tumor. Medicine 94, e2224 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ruebel, K. et al. MicroRNA expression in ileal carcinoid tumors: downregulation of microRNA-133a with tumor progression. Mod. Pathol. 23, 367–375 (2010).

    CAS  PubMed  Google Scholar 

  45. Roldo, C. et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J. Clin. Oncol. 24, 4677–4684 (2006).

    CAS  PubMed  Google Scholar 

  46. Li, S. C. et al. Somatostatin analogs treated small intestinal neuroendocrine tumor patients circulating microRNAs. PLoS ONE 10, e0125553 (2015).

    PubMed  PubMed Central  Google Scholar 

  47. Bowden, M. et al. Profiling of metastatic small intestine neuroendocrine tumors reveals characteristic mi-RNAs detectable in plasma. Oncotarget 8, 54331–54344 (2017).

    PubMed  PubMed Central  Google Scholar 

  48. Heverhagen, A. E. et al. Overexpression of MicroRNA miR-7-5p Is a Potential Biomarker in Neuroendocrine Neoplasms of the Small Intestine. Neuroendocrinology 106, 312–317 (2018).

    CAS  PubMed  Google Scholar 

  49. Matsuzaki, J. & Ochiya, T. Circulating microRNAs and extracellular vesicles as potential cancer biomarkers: a systematic review. Int. J. Clin. Oncol. 22, 413–420 (2017).

    CAS  PubMed  Google Scholar 

  50. Khan, M. S. et al. Circulating tumor cells and EpCAM expression in neuroendocrine tumors. Clin. Cancer Res. 17, 337–345 (2011).

    CAS  PubMed  Google Scholar 

  51. Khan, M. S. et al. Circulating tumor cells as prognostic markers in neuroendocrine tumors. J. Clin. Oncol. 31, 365–372 (2013).

    CAS  PubMed  Google Scholar 

  52. Ehlers, M. et al. Circulating tumor cells in patients with neuroendocrine neoplasms. Horm.Metabol. Res. 46, 744–745 (2014).

    CAS  Google Scholar 

  53. Childs, A. et al. Expression of somatostatin receptors 2 and 5 in circulating tumour cells from patients with neuroendocrine tumours. Br. J. Cancer 115, 1540–1547 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Darmanis, S. et al. Identification of candidate serum proteins for classifying well-differentiated small intestinal neuroendocrine tumors. PLoS ONE 8, e81712 (2013).

    PubMed  PubMed Central  Google Scholar 

  55. Kinross, J. M., Drymousis, P., Jimenez, B. & Frilling, A. Metabonomic profiling: a novel approach in neuroendocrine neoplasias. Surgery 154, 1185–1192; discussion 1192–1183 (2013).

    PubMed  Google Scholar 

  56. Erspamer, V. & Asero, B. Identification of enteramine, the specific hormone of the enterochromaffin cell system, as 5-hydroxytryptamine. Nature 169, 800–801 (1952).

    CAS  PubMed  Google Scholar 

  57. Grahame-Smith, D. G. Progress report: the carcinoid syndrome. Gut 11, 189–192 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kaltsas, G. A., Besser, G. M. & Grossman, A. B. The diagnosis and medical management of advanced neuroendocrine tumors. Endocr. Rev. 25, 458–511 (2004).

    CAS  PubMed  Google Scholar 

  59. Meijer, W. G., Kema, I. P., Volmer, M., Willemse, P. H. & de Vries, E. G. Discriminating capacity of indole markers in the diagnosis of carcinoid tumors. Clin. Chem. 46, 1588–1596 (2000).

    CAS  PubMed  Google Scholar 

  60. Scarpa, M. et al. A systematic review of diagnostic procedures to detect midgut neuroendocrine tumors. J. Surg. Oncol. 102, 877–888 (2010).

    PubMed  Google Scholar 

  61. Feldman, J. M. Urinary serotonin in the diagnosis of carcinoid tumors. Clin. Chem. 32, 840–844 (1986).

    CAS  PubMed  Google Scholar 

  62. Feldman, J. M. & O’Dorisio, T. M. Role of neuropeptides and serotonin in the diagnosis of carcinoid tumors. Am. J. Med. 81, 41–48 (1986).

    CAS  PubMed  Google Scholar 

  63. Bajetta, E. et al. Chromogranin A, neuron specific enolase, carcinoembryonic antigen, and hydroxyindole acetic acid evaluation in patients with neuroendocrine tumors. Cancer 86, 858–865 (1999).

    CAS  PubMed  Google Scholar 

  64. Zandee, W. T., Kamp, K., van Adrichem, R. C., Feelders, R. A. & de Herder, W. W. Limited value for urinary 5-HIAA excretion as prognostic marker in gastrointestinal neuroendocrine tumours. Eur. J. Endocrinol. 175, 361–366 (2016).

    CAS  PubMed  Google Scholar 

  65. Turner, G. B. et al. Circulating markers of prognosis and response to treatment in patients with midgut carcinoid tumours. Gut 55, 1586–1591 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Formica, V. et al. The prognostic role of WHO classification, urinary 5-hydroxyindoleacetic acid and liver function tests in metastatic neuroendocrine carcinomas of the gastroenteropancreatic tract. Br. J. Cancer 96, 1178–1182 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Seregni, E., Ferrari, L., Bajetta, E., Martinetti, A. & Bombardieri, E. Clinical significance of blood chromogranin A measurement in neuroendocrine tumours. Ann. Oncol. 12 (Suppl. 2), S69–72 (2001).

    PubMed  Google Scholar 

  68. Kema, I. P., Schellings, A. M., Meiborg, G., Hoppenbrouwers, C. J. & Muskiet, F. A. Influence of a serotonin- and dopamine-rich diet on platelet serotonin content and urinary excretion of biogenic amines and their metabolites. Clin. Chem. 38, 1730–1736 (1992).

    CAS  PubMed  Google Scholar 

  69. Tellez, M. R., Mamikunian, G., O’Dorisio, T. M., Vinik, A. I. & Woltering, E. A. A single fasting plasma 5-HIAA value correlates with 24-hour urinary 5-HIAA values and other biomarkers in midgut neuroendocrine tumors (NETs). Pancreas 42, 405–410 (2013).

    CAS  PubMed  Google Scholar 

  70. Adaway, J. E. et al. Serum and plasma 5-hydroxyindoleacetic acid as an alternative to 24-h urine 5-hydroxyindoleacetic acid measurement. Ann. Clin. Biochem. 53, 554–560 (2016).

    CAS  PubMed  Google Scholar 

  71. Kema, I. P., de Vries, E. G., Schellings, A. M., Postmus, P. E. & Muskiet, F. A. Improved diagnosis of carcinoid tumors by measurement of platelet serotonin. Clin. Chem. 38, 534–540 (1992).

    CAS  PubMed  Google Scholar 

  72. Bhattacharyya, S., Toumpanakis, C., Chilkunda, D., Caplin, M. E. & Davar, J. Risk factors for the development and progression of carcinoid heart disease. Am. J. Cardiol. 107, 1221–1226 (2011).

    PubMed  Google Scholar 

  73. Dobson, R. et al. The association of a panel of biomarkers with the presence and severity of carcinoid heart disease: a cross-sectional study. PLoS ONE 8, e73679 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Zuetenhorst, J. M. et al. Carcinoid heart disease: the role of urinary 5-hydroxyindoleacetic acid excretion and plasma levels of atrial natriuretic peptide, transforming growth factor-β and fibroblast growth factor. Cancer 97, 1609–1615 (2003).

    CAS  PubMed  Google Scholar 

  75. Korse, C. M., Taal, B. G., de Groot, C. A., Bakker, R. H. & Bonfrer, J. M. Chromogranin-A and N-terminal pro-brain natriuretic peptide: an excellent pair of biomarkers for diagnostics in patients with neuroendocrine tumor. J. Clin. Oncol. 27, 4293–4299 (2009).

    CAS  PubMed  Google Scholar 

  76. Bhattacharyya, S., Toumpanakis, C., Caplin, M. E. & Davar, J. Usefulness of N-terminal pro-brain natriuretic peptide as a biomarker of the presence of carcinoid heart disease. Am. J. Cardiol. 102, 938–942 (2008).

    CAS  PubMed  Google Scholar 

  77. Woltering, E. A. et al. Development of effective prophylaxis against intraoperative carcinoid crisis. J. Clin. Anesth 32, 189–193 (2016).

    CAS  PubMed  Google Scholar 

  78. Pernow, B. Substance P. Pharmacol. Rev. 35, 85–141 (1983).

    CAS  PubMed  Google Scholar 

  79. Norheim, I., Theodorsson-Norheim, E., Brodin, E. & Oberg, K. Tachykinins in carcinoid tumors: their use as a tumor marker and possible role in the carcinoid flush. J. Clin. Endocrinol. Metab. 63, 605–612 (1986).

    CAS  PubMed  Google Scholar 

  80. Oates, J. A., Melmon, K., Sjoerdsma, A., Gillespie, L. & Mason, D. T. Release of a kinin peptide in the carcinoid syndrome. Lancet 1, 514–517 (1964).

    CAS  PubMed  Google Scholar 

  81. Whipple, A. The surgical therapy of hyperinsulinism. J. Int. Chir 3, 237–276 (1938).

    Google Scholar 

  82. Cryer, P. E. et al. Evaluation and management of adult hypoglycemic disorders: an Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 94, 709–728 (2009).

    CAS  PubMed  Google Scholar 

  83. Hirshberg, B. et al. Forty-eight-hour fast: the diagnostic test for insulinoma. J. Clin. Endocrinol. Metab. 85, 3222–3226 (2000).

    CAS  PubMed  Google Scholar 

  84. Service, F. J. & Natt, N. The prolonged fast. J. Clin. Endocrinol. Metab. 85, 3973–3974 (2000).

    CAS  PubMed  Google Scholar 

  85. van Bon, A. C., Benhadi, N., Endert, E., Fliers, E. & Wiersinga, W. M. Evaluation of endocrine tests. D: the prolonged fasting test for insulinoma. Neth. J. Med. 67, 274–278 (2009).

    PubMed  Google Scholar 

  86. Dizon, A. M., Kowalyk, S. & Hoogwerf, B. J. Neuroglycopenic and other symptoms in patients with insulinomas. Am. J. Med. 106, 307–310 (1999).

    CAS  PubMed  Google Scholar 

  87. Eldor, R. et al. Glucagonoma and the glucagonoma syndrome — cumulative experience with an elusive endocrine tumour. Clin. Endocrinol. 74, 593–598 (2011).

    Google Scholar 

  88. Stacpoole, P. W. The glucagonoma syndrome: clinical features, diagnosis, and treatment. Endocr. Rev. 2, 347–361 (1981).

    CAS  PubMed  Google Scholar 

  89. Soga, J. & Yakuwa, Y. Glucagonomas/diabetico-dermatogenic syndrome (DDS): a statistical evaluation of 407 reported cases. J. Hepatobiliary Pancreat. Surg. 5, 312–319 (1999).

    Google Scholar 

  90. Said, S. I. & Mutt, V. Potent peripheral and splanchnic vasodilator peptide from normal gut. Nature 225, 863–864 (1970).

    CAS  PubMed  Google Scholar 

  91. Barbezat, G. O. & Grossman, M. I. Intestinal secretion: stimulation by peptides. Science 174, 422–424 (1971).

    CAS  PubMed  Google Scholar 

  92. Holst, J. J. et al. Vasoactive intestinal polypeptide (VIP) in the pig pancreas: role of VIPergic nerves in control of fluid and bicarbonate secretion. Regul. Pept. 8, 245–259 (1984).

    CAS  PubMed  Google Scholar 

  93. Robberecht, P., Conlon, T. P. & Gardner, J. D. Interaction of porcine vasoactive intestinal peptide with dispersed pancreatic acinar cells from the guinea pig. Structural requirements for effects of vasoactive intestinal peptide and secretin on cellular adenosine 3’:5’-monophosphate. J. Biol. Chem. 251, 4635–4639 (1976).

    CAS  PubMed  Google Scholar 

  94. Larsson, L. I. et al. Localization of vasoactive intestinal polypeptide (VIP) to central and peripheral neurons. Proc. Natl Acad. Sci. USA 73, 3197–3200 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Bloom, S. R. Vasoactive intestinal peptide, the major mediator of the WDHA (pancreatic cholera) syndrome: value of measurement in diagnosis and treatment. Am. J. Dig. Dis. 23, 373–376 (1978).

    CAS  PubMed  Google Scholar 

  96. Ekblad, E. & Sundler, F. Distribution of pancreatic polypeptide and peptide YY. Peptides 23, 251–261 (2002).

    CAS  PubMed  Google Scholar 

  97. Wang, X. et al. Quantitative analysis of pancreatic polypeptide cell distribution in the human pancreas. PLoS ONE 8, e55501 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Friesen, S. R., Kimmel, J. R. & Tomita, T. Pancreatic polypeptide as screening marker for pancreatic polypeptide apudomas in multiple endocrinopathies. Am. J. Surg. 139, 61–72 (1980).

    CAS  PubMed  Google Scholar 

  99. Maxwell, J. E., O’Dorisio, T. M., Bellizzi, A. M. & Howe, J. R. Elevated pancreatic polypeptide levels in pancreatic neuroendocrine tumors and diabetes mellitus: causation or association? Pancreas 43, 651–656 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Adrian, T. E., Uttenthal, L. O., Williams, S. J. & Bloom, S. R. Secretion of pancreatic polypeptide in patients with pancreatic endocrine tumors. N. Engl. J. Med. 315, 287–291 (1986).

    CAS  PubMed  Google Scholar 

  101. Panzuto, F. et al. Utility of combined use of plasma levels of chromogranin A and pancreatic polypeptide in the diagnosis of gastrointestinal and pancreatic endocrine tumors. J. Endocrinol. Invest. 27, 6–11 (2004).

    CAS  PubMed  Google Scholar 

  102. Walter, T. et al. Is the combination of chromogranin A and pancreatic polypeptide serum determinations of interest in the diagnosis and follow-up of gastro-entero-pancreatic neuroendocrine tumours? Eur. J. Cancer 48, 1766–1773 (2012).

    CAS  PubMed  Google Scholar 

  103. de Laat, J. M. et al. Low accuracy of tumor markers for diagnosing pancreatic neuroendocrine tumors in multiple endocrine neoplasia type 1 patients. J. Clin. Endocrinol. Metab. 98, 4143–4151 (2013).

    PubMed  Google Scholar 

  104. Qiu, W. et al. Utility of chromogranin A, pancreatic polypeptide, glucagon and gastrin in the diagnosis and follow-up of pancreatic neuroendocrine tumours in multiple endocrine neoplasia type 1 patients. Clin. Endocrinol. 85, 400–407 (2016).

    CAS  Google Scholar 

  105. Zollinger, R. M. & Ellison, E. H. Primary peptic ulcerations of the jejunum associated with islet cell tumors of the pancreas. Ann. Surg. 142, 709–723 (1955).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Oberg, K. et al. ENETS Consensus Guidelines for standard of care in neuroendocrine tumours: biochemical markers. Neuroendocrinology 105, 201–211 (2017).

    CAS  PubMed  Google Scholar 

  107. Varro, A. & Ardill, J. E. Gastrin: an analytical review. Ann. Clin. Biochem. 40, 472–480 (2003).

    CAS  PubMed  Google Scholar 

  108. Poitras, P., Gingras, M. H. & Rehfeld, J. F. The Zollinger-Ellison syndrome: dangers and consequences of interrupting antisecretory treatment. Clin. Gastroenterol. Hepatol. 10, 199–202 (2012).

    PubMed  Google Scholar 

  109. Ito, T., Cadiot, G. & Jensen, R. T. Diagnosis of Zollinger-Ellison syndrome: increasingly difficult. World J. Gastroenterol. 18, 5495–5503 (2012).

    PubMed  PubMed Central  Google Scholar 

  110. Berna, M. J., Hoffmann, K. M., Serrano, J., Gibril, F. & Jensen, R. T. Serum gastrin in Zollinger-Ellison syndrome: I. Prospective study of fasting serum gastrin in 309 patients from the National Institutes of Health and comparison with 2229 cases from the literature. Medicine 85, 295–330 (2006).

    CAS  PubMed  Google Scholar 

  111. Berna, M. J. et al. Serum gastrin in Zollinger-Ellison syndrome: II. Prospective study of gastrin provocative testing in 293 patients from the National Institutes of Health and comparison with 537 cases from the literature. evaluation of diagnostic criteria, proposal of new criteria, and correlations with clinical and tumoral features. Medicine 85, 331–364 (2006).

    CAS  PubMed  Google Scholar 

  112. Krejs, G. J. et al. Somatostatinoma syndrome. Biochemical, morphologic and clinical features. N. Engl. J. Med. 301, 285–292 (1979).

    CAS  PubMed  Google Scholar 

  113. Larsson, L. I. et al. Pancreatic somatostatinoma. Clinical features and physiological implications. Lancet 1, 666–668 (1977).

    CAS  PubMed  Google Scholar 

  114. Tanaka, S. et al. Duodenal somatostatinoma: a case report and review of 31 cases with special reference to the relationship between tumor size and metastasis. Pathol. Int. 50, 146–152 (2000).

    CAS  PubMed  Google Scholar 

  115. Wajchenberg, B. L. et al. Ectopic ACTH syndrome. J. Steroid Biochem. Mol. Biol. 53, 139–151 (1995).

    CAS  PubMed  Google Scholar 

  116. Howlett, T. A. et al. Diagnosis and management of ACTH-dependent Cushing’s syndrome: comparison of the features in ectopic and pituitary ACTH production. Clin. Endocrinol. 24, 699–713 (1986).

    CAS  Google Scholar 

  117. Kamp, K. et al. Prevalence and clinical features of the ectopic ACTH syndrome in patients with gastroenteropancreatic and thoracic neuroendocrine tumors. Eur. J. Endocrinol. 174, 271–280 (2016).

    CAS  PubMed  Google Scholar 

  118. Nieman, L. K. et al. The diagnosis of Cushing’s syndrome: an Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 93, 1526–1540 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Lacroix, A., Feelders, R. A., Stratakis, C. A. & Nieman, L. K. Cushing’s syndrome. Lancet 386, 913–927 (2015).

    CAS  PubMed  Google Scholar 

  120. Deftos, L. J., Gazdar, A. F., Ikeda, K. & Broadus, A. E. The parathyroid hormone-related protein associated with malignancy is secreted by neuroendocrine tumors. Mol. Endocrinol. 3, 503–508 (1989).

    CAS  PubMed  Google Scholar 

  121. Kamp, K. et al. Parathyroid hormone-related peptide (PTHrP) secretion by gastroenteropancreatic neuroendocrine tumors (GEP-NETs): clinical features, diagnosis, management, and follow-up. J. Clin. Endocrinol. Metab. 99, 3060–3069 (2014).

    CAS  PubMed  Google Scholar 

  122. Burtis, W. J. Parathyroid hormone-related protein: structure, function, and measurement. Clin. Chem. 38, 2171–2183 (1992).

    CAS  PubMed  Google Scholar 

  123. Gola, M. et al. Neuroendocrine tumors secreting growth hormone-releasing hormone: pathophysiological and clinical aspects. Pituitary 9, 221–229 (2006).

    CAS  PubMed  Google Scholar 

  124. Ghazi, A. A. et al. Ectopic acromegaly due to growth hormone releasing hormone. Endocrine 43, 293–302 (2013).

    CAS  PubMed  Google Scholar 

  125. Melmed, S., Ezrin, C., Kovacs, K., Goodman, R. S. & Frohman, L. A. Acromegaly due to secretion of growth hormone by an ectopic pancreatic islet-cell tumor. N. Engl. J. Med. 312, 9–17 (1985).

    CAS  PubMed  Google Scholar 

  126. Herrera, M. F. et al. AACE/ACE disease state clinical review: pancreatic neuroendocrine incidentalomas. Endocr. Pract. 21, 546–553 (2015).

    PubMed  PubMed Central  Google Scholar 

  127. Sundin, A. et al. ENETS Consensus Guidelines for the standards of care in neuroendocrine tumors: radiological, nuclear medicine and hybrid imaging. Neuroendocrinology 105, 212–244 (2017).

    CAS  PubMed  Google Scholar 

  128. Blazevic, A., Hofland, J., Hofland, L. J., Feelders, R. A. & de Herder, W. W. Small intestinal neuroendocrine tumours and fibrosis: an entangled conundrum. Endocr. Relat. Cancer 25, R115–R130 (2018).

    PubMed  Google Scholar 

  129. Nijssen, E. C. et al. Prophylactic hydration to protect renal function from intravascular iodinated contrast material in patients at high risk of contrast-induced nephropathy (AMACING): a prospective, randomised, phase 3, controlled, open-label, non-inferiority trial. Lancet 389, 1312–1322 (2017).

    PubMed  Google Scholar 

  130. Elias, D. et al. Hepatic metastases from neuroendocrine tumors with a “thin slice” pathological examination: they are many more than you think. Ann. Surg. 251, 307–310 (2010).

    PubMed  Google Scholar 

  131. Ricke, J., Klose, K. J., Mignon, M., Oberg, K. & Wiedenmann, B. Standardisation of imaging in neuroendocrine tumours: results of a European delphi process. Eur. J. Radiol. 37, 8–17 (2001).

    CAS  PubMed  Google Scholar 

  132. Hofland, L. J. & Lamberts, S. W. The pathophysiological consequences of somatostatin receptor internalization and resistance. Endocr. Rev. 24, 28–47 (2003).

    CAS  PubMed  Google Scholar 

  133. Krenning, E. P. et al. Localisation of endocrine-related tumours with radioiodinated analogue of somatostatin. Lancet 1, 242–244 (1989).

    CAS  PubMed  Google Scholar 

  134. Lamberts, S. W., Reubi, J. C. & Krenning, E. P. Validation of somatostatin receptor scintigraphy in the localization of neuroendocrine tumors. Acta Oncol. 32, 167–170 (1993).

    CAS  PubMed  Google Scholar 

  135. Namwongprom, S., Wong, F. C., Tateishi, U., Kim, E. E. & Boonyaprapa, S. Correlation of chromogranin A levels and somatostatin receptor scintigraphy findings in the evaluation of metastases in carcinoid tumors. Ann. Nuclear Med. 22, 237–243 (2008).

    Google Scholar 

  136. Rodrigues, M. et al. Concordance between results of somatostatin receptor scintigraphy with 111In-DOTA-DPhe 1-Tyr 3-octreotide and chromogranin A assay in patients with neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imag. 35, 1796–1802 (2008).

    CAS  Google Scholar 

  137. Tirosh, A. et al. Association between neuroendocrine tumors biomarkers and primary tumor site and disease type based on total 68Ga-DOTATATE-Avid tumor volume measurements. Eur. J. Endocrinol. 176, 575–582 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Rahmim, A. & Zaidi, H. PET versus SPECT: strengths, limitations and challenges. Nucl. Med. Commun. 29, 193–207 (2008).

    PubMed  Google Scholar 

  139. Geijer, H. & Breimer, L. H. Somatostatin receptor PET/CT in neuroendocrine tumours: update on systematic review and meta-analysis. Eur. J. Nucl. Med. Mol. Imag. 40, 1770–1780 (2013).

    CAS  Google Scholar 

  140. Sadowski, S. M. et al. Prospective Study of 68Ga-DOTATATE positron emission tomography/computed tomography for detecting gastro-entero-pancreatic neuroendocrine tumors and unknown primary sites. J. Clin. Oncol. 34, 588–596 (2016).

    CAS  PubMed  Google Scholar 

  141. Naswa, N. et al. Metastatic neuroendocrine carcinoma presenting as a “Superscan” on 68Ga-DOTANOC somatostatin receptor PET/CT. Clin. Nucl. Med. 37, 892–894 (2012).

    PubMed  Google Scholar 

  142. Sharma, P. et al. Somatostatin receptor based PET/CT imaging with 68Ga-DOTA-Nal3-octreotide for localization of clinically and biochemically suspected insulinoma. Q. J. Nucl. Med. Mol. Imag. 60, 69–76 (2016).

    Google Scholar 

  143. Barrio, M. et al. The impact of somatostatin receptor-directed PET/CT on the management of patients with neuroendocrine tumor: a systematic review and meta-analysis. J. Nucl. Med. 58, 756–761 (2017).

    PubMed  Google Scholar 

  144. Graham, M. M., Gu, X., Ginader, T., Breheny, P. & Sunderland, J. J. 68Ga-DOTATOC imaging of neuroendocrine tumors: a systematic review and metaanalysis. J. Nucl. Med. 58, 1452–1458 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Hope, T. A. et al. Appropriate use criteria for somatostatin receptor PET imaging in neuroendocrine tumors. J. Nucl. Med. 59, 66–74 (2018).

    PubMed  PubMed Central  Google Scholar 

  146. Binderup, T. et al. Functional imaging of neuroendocrine tumors: a head-to-head comparison of somatostatin receptor scintigraphy, 123I-MIBG scintigraphy, and 18F-FDG PET. J. Nucl. Med. 51, 704–712 (2010).

    PubMed  Google Scholar 

  147. Has Simsek, D. et al. Can complementary 68Ga-DOTATATE and 18F-FDG PET/CT establish the missing link between histopathology and therapeutic approach in gastroenteropancreatic neuroendocrine tumors? J. Nucl. Med. 55, 1811–1817 (2014).

    PubMed  Google Scholar 

  148. Squires, M. H. 3rd et al. Octreoscan versus FDG-PET for neuroendocrine tumor staging: a biological approach. Ann. Surg. Oncol. 22, 2295–2301 (2015).

    PubMed  Google Scholar 

  149. Modlin, I. M. et al. Gastrointestinal carcinoids: the evolution of diagnostic strategies. J. Clin. Gastroenterol. 40, 572–582 (2006).

    PubMed  Google Scholar 

  150. Kaltsas, G. et al. Comparison of somatostatin analog and meta-iodobenzylguanidine radionuclides in the diagnosis and localization of advanced neuroendocrine tumors. J. Clin. Endocrinol. Metab. 86, 895–902 (2001).

    CAS  PubMed  Google Scholar 

  151. Jager, P. L. et al. 6-L-18F-fluorodihydroxyphenylalanine PET in neuroendocrine tumors: basic aspects and emerging clinical applications. J. Nucl. Med. 49, 573–586 (2008).

    CAS  PubMed  Google Scholar 

  152. Balogova, S. et al. 18F-fluorodihydroxyphenylalanine versus other radiopharmaceuticals for imaging neuroendocrine tumours according to their type. Eur. J. Nucl. Med. Mol. Imag. 40, 943–966 (2013).

    CAS  Google Scholar 

  153. Koopmans, K. P. et al. Improved staging of patients with carcinoid and islet cell tumors with 18F-dihydroxy-phenyl-alanine and 11C-5-hydroxy-tryptophan positron emission tomography. J. Clin. Oncol. 26, 1489–1495 (2008).

    PubMed  Google Scholar 

  154. Haug, A. et al. Intraindividual comparison of 68Ga-DOTA-TATE and 18F-DOPA PET in patients with well-differentiated metastatic neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imag. 36, 765–770 (2009).

    CAS  Google Scholar 

  155. Sundin, A. et al. Demonstration of [11C] 5-hydroxy-L-tryptophan uptake and decarboxylation in carcinoid tumors by specific positioning labeling in positron emission tomography. Nuclear Med. Biol. 27, 33–41 (2000).

    CAS  Google Scholar 

  156. Orlefors, H. et al. Positron emission tomography with 5-hydroxytryprophan in neuroendocrine tumors. J. Clin. Oncol. 16, 2534–2541 (1998).

    CAS  PubMed  Google Scholar 

  157. Orlefors, H. et al. PET-guided surgery — high correlation between positron emission tomography with 11C-5-hydroxytryptophane (5-HTP) and surgical findings in abdominal neuroendocrine tumours. Cancers 4, 100–112 (2012).

    PubMed  PubMed Central  Google Scholar 

  158. Orlefors, H. et al. Whole-body (11)C-5-hydroxytryptophan positron emission tomography as a universal imaging technique for neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and computed tomography. J. Clin. Endocrinol. Metab. 90, 3392–3400 (2005).

    CAS  PubMed  Google Scholar 

  159. Christ, E. et al. Glucagon-like peptide-1 receptor imaging for localization of insulinomas. J. Clin. Endocrinol. Metab. 94, 4398–4405 (2009).

    CAS  PubMed  Google Scholar 

  160. Christ, E. et al. Glucagon-like peptide-1 receptor imaging for the localisation of insulinomas: a prospective multicentre imaging study. Lancet Diabetes Endocrinol. 1, 115–122 (2013).

    CAS  PubMed  Google Scholar 

  161. Wild, D. et al. Glucagon-like peptide-1 versus somatostatin receptor targeting reveals 2 distinct forms of malignant insulinomas. J. Nucl. Med. 52, 1073–1078 (2011).

    PubMed  Google Scholar 

  162. Kaemmerer, D. et al. Differential expression and prognostic value of the chemokine receptor CXCR4 in bronchopulmonary neuroendocrine neoplasms. Oncotarget 6, 3346–3358 (2015).

    PubMed  Google Scholar 

  163. Kaemmerer, D. et al. Inverse expression of somatostatin and CXCR4 chemokine receptors in gastroenteropancreatic neuroendocrine neoplasms of different malignancy. Oncotarget 6, 27566–27579 (2015).

    PubMed  PubMed Central  Google Scholar 

  164. Lapa, C. et al. [68Ga]Pentixafor-PET/CT for imaging of chemokine receptor 4 expression in small cell lung cancer — initial experience. Oncotarget 7, 9288–9295 (2016).

    PubMed  PubMed Central  Google Scholar 

  165. Werner, R. A. et al. Imaging of chemokine receptor 4 expression in neuroendocrine tumors — a triple tracer comparative approach. Theranostics 7, 1489–1498 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Kuiper, P. et al. Expression and ligand binding of bombesin receptors in pulmonary and intestinal carcinoids. J. Endocrinol. Invest. 34, 665–670 (2011).

    CAS  PubMed  Google Scholar 

  167. Dalm, S. U. et al. 68Ga/177Lu-NeoBOMB1, a novel radiolabeled GRPR antagonist for theranostic use in oncology. J. Nucl. Med. 58, 293–299 (2017).

    CAS  PubMed  Google Scholar 

  168. Nock, B. A. et al. Theranostic perspectives in prostate cancer with the gastrin-releasing peptide receptor antagonist NeoBOMB1: preclinical and first clinical results. J. Nucl. Med. 58, 75–80 (2017).

    CAS  PubMed  Google Scholar 

  169. Bossuyt, P. M. et al. Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Standards for reporting of diagnostic accuracy. Clin. Chem. 49, 1–6 (2003).

    CAS  PubMed  Google Scholar 

  170. Miekus, N. & Baczek, T. Non-invasive screening for neuroendocrine tumors — Biogenic amines as neoplasm biomarkers and the potential improvement of “gold standards”. J. Pharm. Biomed. Analysis 130, 194–201 (2016).

    CAS  Google Scholar 

  171. Carreira, S. et al. Tumor clone dynamics in lethal prostate cancer. Sci. Transl Med. 6, 254ra125 (2014).

    PubMed  PubMed Central  Google Scholar 

  172. Lehmann-Werman, R. et al. Identification of tissue-specific cell death using methylation patterns of circulating DNA. Proc. Natl Acad. Sci. USA 113, E1826–E1834 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Salvianti, F. et al. Tumor-related methylated cell-free DNA and circulating tumor cells in melanoma. Front. Mol. Biosciences 2, 76 (2015).

    Google Scholar 

  174. Johnbeck, C. B. et al. Head-to-head comparison of (64)Cu-DOTATATE and (68)Ga-DOTATOC PET/CT: a prospective study of 59 patients with neuroendocrine tumors. J. Nucl. Med. 58, 451–457 (2017).

    CAS  PubMed  Google Scholar 

  175. Cescato, R., Waser, B., Fani, M. & Reubi, J. C. Evaluation of 177Lu-DOTA-sst2 antagonist versus 177Lu-DOTA-sst2 agonist binding in human cancers in vitro. J. Nucl. Med. 52, 1886–1890 (2011).

    CAS  PubMed  Google Scholar 

  176. Nicolas, G. P. et al. Comparison of (68)Ga-OPS202 ((68)Ga-NODAGA-JR11) and (68)Ga-DOTATOC ((68)Ga-Edotreotide) PET/CT in patients with gastroenteropancreatic neuroendocrine tumors: evaluation of sensitivity in a prospective phase ii imaging study. J. Nucl. Med. 59, 915–921 (2018).

    PubMed  Google Scholar 

  177. Pandit-Taskar, N. et al. Biodistribution and dosimetry of 18F-Meta Fluorobenzyl Guanidine (MFBG): a first-in-human PET-CT imaging study of patients with neuroendocrine malignancies. J. Nucl. Med. 59, 147–153 (2018).

    PubMed  PubMed Central  Google Scholar 

  178. Carr, J. C. et al. Overexpression of membrane proteins in primary and metastatic gastrointestinal neuroendocrine tumors. Ann. Surg. Oncol. 20 (Suppl. 3), S739–S746 (2013).

    PubMed  PubMed Central  Google Scholar 

  179. Strosberg, J. et al. Phase 3 trial of 177Lu-Dotatate for midgut neuroendocrine tumors. N. Engl. J. Med. 376, 125–135 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Arlt, W. et al. Urine steroid metabolomics as a biomarker tool for detecting malignancy in adrenal tumors. J. Clin. Endocrinol. Metab. 96, 3775–3784 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Han, X. et al. The value of serum chromogranin A as a predictor of tumor burden, therapeutic response, and nomogram-based survival in well-moderate nonfunctional pancreatic neuroendocrine tumors with liver metastases. Eur. J. Gastroenterol. Hepatol. 27, 527–535 (2015).

    PubMed  Google Scholar 

  182. Modlin, I. M. et al. A nomogram to assess small-intestinal neuroendocrine tumor (‘carcinoid’) survival. Neuroendocrinology 92, 143–157 (2010).

    CAS  PubMed  Google Scholar 

  183. Ellison, T. A. et al. A single institution’s 26-year experience with nonfunctional pancreatic neuroendocrine tumors: a validation of current staging systems and a new prognostic nomogram. Ann. Surg. 259, 204–212 (2014).

    PubMed  Google Scholar 

  184. Biomarkers Definitions Working, G. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69, 89–95 (2001).

    Google Scholar 

  185. Janson, E. T. et al. Carcinoid tumors: analysis of prognostic factors and survival in 301 patients from a referral center. Ann. Oncol. 8, 685–690 (1997).

    CAS  PubMed  Google Scholar 

  186. Eriksson, B., Oberg, K. & Stridsberg, M. Tumor markers in neuroendocrine tumors. Digestion 62 (Suppl. 1), 33–38 (2000).

    CAS  PubMed  Google Scholar 

  187. Chou, W. C. et al. Chromogranin A is a reliable biomarker for gastroenteropancreatic neuroendocrine tumors in an Asian population of patients. Neuroendocrinology 95, 344–350 (2012).

    CAS  PubMed  Google Scholar 

  188. van Adrichem, R. C. et al. Serum neuron-specific enolase level is an independent predictor of overall survival in patients with gastroenteropancreatic neuroendocrine tumors. Ann. Oncol. 27, 746–747 (2016).

    PubMed  Google Scholar 

  189. Wiese, D. et al. C-reactive protein as a new prognostic factor for survival in patients with pancreatic neuroendocrine neoplasia. J. Clin. Endocrinol. Metab. 101, 937–944 (2016).

    CAS  PubMed  Google Scholar 

  190. Salman, T. et al. Prognostic value of the pretreatment neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio for patients with neuroendocrine tumors: an Izmir Oncology Group Study. Chemotherapy 61, 281–286 (2016).

    CAS  PubMed  Google Scholar 

  191. Cao, L. L. et al. A novel predictive model based on preoperative blood neutrophil-to-lymphocyte ratio for survival prognosis in patients with gastric neuroendocrine neoplasms. Oncotarget 7, 42045–42058 (2016).

    PubMed  PubMed Central  Google Scholar 

  192. Luo, G. et al. Neutrophil-lymphocyte ratio predicts survival in pancreatic neuroendocrine tumors. Oncol. Lett. 13, 2454–2458 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Okui, M. et al. Prognostic significance of neutrophil-lymphocyte ratios in large cell neuroendocrine carcinoma. Gen. Thorac. Cardiovasc. Surg. 65, 633–639 (2017).

    PubMed  Google Scholar 

  194. Cui, T. et al. Paraneoplastic antigen Ma2 autoantibodies as specific blood biomarkers for detection of early recurrence of small intestine neuroendocrine tumors. PLoS ONE 5, e16010 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Modlin, I. M. et al. Blood measurement of neuroendocrine gene transcripts defines the effectiveness of operative resection and ablation strategies. Surgery 159, 336–347 (2016).

    PubMed  Google Scholar 

  196. Cwikla, J. B. et al. Circulating transcript analysis (NETest) in GEP-NETs treated with somatostatin analogs defines therapy. J. Clin. Endocrinol. Metab. 100, E1437–E1445 (2015).

    CAS  PubMed  Google Scholar 

  197. Bodei, L. et al. Measurement of circulating transcripts and gene cluster analysis predicts and defines therapeutic efficacy of peptide receptor radionuclide therapy (PRRT) in neuroendocrine tumors. Eur. J. Nucl. Med. Mol. Imag. 43, 839–851 (2016).

    CAS  Google Scholar 

  198. Pavel, M. et al. NET blood transcript analysis defines the crossing of the clinical rubicon: when stable disease becomes progressive. Neuroendocrinology 104, 170–182 (2017).

    CAS  PubMed  Google Scholar 

  199. Khan, M. S. et al. Early changes in circulating tumor cells are associated with response and survival following treatment of metastatic neuroendocrine neoplasms. Clin. Cancer Res. 22, 79–85 (2016).

    CAS  PubMed  Google Scholar 

  200. van der Horst-Schrivers, A. N. et al. Persistent low urinary excretion of 5-HIAA is a marker for favourable survival during follow-up in patients with disseminated midgut carcinoid tumours. Eur. J. Cancer 43, 2651–2657 (2007).

    PubMed  Google Scholar 

  201. Diebold, A. E. et al. Neurokinin A levels predict survival in patients with stage IV well differentiated small bowel neuroendocrine neoplasms. Surgery 152, 1172–1176 (2012).

    PubMed  Google Scholar 

  202. Ardill, J. E., McCance, D. R., Stronge, W. V. & Johnston, B. T. Raised circulating Neurokinin A predicts prognosis in metastatic small bowel neuroendocrine tumours. Lowering Neurokinin A indicates improved prognosis. Ann. Clin. Biochem. 53, 259–264 (2016).

    CAS  PubMed  Google Scholar 

  203. Shi, W. et al. The octreotide suppression test and [111In-DTPA-D-Phe1]-octreotide scintigraphy in neuroendocrine tumours correlate with responsiveness to somatostatin analogue treatment. Clin. Endocrinol. 48, 303–309 (1998).

    CAS  Google Scholar 

  204. Mehta, S. et al. Somatostatin receptor SSTR-2a expression is a stronger predictor for survival than Ki-67 in pancreatic neuroendocrine tumors. Medicine 94, e1281 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Haug, A. R. et al. 68Ga-DOTATATE PET/CT for the early prediction of response to somatostatin receptor-mediated radionuclide therapy in patients with well-differentiated neuroendocrine tumors. J. Nucl. Med. 51, 1349–1356 (2010).

    CAS  PubMed  Google Scholar 

  206. Ezziddin, S. et al. Prognostic stratification of metastatic gastroenteropancreatic neuroendocrine neoplasms by 18F-FDG PET: feasibility of a metabolic grading system. J. Nucl. Med. 55, 1260–1266 (2014).

    CAS  PubMed  Google Scholar 

  207. Chan, D. L. et al. Dual somatostatin receptor/FDG PET/CT imaging in metastatic neuroendocrine tumours: proposal for a novel grading scheme with prognostic significance. Theranostics 7, 1149–1158 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Severi, S. et al. Role of 18FDG PET/CT in patients treated with 177Lu-DOTATATE for advanced differentiated neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imag. 40, 881–888 (2013).

    CAS  Google Scholar 

  209. Atkins, D. et al. Grading quality of evidence and strength of recommendations. BMJ 328, 1490 (2004).

    PubMed  Google Scholar 

  210. van Haard, P. M. Chromatography of urinary indole derivatives. J. Chromatogr. 429, 59–94 (1988).

    PubMed  Google Scholar 

  211. Carling, R. S., Degg, T. J., Allen, K. R., Bax, N. D. & Barth, J. H. Evaluation of whole blood serotonin and plasma and urine 5-hydroxyindole acetic acid in diagnosis of carcinoid disease. Ann. Clin. Biochem. 39, 577–582 (2002).

    CAS  PubMed  Google Scholar 

  212. Wermers, R. A., Fatourechi, V., Wynne, A. G., Kvols, L. K. & Lloyd, R. V. The glucagonoma syndrome. Clinical and pathologic features in 21 patients. Medicine 75, 53–63 (1996).

    CAS  PubMed  Google Scholar 

  213. Katznelson, L. et al. Acromegaly: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 99, 3933–3951 (2014).

    CAS  PubMed  Google Scholar 

Download references

Review criteria

For our literature search, the National Center for Biotechnology Information PubMed online database was queried on 21 August 2017 with the following key words: “neuroendocrine” AND “biomarker”, yielding 6,779 papers. After screening of titles for biomarkers in gastroenteropancreatic neuroendocrine tumours, 421 original studies were left for abstract and, if available, full-text evaluation. Through cross-references, relevant studies that were not obtained through the original search were also included.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, provided substantial contributions to discussions of the content, contributed equally to the writing of the article and reviewed and/or edited the manuscript before its submission.

Corresponding author

Correspondence to Johannes Hofland.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofland, J., Zandee, W.T. & de Herder, W.W. Role of biomarker tests for diagnosis of neuroendocrine tumours. Nat Rev Endocrinol 14, 656–669 (2018). https://doi.org/10.1038/s41574-018-0082-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-018-0082-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing