Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications

Abstract

Cognitive dysfunction is increasingly recognized as an important comorbidity of diabetes mellitus. Different stages of diabetes-associated cognitive dysfunction exist, each with different cognitive features, affected age groups and prognoses and probably with different underlying mechanisms. Relatively subtle, slowly progressive cognitive decrements occur in all age groups. More severe stages, particularly mild cognitive impairment and dementia, with progressive deficits, occur primarily in older individuals (>65 years of age). Patients in the latter group are the most relevant for patient management and are the focus of this Review. Here, we review the evolving insights from studies on risk factors, brain imaging and neuropathology, which provide important clues on mechanisms of both the subtle cognitive decrements and the more severe stages of cognitive dysfunction. In the majority of patients, the cognitive phenotype is probably defined by multiple aetiologies. Although both the risk of clinically diagnosed Alzheimer disease and that of vascular dementia is increased in association with diabetes, the cerebral burden of the prototypical pathologies of Alzheimer disease (such as neurofibrillary tangles and neuritic plaques) is not. A major challenge for researchers is to pinpoint from the spectrum of diabetes-related disease processes those that affect the brain and contribute to development of dementia beyond the pathologies of Alzheimer disease. Observations from experimental models can help to meet that challenge, but this requires further improving the synergy between experimental and clinical scientists. The development of targeted treatment and preventive strategies will therefore depend on these translational efforts.

Key points

  • Cognitive dysfunction in diabetes mellitus can manifest itself as diabetes-associated cognitive decrements, mild cognitive impairment (MCI) and dementia.

  • Owing to the marked differences in affected age groups and trajectories of cognitive decline, diabetes-mellitus-associated cognitive decrements and dementia should be regarded as different entities that probably have different underlying mechanisms.

  • Mechanisms of MCI and dementia in diabetes have mainly been studied in patients with type 2 diabetes mellitus (T2DM) and involve mixed vascular and neurodegenerative pathologies, often on a background of Alzheimer disease pathology; however, T2DM does not increase the burden of the latter.

  • Key causative pathways in diabetes-associated cognitive dysfunction need to be identified in order to develop course-modifying therapies.

  • Experimental models can single out individual causative pathways in ways and at a level of detail that are impossible in humans.

  • Any potential mechanisms of brain dysfunction that are identified in experimental models of diabetes mellitus must also be evaluated in the complex setting of other morbidities with which they may co-occur in patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Brain imaging findings in patients with type 2 diabetes mellitus.
Fig. 2: Risk factors and underlying pathologies for dementia in type 2 diabetes mellitus.
Fig. 3: Pancreatic amylin forms amyloid and interacts with amyloid-β in the brains of patients with type 2 diabetes mellitus.

Similar content being viewed by others

References

  1. International Diabetes Federation. IDF Diabetes Atlas, Eighth edition, 2017, http://www.diabetesatlas.org/resources/2017-atlas.html (2017).

  2. Kahn, S. E., Cooper, M. E. & Del Prato, S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet 383, 1068–1083 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Prince, M. et al. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement 9, 63–75 (2013).

    Article  PubMed  Google Scholar 

  4. Biessels, G. J., Staekenborg, S., Brunner, E., Brayne, C. & Scheltens, P. Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol. 5, 64–74 (2006).

    Article  PubMed  Google Scholar 

  5. Koekkoek, P. S., Kappelle, L. J., van den Berg, E., Rutten, G. E. & Biessels, G. J. Cognitive function in patients with diabetes mellitus: guidance for daily care. Lancet Neurol. 14, 329–340 (2015).

    Article  PubMed  Google Scholar 

  6. Gudala, K., Bansal, D., Schifano, F. & Bhansali, A. Diabetes mellitus and risk of dementia: a meta-analysis of prospective observational studies. J. Diabetes Investig. 4, 640–650 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhang, J. et al. An updated meta-analysis of cohort studies: diabetes and risk of Alzheimer’s disease. Diabetes Res. Clin. Pract. 124, 41–47 (2017).

    Article  PubMed  Google Scholar 

  8. Biessels, G. J., Deary, I. J. & Ryan, C. M. Cognition and diabetes: a lifespan perspective. Lancet Neurol. 7, 184–190 (2008).

    Article  PubMed  Google Scholar 

  9. Ryan, C. M., van Duinkerken, E. & Rosano, C. Neurocognitive consequences of diabetes. Am. Psychol. 71, 563–576 (2016).

    Article  PubMed  Google Scholar 

  10. Brands, A. M., Biessels, G. J., de Haan, E. H., Kappelle, L. J. & Kessels, R. P. The effects of type 1 diabetes on cognitive performance: a meta-analysis. Diabetes Care 28, 726–735 (2005).

    Article  PubMed  Google Scholar 

  11. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study Research Group. Long-term effect of diabetes and its treatment on cognitive function. N. Engl. J. Med. 356, 1842–1852 (2007).

    Article  Google Scholar 

  12. Nunley, K. A. et al. Clinically relevant cognitive impairment in middle-aged adults with childhood-onset type 1 diabetes. Diabetes Care 38, 1768–1776 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Monette, M. C., Baird, A. & Jackson, D. L. A meta-analysis of cognitive functioning in nondemented adults with type 2 diabetes mellitus. Can. J. Diabetes 38, 401–408 (2014).

    Article  PubMed  Google Scholar 

  14. Palta, P., Schneider, A. L., Biessels, G. J., Touradji, P. & Hill-Briggs, F. Magnitude of cognitive dysfunction in adults with type 2 diabetes: a meta-analysis of six cognitive domains and the most frequently reported neuropsychological tests within domains. J. Int. Neuropsychol. Soc. 20, 278–291 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Biessels, G. J., Strachan, M. W., Visseren, F. L., Kappelle, L. J. & Whitmer, R. A. Dementia and cognitive decline in type 2 diabetes and prediabetic stages: towards targeted interventions. Lancet Diabetes Endocrinol. 2, 246–255 (2014).

    Article  PubMed  Google Scholar 

  16. Bangen, K. J. et al. Relationship between type 2 diabetes mellitus and cognitive change in a multi9ethnic elderly cohort. J. Am. Geriatr. Soc. 63, 1075–1083 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pappas, C., Andel, R., Infurna, F. J. & Seetharaman, S. Glycated haemoglobin (HbA1c), diabetes and trajectories of change in episodic memory performance. J. Epidemiol. Commun. Health 71, 115–120 (2017).

    Article  Google Scholar 

  18. Yaffe, K. et al. Diabetes, glucose control, and 9-year cognitive decline among older adults without dementia. Arch. Neurol. 69, 1170–1175 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Petersen, R. C. MCI as a diagnostic entity. J. Intern. Med. 256, 183–194 (2004).

    CAS  PubMed  Google Scholar 

  20. Petersen, R. C. et al. Practice guideline update summary: MCI: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 90, 126–135 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fourth edition (DSM-IV) (American Psychiatric Association, Washington DC, 1994).

    Google Scholar 

  22. Scheltens, P. et al. Alzheimer’s disease. Lancet 388, 505–517 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Dubois, B. et al. Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol. 9, 1118–1127 (2010).

    Article  PubMed  Google Scholar 

  24. Luchsinger, J. A. et al. Relation of diabetes to MCI. Arch. Neurol. 64, 570–575 (2007).

    Article  PubMed  Google Scholar 

  25. Roberts, R. O. et al. Association of diabetes with amnestic and nonamnestic MCI. Alzheimers Dement. 10, 18–26 (2014).

    Article  PubMed  Google Scholar 

  26. Cooper, C., Sommerlad, A., Lyketsos, C. G. & Livingston, G. Modifiable predictors of dementia in MCI: a systematic review and meta-analysis. Am. J. Psychiatry 172, 323–334 (2015).

    Article  PubMed  Google Scholar 

  27. Li, J. Q. et al. Risk factors for predicting progression from MCI to Alzheimer’s disease: a systematic review and meta-analysis of cohort studies. J. Neurol. Neurosurg. Psychiatry 87, 476–484 (2016).

    Article  PubMed  Google Scholar 

  28. Chatterjee, S. et al. Type 2 diabetes as a risk factor for dementia in women compared with men: a pooled analysis of 2.3 million people comprising more than 100,000 cases of dementia. Diabetes Care 39, 300–307 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Haroon, N. N. et al. Risk of dementia in seniors with newly diagnosed diabetes: a population-based study. Diabetes Care 38, 1868–1875 (2015).

    Article  PubMed  CAS  Google Scholar 

  30. Crane, P. K. et al. Glucose levels and risk of dementia. N. Engl. J. Med. 369, 540–548 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Exalto, L. G. et al. Risk score for prediction of 10 year dementia risk in individuals with type 2 diabetes: a cohort study. Lancet Diabetes Endocrinol. 1, 183–190 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Brady, C. C. et al. Obese adolescents with type 2 diabetes perform worse than controls on cognitive and behavioral assessments. Pediatr. Diabetes 18, 297–303 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Yates, K. F., Sweat, V., Yau, P. L., Turchiano, M. M. & Convit, A. Impact of metabolic syndrome on cognition and brain: a selected review of the literature. Arterioscler. Thromb. Vasc. Biol. 32, 2060–2067 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. van den Berg, E., de Craen, A. J., Biessels, G. J., Gussekloo, J. & Westendorp, R. G. The impact of diabetes mellitus on cognitive decline in the oldest of the old: a prospective population-based study. Diabetologia 49, 2015–2023 (2006).

    Article  PubMed  Google Scholar 

  35. Kadohara, K., Sato, I. & Kawakami, K. Diabetes mellitus and risk of early-onset Alzheimer’s disease: a population-based case-control study. Eur. J. Neurol. 24, 944–949 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Heath, C. A., Mercer, S. W. & Guthrie, B. Vascular comorbidities in younger people with dementia: a cross-sectional population-based study of 616 245 middle-aged people in Scotland. J. Neurol. Neurosurg. Psychiatry 86, 959–964 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Abner, E. L. et al. Diabetes is associated with cerebrovascular but not Alzheimer’s disease neuropathology. Alzheimers Dement. 12, 882–889 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Feinkohl, I., Price, J. F., Strachan, M. W. & Frier, B. M. The impact of diabetes on cognitive decline: potential vascular, metabolic, and psychosocial risk factors. Alzheimers Res. Ther. 7, 46 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Geijselaers, S. L. C., Sep, S. J. S., Stehouwer, C. D. A. & Biessels, G. J. Glucose regulation, cognition, and brain MRI in type 2 diabetes: a systematic review. Lancet Diabetes Endocrinol. 3, 75–89 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Rawlings, A. M. et al. Glucose peaks and the risk of dementia and 20-year cognitive decline. Diabetes Care 40, 879–886 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Patrone, C., Eriksson, O. & Lindholm, D. Diabetes drugs and neurological disorders: new views and therapeutic possibilities. Lancet Diabetes Endocrinol. 2, 256–262 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Orkaby, A. R., Cho, K., Cormack, J., Gagnon, D. R. & Driver, J. A. Metformin versus sulfonylurea use and risk of dementia in US veterans aged ≥65 years with diabetes. Neurology 89, 1877–1885 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Areosa Sastre, A., Vernooij, R. W., Gonzalez-Colaco Harmand, M. & Martinez, G. Effect of the treatment of type 2 diabetes mellitus on the development of cognitive impairment and dementia. Cochrane Database Syst. Rev. 6, CD003804 (2017).

    PubMed  Google Scholar 

  44. de Galan, B. E. et al. Cognitive function and risks of cardiovascular disease and hypoglycaemia in patients with type 2 diabetes: the Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE) trial. Diabetologia 52, 2328–2336 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Norton, S., Matthews, F. E., Barnes, D. E., Yaffe, K. & Brayne, C. Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol. 13, 788–794 (2014).

    Article  PubMed  Google Scholar 

  46. de Bruijn, R. F. et al. The potential for prevention of dementia across two decades: the prospective, population-based Rotterdam Study. BMC. Med. 13, 132 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Biessels, G. J. & Reijmer, Y. D. Brain changes underlying cognitive dysfunction in diabetes: what can we learn from MRI? Diabetes 63, 2244–2252 (2014).

    Article  PubMed  Google Scholar 

  48. Moran, C. et al. Neuroimaging and its relevance to understanding pathways linking diabetes and cognitive dysfunction. J. Alzheimers Dis. 59, 405–419 (2017).

    Article  PubMed  Google Scholar 

  49. Wardlaw, J. M. et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 12, 822–838 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wardlaw, J. M., Valdes Hernandez, M. C. & Munoz-Maniega, S. What are white matter hyperintensities made of? Relevance to vascular cognitive impairment. J. Am. Heart Assoc. 4, 001140 (2015).

    Article  PubMed  Google Scholar 

  51. Qiu, C. et al. Diabetes, markers of brain pathology and cognitive function: the Age, Gene/Environment Susceptibility-Reykjavik Study. Ann. Neurol. 75, 138–146 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Caunca, M. R. et al. Cerebral microbleeds, vascular risk factors, and magnetic resonance imaging markers: the Northern Manhattan Study. J. Am. Heart Assoc. 5, e003477 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gutierrez, J., Rundek, T., Ekind, M. S., Sacco, R. L. & Wright, C. B. Perivascular spaces are associated with atherosclerosis: an insight from the Northern Manhattan Study. AJNR Am. J. Neuroradiol 34, 1711–1716 A3498 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bouvy, W. H. et al. Perivascular spaces on 7 Tesla brain MRI are related to markers of small vessel disease but not to age or cardiovascular risk factors. J. Cereb. Blood Flow Metab. 36, 1708–1717 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  55. van Veluw, S. J. et al. Detection, risk factors, and functional consequences of cerebral microinfarcts. Lancet Neurol. 16, 730–740 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pruzin, J. J. et al. Diabetes, hemoglobin A1C, and regional Alzheimer disease and infarct pathology. Alzheimer Dis. Assoc. Disord. 31, 41–47 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wardlaw, J. M., Smith, C. & Dichgans, M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol. 12, 483–497 (2013).

    Article  PubMed  Google Scholar 

  58. Nelson, P. T. et al. Human cerebral neuropathology of type 2 diabetes mellitus. Biochim. Biophys. Acta 1792, 454–469 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Ly, H. et al. Brain microvascular injury and white matter disease provoked by diabetes-associated hyperamylinemia. Ann. Neurol. 82, 208–222 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Brundel, M., Kappelle, L. J. & Biessels, G. J. Brain imaging in type 2 diabetes. Eur. Neuropsychopharmacol. 24, 1967–1981 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Arvanitakis, Z. et al. Diabetes is related to cerebral infarction but not to AD pathology in older persons. Neurology 67, 1960–1965 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Dos Santos Matioli, M. N. P. et al. Diabetes is not associated with Alzheimer’s disease neuropathology. J. Alzheimers Dis. 60, 1035–1043 (2017).

    Article  PubMed  Google Scholar 

  63. Gottesman, R. F. et al. Association between midlife vascular risk factors and estimated brain amyloid deposition. JAMA 317, 1443–1450 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Moran, C. et al. Type 2 diabetes mellitus and biomarkers of neurodegeneration. Neurology 85, 1123–1130 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vemuri, P. et al. Age, vascular health, and Alzheimer disease biomarkers in an elderly sample. Ann. Neurol. 82, 706–718 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Biessels, G. J. & Reagan, L. P. Hippocampal insulin resistance and cognitive dysfunction. Nat. Rev. Neurosci. 16, 660–671 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Arnold, S. E. et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat. Rev. Neurol. 14, 168–181 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Moran, C. et al. Type 2 diabetes, skin autofluorescence, and brain atrophy. Diabetes 64, 279–283 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Janelidze, S. et al. Increased blood-brain barrier permeability is associated with dementia and diabetes but not amyloid pathology or APOE genotype. Neurobiol. Aging 51, 104–112 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Biessels, G. J. & Gispen, W. H. The impact of diabetes on cognition: What can be learned from rodent models? Neurobiol. Aging 26 (Suppl. 1), 36–41 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Clodfelder-Miller, B. J., Zmijewska, A. A., Johnson, G. V. & Jope, R. S. Tau is hyperphosphorylated at multiple sites in mouse brain in vivo after streptozotocin-induced insulin deficiency. Diabetes 55, 3320–3325 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. de la Monte, S. M., Tong, M., Lester-Coll, N., Plater, M. Jr & Wands, J. R. Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: relevance to Alzheimer’s disease. J. Alzheimers Dis. 10, 89–109 (2006).

    Article  PubMed  Google Scholar 

  73. Planel, E. et al. Insulin dysfunction induces in vivo tau hyperphosphorylation through distinct mechanisms. J. Neurosci. 27, 13635–13648 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kim, B., Backus, C., Oh, S., Hayes, J. M. & Feldman, E. L. Increased tau phosphorylation and cleavage in mouse models of type 1 and type 2 diabetes. Endocrinology 150, 5294–5301 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li, Z. G., Zhang, W. & Sima, A. A. Alzheimer-like changes in rat models of spontaneous diabetes. Diabetes 56, 1817–1824 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Puig, K. L., Floden, A. M., Adhikari, R., Golovko, M. Y. & Combs, C. K. Amyloid precursor protein and proinflammatory changes are regulated in brain and adipose tissue in a murine model of high fat diet-induced obesity. PLOS ONE 7, e30378 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liu, Y. et al. Impaired amyloid beta-degrading enzymes in brain of streptozotocin-induced diabetic rats. J. Endocrinol. Invest. 34, 26–31 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Son, S. M. et al. Accumulation of autophagosomes contributes to enhanced amyloidogenic APP processing under insulin-resistant conditions. Autophagy 8, 1842–1844 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, J. Q. et al. Brain aging and AD-like pathology in streptozotocin-induced diabetic rats. J. Diabetes Res. 2014, 796840 (2014).

    PubMed  PubMed Central  Google Scholar 

  80. Heyward, F. D. et al. Adult mice maintained on a high-fat diet exhibit object location memory deficits and reduced hippocampal SIRT1 gene expression. Neurobiol. Learn. Mem. 98, 25–32 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ramos-Rodriguez, J. J. et al. Differential central pathology and cognitive impairment in pre-diabetic and diabetic mice. Psychoneuroendocrinology 38, 2462–2475 (2013).

    Article  PubMed  Google Scholar 

  82. Takeda, S. et al. Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Abeta deposition in an Alzheimer mouse model with diabetes. Proc. Natl Acad. Sci. USA 107, 7036–7041 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Niedowicz, D. M. et al. Obesity and diabetes cause cognitive dysfunction in the absence of accelerated beta-amyloid deposition in a novel murine model of mixed or vascular dementia. Acta Neuropathol. Commun. 2, 64 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ramos-Rodriguez, J. J. et al. Prediabetes-induced vascular alterations exacerbate central pathology in APPswe/PS1dE9 mice. Psychoneuroendocrinology 48, 123–135 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Devi, L., Alldred, M. J., Ginsberg, S. D. & Ohno, M. Mechanisms underlying insulin deficiency-induced acceleration of beta-amyloidosis in a mouse model of Alzheimer’s disease. PLOS ONE 7, e32792 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gao, C., Liu, Y., Li, L. & Holscher, C. New animal models of Alzheimer’s disease that display insulin desensitization in the brain. Rev. Neurosci. 24, 607–615 (2013).

    CAS  PubMed  Google Scholar 

  87. Bell, G. A. & Fadool, D. A. Awake, long-term intranasal insulin treatment does not affect object memory, odor discrimination, or reversal learning in mice. Physiol. Behav. 174, 104–113 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Marks, D. R., Tucker, K., Cavallin, M. A., Mast, T. G. & Fadool, D. A. Awake intranasal insulin delivery modifies protein complexes and alters memory, anxiety, and olfactory behaviors. J. Neurosci. 29, 6734–6751 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Srodulski, S. et al. Neuroinflammation and neurologic deficits in diabetes linked to brain accumulation of amylin. Mol. Neurodegener. 9, 30 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Beckman, J. A. & Creager, M. A. Vascular complications of diabetes. Circ. Res. 118, 1771–1785 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Basta, G., Schmidt, A. M. & De Caterina, R. Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc. Res. 63, 582–592 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Quaegebeur, A., Lange, C. & Carmeliet, P. The neurovascular link in health and disease: molecular mechanisms and therapeutic implications. Neuron 71, 406–424 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Iadecola, C. The pathobiology of vascular dementia. Neuron 80, 844–866 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Viswanathan, A., Rocca, W. A. & Tzourio, C. Vascular risk factors and dementia: how to move forward? Neurology 72, 368–374 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ilaiwy, A. et al. Human amylin proteotoxicity impairs protein biosynthesis, and alters major cellular signaling pathways in the heart, brain and liver of humanized diabetic rat model in vivo. Metabolomics 12, https://doi.org/10.1007/s11306-016-1022-9 (2016).

  96. Mattson, M. P. & Rydel, R. E. Alzheimer’s disease. Amyloid ox-tox transducers. Nature 382, 674–675 (1996).

    Article  CAS  PubMed  Google Scholar 

  97. Verma, N. et al. Intraneuronal amylin deposition, peroxidative membrane injury and increased IL-1beta synthesis in brains of Alzheimer’s disease patients with type-2 diabetes and in diabetic HIP rats. J. Alzheimers Dis. 53, 259–272 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Neth, B. J. & Craft, S. Insulin resistance and Alzheimer’s disease: bioenergetic linkages. Front. Aging Neurosci. 9, 345 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Thibault, O. et al. Hippocampal calcium dysregulation at the nexus of diabetes and brain aging. Eur. J. Pharmacol. 719, 34–43 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Erickson, J. R. et al. Diabetic hyperglycaemia activates CaMKII and arrhythmias by O-linked glycosylation. Nature 502, 372–376 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ashpole, N. M. & Hudmon, A. Excitotoxic neuroprotection and vulnerability with CaMKII inhibition. Mol. Cell Neurosci. 46, 720–730 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Westermark, P., Andersson, A. & Westermark, G. T. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol. Rev. 91, 795–826 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Gong, W. et al. Amylin deposition in the kidney of patients with diabetic nephropathy. Kidney Int. 72, 213–218 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Despa, S. et al. Hyperamylinemia contributes to cardiac dysfunction in obesity and diabetes: a study in humans and rats. Circ. Res. 110, 598–608 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Jackson, K. et al. Amylin deposition in the brain: a second amyloid in Alzheimer’s disease? Ann. Neurol. 74, 517–526 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Oskarsson, M. E. et al. In vivo seeding and cross-seeding of localized amyloidosis: a molecular link between type 2 diabetes and Alzheimer disease. Am. J. Pathol. 185, 834–846 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Schultz, N., Byman, E., Fex, M. & Wennstrom, M. Amylin alters human brain pericyte viability and NG2 expression. J. Cereb. Blood Flow Metab. 37, 1470–1482 (2017).

    Article  CAS  PubMed  Google Scholar 

  108. Fawver, J. N. et al. Islet amyloid polypeptide (IAPP): a second amyloid in Alzheimer’s disease. Curr. Alzheimer Res. 11, 928–940 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Roostaei, T. et al. Genome-wide interaction study of brain beta-amyloid burden and cognitive impairment in Alzheimer’s disease. Mol. Psychiatry 22, 287–295 (2017).

    Article  CAS  PubMed  Google Scholar 

  110. Matveyenko, A. V. & Butler, P. C. Islet amyloid polypeptide (IAPP) transgenic rodents as models for type 2 diabetes. ILAR J. 47, 225–233 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Moreno-Gonzalez, I. et al. Molecular interaction between type 2 diabetes and Alzheimer’s disease through cross-seeding of protein misfolding. Mol. Psychiatry 22, 1327–1334 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wang, Z. et al. Presynaptic and postsynaptic interaction of the amyloid precursor protein promotes peripheral and central synaptogenesis. J. Neurosci. 29, 10788–10801 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Young-Pearse, T. L., Chen, A. C., Chang, R., Marquez, C. & Selkoe, D. J. Secreted APP regulates the function of full-length APP in neurite outgrowth through interaction with integrin beta1. Neural Dev. 3, 15 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Arvanitakis, Z., Capuano, A. W., Leurgans, S. E., Bennett, D. A. & Schneider, J. A. Relation of cerebral vessel disease to Alzheimer’s disease dementia and cognitive function in elderly people: a cross-sectional study. Lancet Neurol. 15, 934–943 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. International Diabetes Federation. Global Guideline for Managing Older People with Type 2 Diabetes https://www.idf.org/e-library/guidelines/78-global-guideline-for-managing-older-people-with-type-2-diabetes.html (2013).

  116. Japan Diabetes Society (JDS)/Japan Geriatrics Society (JGS) Joint Committee on Improving Care for Elderly Patients with Diabetes. Committee Report: Glycemic targets for elderly patients with diabetes. J. Diabetes Investig. 8, 126–128 (2017).

    Article  Google Scholar 

  117. American Diabetes Association. Standards of Medical Care in Diabetes-2017. Diabetes Care 40, S1–S142 (2017).

    Article  Google Scholar 

  118. Munshi, M. N. Cognitive dysfunction in older adults with diabetes: what a clinician needs to know. Diabetes Care 40, 461–467 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Feil, D. G. et al. Risk of hypoglycemia in older veterans with dementia and cognitive impairment: implications for practice and policy. J. Am. Geriatr. Soc. 59, 2263–2272 (2011).

    Article  PubMed  Google Scholar 

  120. Smith, E. E. et al. Prevention of stroke in patients with silent cerebrovascular disease: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 48, e44–e71 (2017).

    PubMed  Google Scholar 

  121. American Diabetes Association. Standards of Medical Care in Diabetes-2017: Section 11. Older Adults. Diabetes Care 40, S99–S104 (2017).

    Article  Google Scholar 

  122. Sevigny, J. et al. The antibody aducanumab reduces Abeta plaques in Alzheimer’s disease. Nature 537, 50–56 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research of G.J.B. is supported by Vici Grant 918.16.616 from the Netherlands Organisation for Scientific Research (NWO). F.D. acknowledges funding from NIH (R01AG053999 and R01AG057290), the Alzheimer’s Association (VMF-15-363458) and the American Stroke Association (16GRNT310200).

Review criteria

Owing to the wide scope of this Review, the references we cite represent a selection of the available literature. Where possible, we refer to published (systematic) reviews that provide a complete overview of available original studies. When we cite original studies on a particular topic and multiple studies were available, we cite the first landmark studies and/or the most recent comprehensive studies that, in our view, represent a major advance to the field. For further background on specific topics, the reader is encouraged to read the cited papers and to explore the additional references provided in those papers.

Reviewer information

Nature Reviews Endocrinology thanks J. Morley, H. Umegaki and S. Seshadri for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

G.J.B. provided a substantial contribution to the discussion of content, wrote the article and reviewed and edited the manuscript before submission. F.D. provided a substantial contribution to the discussion of content and wrote the article.

Corresponding author

Correspondence to Geert Jan Biessels.

Ethics declarations

Competing interests statement

G.J.B. consults for and receives research support from Boehringer Ingelheim. All financial compensation for these services is transferred to his employer, the University Medical Center Utrecht. F.D. has no potential conflict of interest to disclose.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Cognitive dysfunction

Any change from normal cognitive functioning. May range from subtle to severe.

Cognitive decrements

Subtle cognitive dysfunction not severe enough to meet formal neuropsychological criteria for cognitive impairment.

Cognitive impairment

Cognitive dysfunction severe enough to be classified as ‘abnormal’ or ‘impaired’ on the basis of neuropsychological test results (mostly 1.5–2 s.d. below normative mean). Entails both mild cognitive impairment and dementia.

Cognitive domains

Distinct types of cognitive function supporting different aspects of behaviour. Domains include intelligence, attention, language, memory, executive functions (including cognitive flexibility), visual–spatial skills and psychomotor efficiency and may be differentially affected by disease.

Cohen’s d effect sizes

Cohen’s d is defined as the difference between two group means divided by the pooled standard deviation.

Amnesic MCI

Mild cognitive impairment (MCI) with the domain memory being affected. Regarded as the prototypical form of MCI preceding Alzheimer dementia.

Nonamnesic MCI

MCI with the domain memory being intact.

Lacunes

Round or ovoid, subcortical, fluid-filled cavities (signal on MRI similar to cerebrospinal fluid) between 3 mm and ~15 mm in diameter that are consistent with a previous acute small subcortical infarct or haemorrhage in the territory of one perforating arteriole.

White matter hyperintensities

Signal abnormality of variable size in the white matter that is hyperintense on T2-weighted MRI images such as fluid-attenuated inversion recovery, without cavitation (signal different from cerebrospinal fluid), often due to vascular injury but may have other causes.

Perivascular spaces

Fluid-filled spaces that follow the typical course of a vessel as it goes through grey or white matter. The spaces have a signal intensity similar to that of cerebrospinal fluid on all MRI sequences49.

Cerebral microbleeds

Small (generally 2–5 mm in diameter, but sometimes up to 10 mm) areas of signal void with associated blooming seen on T2*-weighted MRI or other sequences that are sensitive to susceptibility effects, mostly representing a haemosiderin remnant after a small previous haemorrhage.

Microinfarcts

Small lesions of presumed ischaemic origin, detectable with microscopic examination of brain autopsy material but also detectable in vivo with dedicated MRI protocols.

Neurovascular uncoupling

Neurovascular coupling is the mechanism that links local changes in neural activity and cerebral blood flow involving the so-called neurovascular unit. Neurovascular uncoupling is a disturbance of this mechanism.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biessels, G.J., Despa, F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol 14, 591–604 (2018). https://doi.org/10.1038/s41574-018-0048-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-018-0048-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing