Technology in the management of type 1 diabetes mellitus — current status and future prospects

Abstract

Type 1 diabetes mellitus (T1DM) represents 5–10% of diabetes cases worldwide. The incidence of T1DM is increasing, and there is no immediate prospect of a cure. As such, lifelong management is required, the burden of which is being eased by novel treatment modalities, particularly from the field of diabetes technologies. Continuous glucose monitoring has become the standard of care and includes factory-calibrated subcutaneous glucose monitoring and long-term implantable glucose sensing. In addition, considerable progress has been made in technology-enabled glucose-responsive insulin delivery. The first hybrid insulin-only closed-loop system has been commercialized, and other closed-loop systems are under development, including dual-hormone glucose control systems. This Review focuses on well-established diabetes technologies, including glucose sensing, pen-based insulin delivery, data management and data analytics. We also cover insulin pump therapy, threshold-based suspend, predictive low-glucose suspend and single-hormone and dual-hormone closed-loop systems. Clinical practice recommendations for insulin pump therapy and continuous glucose monitoring are presented, and ongoing research and future prospects are highlighted. We conclude that the management of T1DM is improved by diabetes technology for the benefit of the majority of people with T1DM, their caregivers and guardians and health-care professionals treating patients with T1DM.

Key points

  • Innovations in technologies have greatly benefited diabetes management.

  • Flexible ways of delivering insulin, such as insulin pump therapy, are increasingly popular.

  • Minimally invasive real-time continuous glucose monitoring is progressing towards accurate, insulin-dosing approved, factory-calibrated systems and has become part of standard care for people with type 1 diabetes mellitus in many countries.

  • Automated glucose-responsive insulin delivery systems, including threshold-based suspend, predictive low glucose management insulin pump therapy and hybrid closed-loop systems, offer means for further improvements in glycaemic control while reducing hypoglycaemia exposure.

  • Data management tools and applications for diabetes self-management are helping people with type 1 diabetes mellitus and health-care professionals to manage intricate, extensive data created by diabetes technologies.

  • Advances in bihormonal closed-loop technology, bioartificial pancreas systems and smart insulin might further improve the care and management of people with type 1 diabetes mellitus in the future.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Currently available diabetes technologies in type 1 diabetes mellitus.

References

  1. 1.

    International Diabetes Federation. Diabetes Atlas (7th edition). http://www.diabetesatlas.org (2015).

  2. 2.

    Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977–986 (1993).

  3. 3.

    Paton, J. S., Wilson, M., Ireland, J. T. & Reith, S. B. Convenient pocket insulin syringe. Lancet 1, 189–190 (1981).

  4. 4.

    Pickup, J. C., Keen, H., Parsons, J. A. & Alberti, K. G. Continuous subcutaneous insulin infusion: an approach to achieving normoglycaemia. Br. Med. J. 1, 204–207 (1978).

  5. 5.

    Renard, E. Insulin pump use in Europe. Diabetes Technol. Ther. 12 (Suppl. 1), S29–S32 (2010).

  6. 6.

    Szypowska, A. et al. Insulin pump therapy in children with type 1 diabetes: analysis of data from the SWEET registry. Pediatr. Diabetes 17 (Suppl. 23), 38–45 (2016).

  7. 7.

    Sherr, J. L. et al. Use of insulin pump therapy in children and adolescents with type 1 diabetes and its impact on metabolic control: comparison of results from three large, transatlantic paediatric registries. Diabetologia 59, 87–91 (2016).

  8. 8.

    Zisser, H. C. The OmniPod Insulin Management System: the latest innovation in insulin pump therapy. Diabetes Ther. 1, 10–24 (2010).

  9. 9.

    Leelarathna, L. et al. Comparison of different insulin pump makes under routine care conditions in adults with Type 1 diabetes. Diabet. Med. 34, 1372–1379 (2017).

  10. 10.

    Ramotowska, A., Golicki, D., Dzygalo, K. & Szypowska, A. The effect of using the insulin pump bolus calculator compared to standard insulin dosage calculations in patients with type 1 diabetes mellitus — systematic review. Exp. Clin. Endocrinol. Diabetes 121, 248–254 (2013).

  11. 11.

    Jones, S. M., Quarry, J. L., Caldwell-McMillan, M., Mauger, D. T. & Gabbay, R. A. Optimal insulin pump dosing and postprandial glycemia following a pizza meal using the continuous glucose monitoring system. Diabetes Technol. Ther. 7, 233–240 (2005).

  12. 12.

    O’Connell, M. A., Gilbertson, H. R., Donath, S. M. & Cameron, F. J. Optimizing postprandial glycemia in pediatric patients with type 1 diabetes using insulin pump therapy: impact of glycemic index and prandial bolus type. Diabetes Care 31, 1491–1495 (2008).

  13. 13.

    Pickup, J. C. & Sutton, A. J. Severe hypoglycaemia and glycaemic control in Type 1 diabetes: meta-analysis of multiple daily insulin injections compared with continuous subcutaneous insulin infusion. Diabet. Med. 25, 765–774 (2008).

  14. 14.

    Yeh, H. C. et al. Comparative effectiveness and safety of methods of insulin delivery and glucose monitoring for diabetes mellitus: a systematic review and meta-analysis. Ann. Intern. Med. 157, 336–347 (2012).

  15. 15.

    Jeitler, K. et al. Continuous subcutaneous insulin infusion versus multiple daily insulin injections in patients with diabetes mellitus: systematic review and meta-analysis. Diabetologia 51, 941–951 (2008).

  16. 16.

    Fatourechi, M. M. et al. Clinical review: hypoglycemia with intensive insulin therapy: a systematic review and meta-analyses of randomized trials of continuous subcutaneous insulin infusion versus multiple daily injections. J. Clin. Endocrinol. Metab. 94, 729–740 (2009).

  17. 17.

    Monami, M., Lamanna, C., Marchionni, N. & Mannucci, E. Continuous subcutaneous insulin infusion versus multiple daily insulin injections in type 1 diabetes: a meta-analysis. Acta Diabetol. 47 (Suppl. 1), 77–81 (2010).

  18. 18.

    Pankowska, E., Błazik, M., Dziechciarz, P., Szypowska, A. & Szajewska, H. Continuous subcutaneous insulin infusion versus multiple daily injections in children with type 1 diabetes: a systematic review and meta-analysis of randomized control trials. Pediatr. Diabetes 10, 52–58 (2009).

  19. 19.

    Blazik, M. & Pankowska, E. The effect of bolus and food calculator Diabetics on glucose variability in children with type 1 diabetes treated with insulin pump: the results of RCT. Pediatr. Diabetes 13, 534–539 (2012).

  20. 20.

    Beato-Víbora, P. et al. Sustained benefit of continuous subcutaneous insulin infusion on glycaemic control and hypoglycaemia in adults with Type 1 diabetes. Diabet. Med. 32, 1453–1459 (2015).

  21. 21.

    Joubert, M. et al. Cross-sectional survey and retrospective analysis of a large cohort of adults with type 1 diabetes with long-term continuous subcutaneous insulin infusion treatment. J. Diabetes Sci. Technol. 8, 1005–1010 (2014).

  22. 22.

    Orr, C. J., Hopman, W., Yen, J. L. & Houlden, R. L. Long-term efficacy of insulin pump therapy on glycemic control in adults with type 1 diabetes mellitus. Diabetes Technol. Ther. 17, 49–54 (2015).

  23. 23.

    Johnson, S. R., Cooper, M. N., Jones, T. W. & Davis, E. A. Long-term outcome of insulin pump therapy in children with type 1 diabetes assessed in a large population-based case-control study. Diabetologia 56, 2392–2400 (2013).

  24. 24.

    Steineck, I. et al. Insulin pump therapy, multiple daily injections, and cardiovascular mortality in 18,168 people with type 1 diabetes: observational study. BMJ 350, h3234 (2015).

  25. 25.

    Karges, B. et al. Association of insulin pump therapy versus insulin injection therapy with severe hypoglycemia, ketoacidosis, and glycemic control among children, adolescents, and young adults with type 1 diabetes. JAMA 318, 1358–1366 (2017).

  26. 26.

    Lin, M. H. et al. Race, socioeconomic status, and treatment center are associated with insulin pump therapy in youth in the first year following diagnosis of type 1 diabetes. Diabetes Technol. Ther. 15, 929–934 (2013).

  27. 27.

    Khanolkar, A. R. et al. Young people with Type 1 diabetes of non-white ethnicity and lower socio-economic status have poorer glycaemic control in England and Wales. Diabet. Med. 33, 1508–1515 (2016).

  28. 28.

    American Diabetes Association. Standards of medical care in diabetes — 2017. Diabetes Care 40 (Suppl. 1), S1–S135 (2017).

  29. 29.

    Rewers, M. J. et al. ISPAD clinical practice consensus guidelines 2014. Assessment and monitoring of glycemic control in children and adolescents with diabetes. Pediatr. Diabetes 15 (Suppl. 20), 102–114 (2014).

  30. 30.

    Ziegler, R. et al. Frequency of SMBG correlates with HbA1c and acute complications in children and adolescents with type 1 diabetes. Pediatr. Diabetes 12, 11–17 (2011).

  31. 31.

    Miller, K. M. et al. Evidence of a strong association between frequency of self-monitoring of blood glucose and hemoglobin A1c levels in T1D exchange clinic registry participants. Diabetes Care 36, 2009–2014 (2013).

  32. 32.

    Ziegler, R. et al. Use of an insulin bolus advisor improves glycemic control in multiple daily insulin injection (MDI) therapy patients with suboptimal glycemic control: first results from the ABACUS trial. Diabetes Care 36, 3613–3619 (2013).

  33. 33.

    Vallejo Mora, M. D. R. et al. Bolus calculator reduces hypoglycemia in the short term and fear of hypoglycemia in the long term in subjects with type 1 diabetes (CBMDI study). Diabetes Technol. Ther. 19, 402–409 (2017).

  34. 34.

    Vallejo-Mora, M. D. et al. The Calculating Boluses on Multiple Daily Injections (CBMDI) study: a randomized controlled trial on the effect on metabolic control of adding a bolus calculator to multiple daily injections in people with type 1 diabetes. J. Diabetes 9, 24–33 (2017).

  35. 35.

    Bailey, T., Bode, B. W., Christiansen, M. P., Klaff, L. J. & Alva, S. The performance and usability of a factory-calibrated flash glucose monitoring system. Diabetes Technol. Ther. 17, 787–794 (2015).

  36. 36.

    Kropff, J. et al. Accuracy and longevity of an implantable continuous glucose sensor in the PRECISE study: a 180-day, prospective, multicenter, pivotal trial. Diabetes Care 40, 63–68 (2017).

  37. 37.

    Bergenstal, R. M. Continuous glucose monitoring: transforming diabetes management step by step. Lancet 391, 1334–1336 (2018).

  38. 38.

    DeSalvo, D. et al. Continuous glucose monitoring (CGM) and glycemic control among youth with type 1 diabetes (T1D): international comparison from the T1D Exchange (T1DX) and the DPV Initiative. 43rd Annual Conference of the International Society for Pediatric and Adolescent Diabetes, Innsbruck, Austria (2017).

  39. 39.

    Bailey, T. S., Chang, A. & Christiansen, M. Clinical accuracy of a continuous glucose monitoring system with an advanced algorithm. J. Diabetes Sci. Technol. 9, 209–214 (2015).

  40. 40.

    Laffel, L. Improved accuracy of continuous glucose monitoring systems in pediatric patients with diabetes mellitus: results from two studies. Diabetes Technol. Ther. 18 (Suppl. 2), S223–S233 (2016).

  41. 41.

    Garg, S. K. et al. Glucose outcomes with the in-home use of a hybrid closed-loop insulin delivery system in adolescents and adults with type 1 diabetes. Diabetes Technol. Ther. 19, 155–163 (2017).

  42. 42.

    Kropff, J. et al. Accuracy of two continuous glucose monitoring systems: a head-to-head comparison under clinical research centre and daily life conditions. Diabetes Obes. Metab. 17, 343–349 (2015).

  43. 43.

    Pleus, S. et al. Rate-of-change dependence of the performance of two CGM systems during induced glucose swings. J. Diabetes Sci. Technol. 9, 801–807 (2015).

  44. 44.

    Kovatchev, B. P., Patek, S. D., Ortiz, E. A. & Breton, M. D. Assessing sensor accuracy for non-adjunct use of continuous glucose monitoring. Diabetes Technol. Ther. 17, 177–186 (2015).

  45. 45.

    Aleppo, G. et al. REPLACE-BG: a randomized trial comparing continuous glucose monitoring with and without routine blood glucose monitoring in adults with well-controlled type 1 diabetes. Diabetes Care 40, 538–545 (2017).

  46. 46.

    Agiostratidou, G. et al. Standardizing clinically meaningful outcome measures beyond HbA1c for type 1 diabetes: a consensus report of the American Association of Clinical Endocrinologists, the American Association of Diabetes Educators, the American Diabetes Association, the Endocrine Society, JDRF International, The Leona M. and Harry B. Helmsley Charitable Trust, the Pediatric Endocrine Society, and the T1D Exchange. Diabetes Care 40, 1622–1630 (2017).

  47. 47.

    Danne, T. et al. International consensus on use of continuous glucose monitoring. Diabetes Care 40, 1631–1640 (2017).

  48. 48.

    Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group et al. Continuous glucose monitoring and intensive treatment of type 1 diabetes. N. Engl. J. Med. 359, 1464–1476 (2008).

  49. 49.

    Pickup, J. C., Freeman, S. C. & Sutton, A. J. Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self monitoring of blood glucose: meta-analysis of randomised controlled trials using individual patient data. BMJ 343, d3805 (2011).

  50. 50.

    Langendam, M. et al. Continuous glucose monitoring systems for type 1 diabetes mellitus. Cochrane Database Syst. Rev. 1, Cd008101 (2012).

  51. 51.

    Szypowska, A., Ramotowska, A., Dzygalo, K. & Golicki, D. Beneficial effect of real-time continuous glucose monitoring system on glycemic control in type 1 diabetic patients: systematic review and meta-analysis of randomized trials. Eur. J. Endocrinol. 166, 567–574 (2012).

  52. 52.

    Hoeks, L. B., Greven, W. L. & de Valk, H. W. Real-time continuous glucose monitoring system for treatment of diabetes: a systematic review. Diabet. Med. 28, 386–394 (2011).

  53. 53.

    Golicki, D. T., Golicka, D., Groele, L. & Pankowska, E. Continuous glucose monitoring system in children with type 1 diabetes mellitus: a systematic review and meta-analysis. Diabetologia 51, 233–240 (2008).

  54. 54.

    Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. Effectiveness of continuous glucose monitoring in a clinical care environment: evidence from the Juvenile Diabetes Research Foundation continuous glucose monitoring (JDRF-CGM) trial. Diabetes Care 33, 17–22 (2010).

  55. 55.

    Bergenstal, R. M. et al. Effectiveness of sensor-augmented insulin-pump therapy in type 1 diabetes. N. Engl. J. Med. 363, 311–320 (2010).

  56. 56.

    Bergenstal, R. M. et al. Sensor-augmented pump therapy for A1C reduction (STAR 3) study: results from the 6-month continuation phase. Diabetes Care 34, 2403–2405 (2011).

  57. 57.

    Battelino, T. et al. Effect of continuous glucose monitoring on hypoglycemia in type 1 diabetes. Diabetes Care 34, 795–800 (2011).

  58. 58.

    Battelino, T. et al. The use and efficacy of continuous glucose monitoring in type 1 diabetes treated with insulin pump therapy: a randomised controlled trial. Diabetologia 55, 3155–3162 (2012).

  59. 59.

    Beck, R. W. et al. Effect of continuous glucose monitoring on glycemic control in adults with type 1 diabetes using insulin injections: the DIAMOND randomized clinical trial. JAMA 317, 371–378 (2017).

  60. 60.

    Fonseca, V. A. et al. Continuous glucose monitoring: a consensus conference of the American Association of Clinical Endocrinologists and American College of Endocrinology. Endocr. Pract. 22, 1008–1021 (2016).

  61. 61.

    Foster, N. C. et al. Continuous glucose monitoring in patients with type 1 diabetes using insulin injections. Diabetes Care 39, e81–e82 (2016).

  62. 62.

    Lind, M. et al. Continuous glucose monitoring versus conventional therapy for glycemic control in adults with type 1 diabetes treated with multiple daily insulin injections: the GOLD randomized clinical trial. JAMA 317, 379–387 (2017).

  63. 63.

    Bolinder, J., Antuna, R., Geelhoed-Duijvestijn, P., Kröger, J. & Weitgasser, R. Novel glucose-sensing technology and hypoglycaemia in type 1 diabetes: a multicentre, non-masked, randomised controlled trial. Lancet 388, 2254–2263 (2016).

  64. 64.

    Edge, J. et al. An alternative sensor-based method for glucose monitoring in children and young people with diabetes. Arch. Dis. Child 102, 543–549 (2017).

  65. 65.

    Ish-Shalom, M., Wainstein, J., Raz, I. & Mosenzon, O. Improvement in glucose control in difficult-to-control patients with diabetes using a novel flash glucose monitoring device. J. Diabetes Sci. Technol. 10, 1412–1413 (2016).

  66. 66.

    Dover, A. R., Stimson, R. H., Zammitt, N. N. & Gibb, F. W. Flash glucose monitoring improves outcomes in a type 1 diabetes clinic. J. Diabetes Sci. Technol. 11, 442–443 (2017).

  67. 67.

    McKnight, J. A. & Gibb, F. W. Flash glucose monitoring is associated with improved glycaemic control but use is largely limited to more affluent people in a UK diabetes centre. Diabet. Med. 34, 732 (2017).

  68. 68.

    Reddy, M. et al. A randomized controlled pilot study of continuous glucose monitoring and flash glucose monitoring in people with Type 1 diabetes and impaired awareness of hypoglycaemia. Diabet. Med. 35, 483–490 (2018).

  69. 69.

    Dunn, T. C., Xu, Y., Hayter, G. & Ajjan, R. A. Real-world flash glucose monitoring patterns and associations between self-monitoring frequency and glycaemic measures: a European analysis of over 60 million glucose tests. Diabetes Res. Clin. Pract. 137, 37–46 (2018).

  70. 70.

    Ly, T. T. et al. Effect of sensor-augmented insulin pump therapy and automated insulin suspension versus standard insulin pump therapy on hypoglycemia in patients with type 1 diabetes: a randomized clinical trial. JAMA 310, 1240–1247 (2013).

  71. 71.

    Bergenstal, R. M. et al. Threshold-based insulin-pump interruption for reduction of hypoglycemia. N. Engl. J. Med. 369, 224–232 (2013).

  72. 72.

    Weiss, R. et al. Hypoglycemia reduction and changes in hemoglobin A1c in the ASPIRE in-home study. Diabetes Technol. Ther. 17, 542–547 (2015).

  73. 73.

    Danne, T. et al. Prevention of hypoglycemia by using low glucose suspend function in sensor-augmented pump therapy. Diabetes Technol. Ther. 13, 1129–1134 (2011).

  74. 74.

    Choudhary, P. et al. Insulin pump therapy with automated insulin suspension in response to hypoglycemia: reduction in nocturnal hypoglycemia in those at greatest risk. Diabetes Care 34, 2023–2025 (2011).

  75. 75.

    Agrawal, P., Zhong, A., Welsh, J. B., Shah, R. & Kaufman, F. R. Retrospective analysis of the real-world use of the threshold suspend feature of sensor-augmented insulin pumps. Diabetes Technol. Ther. 17, 316–319 (2015).

  76. 76.

    Maahs, D. M. et al. A randomized trial of a home system to reduce nocturnal hypoglycemia in type 1 diabetes. Diabetes Care 37, 1885–1891 (2014).

  77. 77.

    Buckingham, B. A. et al. Predictive low-glucose insulin suspension reduces duration of nocturnal hypoglycemia in children without increasing ketosis. Diabetes Care 38, 1197–1204 (2015).

  78. 78.

    Battelino, T., Nimri, R., Dovc, K., Phillip, M. & Bratina, N. Prevention of hypoglycemia with predictive low glucose insulin suspension in children with type 1 diabetes: a randomized controlled trial. Diabetes Care 40, 764–770 (2017).

  79. 79.

    Steil, G. M., Rebrin, K., Darwin, C., Hariri, F. & Saad, M. F. Feasibility of automating insulin delivery for the treatment of type 1 diabetes. Diabetes 55, 3344–3350 (2006).

  80. 80.

    Weinzimer, S. A. et al. Fully automated closed-loop insulin delivery versus semiautomated hybrid control in pediatric patients with type 1 diabetes using an artificial pancreas. Diabetes Care 31, 934–939 (2008).

  81. 81.

    Hovorka, R. et al. Manual closed-loop insulin delivery in children and adolescents with type 1 diabetes: a phase 2 randomised crossover trial. Lancet 375, 743–751 (2010).

  82. 82.

    Atlas, E., Nimri, R., Miller, S., Grunberg, E. A. & Phillip, M. MD-logic artificial pancreas system: a pilot study in adults with type 1 diabetes. Diabetes Care 33, 1072–1076 (2010).

  83. 83.

    El-Khatib, F. H., Russell, S. J., Nathan, D. M., Sutherlin, R. G. & Damiano, E. R. A bihormonal closed-loop artificial pancreas for type 1 diabetes. Sci. Transl Med. 2, 27ra27 (2010).

  84. 84.

    Bakhtiani, P. A., Zhao, L. M., El Youssef, J., Castle, J. R. & Ward, W. K. A review of artificial pancreas technologies with an emphasis on bi-hormonal therapy. Diabetes Obes. Metab. 15, 1065–1070 (2013).

  85. 85.

    Weisman, A., Bai, J. W., Cardinez, M., Kramer, C. K. & Perkins, B. A. Effect of artificial pancreas systems on glycaemic control in patients with type 1 diabetes: a systematic review and meta-analysis of outpatient randomised controlled trials. Lancet Diabetes Endocrinol. 5, 501–512 (2017).

  86. 86.

    Thabit, H. et al. Home use of an artificial beta cell in type 1 diabetes. N. Engl. J. Med. 373, 2129–2140 (2015).

  87. 87.

    Kropff, J. et al. 2 month evening and night closed-loop glucose control in patients with type 1 diabetes under free-living conditions: a randomised crossover trial. Lancet Diabetes Endocrinol. 3, 939–947 (2015).

  88. 88.

    Bergenstal, R. M. et al. Safety of a hybrid closed-loop insulin delivery system in patients with type 1 diabetes. JAMA 316, 1407–1408 (2016).

  89. 89.

    Garg, S. K. et al. Effects of sotagliflozin added to insulin in patients with type 1 diabetes. N. Engl. J. Med. 377, 2337–2348 (2017).

  90. 90.

    Lewis, D. OpenAPS. https://openaps.org/ (2017).

  91. 91.

    Lewis, D., Leibrand, S. & OpenAPS Community. Real-world use of open source artificial pancreas systems. J. Diabetes Sci. Technol. 10, 1411 (2016).

  92. 92.

    Duke, D. C. et al. Distal technologies and type 1 diabetes management. Lancet Diabetes Endocrinol. 6, 143–156 (2018).

  93. 93.

    Mazze, R. S. et al. Characterizing glucose exposure for individuals with normal glucose tolerance using continuous glucose monitoring and ambulatory glucose profile analysis. Diabetes Technol. Ther. 10, 149–159 (2008).

  94. 94.

    Wong, J. C., Neinstein, A. B., Spindler, M. & Adi, S. A minority of patients with type 1 diabetes routinely downloads and retrospectively reviews device data. Diabetes Technol. Ther. 17, 555–562 (2015).

  95. 95.

    Beck, R. W. Downloading diabetes device data: empowering patients to download at home to achieve better outcomes. Diabetes Technol. Ther. 17, 536–537 (2015).

  96. 96.

    Lee, J. M. et al. Real-world use and self-reported health outcomes of a patient-designed do-it-yourself mobile technology system for diabetes: lessons for mobile health. Diabetes Technol. Ther. 19, 209–219 (2017).

  97. 97.

    Lee, J. M., Hirschfeld, E. & Wedding, J. A patient-designed do-it-yourself mobile technology system for diabetes: promise and challenges for a new era in medicine. JAMA 315, 1447–1448 (2016).

  98. 98.

    Trawley, S. et al. The use of mobile applications among adolescents with type 1 diabetes: results from Diabetes MILES Youth-Australia. Diabetes Technol. Ther. 18, 813–819 (2016).

  99. 99.

    Frøisland, D. H., Arsand, E. & Skårderud, F. Improving diabetes care for young people with type 1 diabetes through visual learning on mobile phones: mixed-methods study. J. Med. Internet Res. 14, e111 (2012).

  100. 100.

    Hanauer, D. A., Wentzell, K., Laffel, N. & Laffel, L. M. Computerized Automated Reminder Diabetes System (CARDS): e-mail and SMS cell phone text messaging reminders to support diabetes management. Diabetes Technol. Ther. 11, 99–106 (2009).

  101. 101.

    Cafazzo, J. A., Casselman, M., Hamming, N., Katzman, D. K. & Palmert, M. R. Design of an mHealth app for the self-management of adolescent type 1 diabetes: a pilot study. J. Med. Internet Res. 14, e70 (2012).

  102. 102.

    Goyal, S. et al. A mobile app for the self-management of type 1 diabetes among adolescents: a randomized controlled trial. JMIR Mhealth Uhealth 5, e82 (2017).

  103. 103.

    Neinstein, A. et al. A case study in open source innovation: developing the Tidepool Platform for interoperability in type 1 diabetes management. J. Am. Med. Inform. Assoc. 23, 324–332 (2016).

  104. 104.

    Hou, C., Carter, B., Hewitt, J., Francisa, T. & Mayor, S. Do mobile phone applications improve glycemic control (HbA1c) in the self-management of diabetes? A systematic review, meta-analysis, and GRADE of 14 randomized trials. Diabetes Care 39, 2089–2095 (2016).

  105. 105.

    Wu, Y. et al. Mobile app-based interventions to support diabetes self-management: a systematic review of randomized controlled trials to identify functions associated with glycemic efficacy. JMIR Mhealth Uhealth 5, e35 (2017).

  106. 106.

    Bailey, T. S. et al. American Assiciation of Clinical Endocrinologists and American College of Endocrinology 2016 outpatient glucose monitoring consensus statement. Endocr. Pract. 22, 231–261 (2016).

  107. 107.

    Grunberger, G. et al. Consensus statement by the American Association of Clinical Endocrinologists/American College of Endocrinology insulin pump management task force. Endocr. Pract. 20, 463–489 (2014).

  108. 108.

    Klonoff, D. C. et al. Continuous glucose monitoring: an Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 96, 2968–2979 (2011).

  109. 109.

    Peters, A. L. et al. Diabetes technology-continuous subcutaneous insulin infusion therapy and continuous glucose monitoring in adults: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 101, 3922–3937 (2016).

  110. 110.

    Danne, T. et al. ISPAD clinical practice consensus guidelines 2014. Insulin treatment in children and adolescents with diabetes. Pediatr. Diabetes 15 (Suppl. 20), 115–134 (2014).

  111. 111.

    National Institute for Health and Care Excellence. NICE guideline (NG) 18, diabetes (type 1 and type 2) in children and young people: diagnosis and management. NICE http://nice.org.uk/guidance/ng18 (2015).

  112. 112.

    National Institute for Health and Care Excellence. NICE guideline (NG) 17, type 1 diabetes in adults: diagnosis and management. NICE http://nice.org.uk/guidance/ng17 (2015).

  113. 113.

    National Institute for Health and Care Excellence. Technology appraisal guidance (TA151). Continuous subcutaneous insulin infusion for the treatment of diabetes mellitus. NICE nice.org.uk/guidance/ta151 (2008).

  114. 114.

    National Institute for Health and Care Excellence. Diagnostics guidance (DG21). Integrated sensor-augmented pump therapy systems for managing blood glucose levels in type 1 diabetes (the MiniMed Paradigm Veo system and the Vibe and G4 PLATINUM CGM system). NICE nice.org.uk/guidance/dg21 (2016).

  115. 115.

    Edelman, S. V. Regulation catches up to reality. J. Diabetes Sci. Technol. 11, 160–164 (2017).

  116. 116.

    Pettus, J. & Edelman, S. V. Recommendations for using real-time continuous glucose monitoring (rtCGM) data for insulin adjustments in type 1 diabetes. J. Diabetes Sci. Technol. 11, 138–147 (2017).

  117. 117.

    Castle, J. R. & Jacobs, P. G. Nonadjunctive use of continuous glucose monitoring for diabetes treatment decisions. J. Diabetes Sci. Technol. 10, 1169–1173 (2016).

  118. 118.

    Forlenza, G. P., Argento, N. B. & Laffel, L. M. Practical considerations on the use of continuous glucose monitoring in pediatrics and older adults and nonadjunctive use. Diabetes Technol. Ther. 19 (S3), S13–S20 (2017).

  119. 119.

    National Institute for Health and Care Excellence. FreeStyle Libre for glucose monitoring. Medtech innovation briefing. NICE http://nice.org.uk/guidance/mib110 (2017).

  120. 120.

    Wang, Y. et al. “Learning” can improve the blood glucose control performance for type 1 diabetes mellitus. Diabetes Technol. Ther. 19, 41–48 (2017).

  121. 121.

    Dassau, E. et al. Adjustment of open-loop settings to improve closed-loop results in type 1 diabetes: a multicenter randomized trial. J. Clin. Endocrinol. Metab. 100, 3878–3886 (2015).

  122. 122.

    Reddy, M. et al. Clinical safety and feasibility of the advanced bolus calculator for type 1 diabetes based on case-based reasoning: a 6-week nonrandomized single-arm pilot study. Diabetes Technol. Ther. 18, 487–493 (2016).

  123. 123.

    Klonoff, D. C. & Fellow AIMBE. Trends in FDA regulation of software to control insulin dosing. J. Diabetes Sci. Technol. 9, 503–506 (2015).

  124. 124.

    Bally, L., Thabit, H. & Hovorka, R. Finding the right route for insulin delivery — an overview of implantable pump therapy. Expert Opin. Drug Deliv. 14, 1103–1111 (2017).

  125. 125.

    Dassau, E. et al. Intraperitoneal insulin delivery provides superior glycaemic regulation to subcutaneous insulin delivery in model predictive control-based fully-automated artificial pancreas in patients with type 1 diabetes: a pilot study. Diabetes Obes. Metab. 19, 1698–1705 (2017).

  126. 126.

    Lindpointner, S. et al. Use of the site of subcutaneous insulin administration for the measurement of glucose in patients with type 1 diabetes. Diabetes Care 33, 595–601 (2010).

  127. 127.

    Regittnig, W. et al. Periodic extraction of interstitial fluid from the site of subcutaneous insulin infusion for the measurement of glucose: a novel single-port technique for the treatment of type 1 diabetes patients. Diabetes Technol. Ther. 15, 50–59 (2013).

  128. 128.

    Nørgaard, K., Shin, J., Welsh, J. B. & Gjessing, H. Performance and acceptability of a combined device for insulin infusion and glucose sensing in the home setting. J. Diabetes Sci. Technol. 9, 215–220 (2015).

  129. 129.

    Haidar, A., Smaoui, M. R., Legault, L. & Rabasa-Lhoret, R. The role of glucagon in the artificial pancreas. Lancet Diabetes Endocrinol. 4, 476–479 (2016).

  130. 130.

    Haidar, A. et al. Outpatient overnight glucose control with dual-hormone artificial pancreas, single-hormone artificial pancreas, or conventional insulin pump therapy in children and adolescents with type 1 diabetes: an open-label, randomised controlled trial. Lancet Diabetes Endocrinol. 3, 595–604 (2015).

  131. 131.

    Russell, S. J. et al. Outpatient glycemic control with a bionic pancreas in type 1 diabetes. N. Engl. J. Med. 371, 313–325 (2014).

  132. 132.

    Jackson, M. A. et al. Stable liquid glucagon formulations for rescue treatment and bi-hormonal closed-loop pancreas. Curr. Diab. Rep. 12, 705–710 (2012).

  133. 133.

    Weinzimer, S. A. et al. Effect of pramlintide on prandial glycemic excursions during closed-loop control in adolescents and young adults with type 1 diabetes. Diabetes Care 35, 1994–1999 (2012).

  134. 134.

    Renukuntla, V. S., Ramchandani, N., Trast, J., Cantwell, M. & Heptulla, R. A. Role of glucagon-like peptide-1 analogue versus amylin as an adjuvant therapy in type 1 diabetes in a closed loop setting with ePID algorithm. J. Diabetes Sci. Technol. 8, 1011–1017 (2014).

  135. 135.

    Sherr, J. L. et al. Mitigating meal-related glycemic excursions in an insulin-sparing manner during closed-loop insulin delivery: the beneficial effects of adjunctive pramlintide and liraglutide. Diabetes Care 39, 1127–1134 (2016).

  136. 136.

    Malek, R. & Davis, S. N. Novel methods of insulin replacement: the artificial pancreas and encapsulated islets. Rev. Recent Clin. Trials 11, 106–123 (2016).

  137. 137.

    Rege, N. K., Phillips, N. F. B. & Weiss, M. A. Development of glucose-responsive ‘smart’ insulin systems. Curr. Opin. Endocrinol. Diabetes Obes. 24, 267–278 (2017).

  138. 138.

    Valdes-Gonzalez, R. et al. Long-term follow-up of patients with type 1 diabetes transplanted with neonatal pig islets. Clin. Exp. Immunol. 162, 537–542 (2010).

  139. 139.

    Elliott, R. B. et al. Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation. Xenotransplantation 14, 157–161 (2007).

  140. 140.

    Basta, G. et al. Long-term metabolic and immunological follow-up of nonimmunosuppressed patients with type 1 diabetes treated with microencapsulated islet allografts: four cases. Diabetes Care 34, 2406–2409 (2011).

Download references

Acknowledgements

The authors acknowledge the support of the National Institute of Health Research Cambridge Biomedical Research Centre, the Efficacy and Mechanism Evaluation National Institute for Health Research (#14/23/09), The Leona M. and Harry B. Helmsley Charitable Trust (#2016PG-T1D045), Wellcome Strategic Award (100574/Z/12/Z), JDRF (#2-SRA-2014-256-M-R), the National Institute of Diabetes and Digestive and Kidney Diseases (1UC4DK108520-01) and Diabetes UK (#14/0004878).

Review criteria

The narrative is based on results from clinical studies and meta-analyses known to the authors. Relevant studies were identified by searching PubMed and Web of Science for articles on each of the technologies up to November 2017, as well as using cited literature in retrieved articles. Information relevant to children, adolescents and adults with type 1 diabetes mellitus was considered; studies in pregnancy complicated by diabetes were excluded. Priority was given to meta-analyses and systematic reviews.

Author information

Both authors contributed to all aspects of the article.

Correspondence to Roman Hovorka.

Ethics declarations

Competing interests

R.H. has received speaker honoraria from Eli Lilly, Novo Nordisk and Astra Zeneca, has served on the advisory panel for Eli Lilly and Novo Nordisk, has received licence fees from B. Braun and Medtronic, has served as a consultant to B. Braun and has patents and patent applications related to closed-loop systems. M.T. has received speaker honoraria from Medtronic and Novo Nordisk.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading