Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Technology in the management of type 1 diabetes mellitus — current status and future prospects

Abstract

Type 1 diabetes mellitus (T1DM) represents 5–10% of diabetes cases worldwide. The incidence of T1DM is increasing, and there is no immediate prospect of a cure. As such, lifelong management is required, the burden of which is being eased by novel treatment modalities, particularly from the field of diabetes technologies. Continuous glucose monitoring has become the standard of care and includes factory-calibrated subcutaneous glucose monitoring and long-term implantable glucose sensing. In addition, considerable progress has been made in technology-enabled glucose-responsive insulin delivery. The first hybrid insulin-only closed-loop system has been commercialized, and other closed-loop systems are under development, including dual-hormone glucose control systems. This Review focuses on well-established diabetes technologies, including glucose sensing, pen-based insulin delivery, data management and data analytics. We also cover insulin pump therapy, threshold-based suspend, predictive low-glucose suspend and single-hormone and dual-hormone closed-loop systems. Clinical practice recommendations for insulin pump therapy and continuous glucose monitoring are presented, and ongoing research and future prospects are highlighted. We conclude that the management of T1DM is improved by diabetes technology for the benefit of the majority of people with T1DM, their caregivers and guardians and health-care professionals treating patients with T1DM.

Key points

  • Innovations in technologies have greatly benefited diabetes management.

  • Flexible ways of delivering insulin, such as insulin pump therapy, are increasingly popular.

  • Minimally invasive real-time continuous glucose monitoring is progressing towards accurate, insulin-dosing approved, factory-calibrated systems and has become part of standard care for people with type 1 diabetes mellitus in many countries.

  • Automated glucose-responsive insulin delivery systems, including threshold-based suspend, predictive low glucose management insulin pump therapy and hybrid closed-loop systems, offer means for further improvements in glycaemic control while reducing hypoglycaemia exposure.

  • Data management tools and applications for diabetes self-management are helping people with type 1 diabetes mellitus and health-care professionals to manage intricate, extensive data created by diabetes technologies.

  • Advances in bihormonal closed-loop technology, bioartificial pancreas systems and smart insulin might further improve the care and management of people with type 1 diabetes mellitus in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Currently available diabetes technologies in type 1 diabetes mellitus.

Similar content being viewed by others

References

  1. International Diabetes Federation. Diabetes Atlas (7th edition). http://www.diabetesatlas.org (2015).

  2. Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977–986 (1993).

    Article  Google Scholar 

  3. Paton, J. S., Wilson, M., Ireland, J. T. & Reith, S. B. Convenient pocket insulin syringe. Lancet 1, 189–190 (1981).

    Article  PubMed  CAS  Google Scholar 

  4. Pickup, J. C., Keen, H., Parsons, J. A. & Alberti, K. G. Continuous subcutaneous insulin infusion: an approach to achieving normoglycaemia. Br. Med. J. 1, 204–207 (1978).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Renard, E. Insulin pump use in Europe. Diabetes Technol. Ther. 12 (Suppl. 1), S29–S32 (2010).

    Article  PubMed  Google Scholar 

  6. Szypowska, A. et al. Insulin pump therapy in children with type 1 diabetes: analysis of data from the SWEET registry. Pediatr. Diabetes 17 (Suppl. 23), 38–45 (2016).

    Article  PubMed  CAS  Google Scholar 

  7. Sherr, J. L. et al. Use of insulin pump therapy in children and adolescents with type 1 diabetes and its impact on metabolic control: comparison of results from three large, transatlantic paediatric registries. Diabetologia 59, 87–91 (2016).

    Article  PubMed  CAS  Google Scholar 

  8. Zisser, H. C. The OmniPod Insulin Management System: the latest innovation in insulin pump therapy. Diabetes Ther. 1, 10–24 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Leelarathna, L. et al. Comparison of different insulin pump makes under routine care conditions in adults with Type 1 diabetes. Diabet. Med. 34, 1372–1379 (2017).

    Article  PubMed  CAS  Google Scholar 

  10. Ramotowska, A., Golicki, D., Dzygalo, K. & Szypowska, A. The effect of using the insulin pump bolus calculator compared to standard insulin dosage calculations in patients with type 1 diabetes mellitus — systematic review. Exp. Clin. Endocrinol. Diabetes 121, 248–254 (2013).

    Article  PubMed  CAS  Google Scholar 

  11. Jones, S. M., Quarry, J. L., Caldwell-McMillan, M., Mauger, D. T. & Gabbay, R. A. Optimal insulin pump dosing and postprandial glycemia following a pizza meal using the continuous glucose monitoring system. Diabetes Technol. Ther. 7, 233–240 (2005).

    Article  PubMed  CAS  Google Scholar 

  12. O’Connell, M. A., Gilbertson, H. R., Donath, S. M. & Cameron, F. J. Optimizing postprandial glycemia in pediatric patients with type 1 diabetes using insulin pump therapy: impact of glycemic index and prandial bolus type. Diabetes Care 31, 1491–1495 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Pickup, J. C. & Sutton, A. J. Severe hypoglycaemia and glycaemic control in Type 1 diabetes: meta-analysis of multiple daily insulin injections compared with continuous subcutaneous insulin infusion. Diabet. Med. 25, 765–774 (2008).

    Article  PubMed  CAS  Google Scholar 

  14. Yeh, H. C. et al. Comparative effectiveness and safety of methods of insulin delivery and glucose monitoring for diabetes mellitus: a systematic review and meta-analysis. Ann. Intern. Med. 157, 336–347 (2012).

    Article  PubMed  Google Scholar 

  15. Jeitler, K. et al. Continuous subcutaneous insulin infusion versus multiple daily insulin injections in patients with diabetes mellitus: systematic review and meta-analysis. Diabetologia 51, 941–951 (2008).

    Article  PubMed  CAS  Google Scholar 

  16. Fatourechi, M. M. et al. Clinical review: hypoglycemia with intensive insulin therapy: a systematic review and meta-analyses of randomized trials of continuous subcutaneous insulin infusion versus multiple daily injections. J. Clin. Endocrinol. Metab. 94, 729–740 (2009).

    Article  PubMed  CAS  Google Scholar 

  17. Monami, M., Lamanna, C., Marchionni, N. & Mannucci, E. Continuous subcutaneous insulin infusion versus multiple daily insulin injections in type 1 diabetes: a meta-analysis. Acta Diabetol. 47 (Suppl. 1), 77–81 (2010).

    Article  PubMed  CAS  Google Scholar 

  18. Pankowska, E., Błazik, M., Dziechciarz, P., Szypowska, A. & Szajewska, H. Continuous subcutaneous insulin infusion versus multiple daily injections in children with type 1 diabetes: a systematic review and meta-analysis of randomized control trials. Pediatr. Diabetes 10, 52–58 (2009).

    Article  CAS  Google Scholar 

  19. Blazik, M. & Pankowska, E. The effect of bolus and food calculator Diabetics on glucose variability in children with type 1 diabetes treated with insulin pump: the results of RCT. Pediatr. Diabetes 13, 534–539 (2012).

    Article  PubMed  CAS  Google Scholar 

  20. Beato-Víbora, P. et al. Sustained benefit of continuous subcutaneous insulin infusion on glycaemic control and hypoglycaemia in adults with Type 1 diabetes. Diabet. Med. 32, 1453–1459 (2015).

    Article  PubMed  CAS  Google Scholar 

  21. Joubert, M. et al. Cross-sectional survey and retrospective analysis of a large cohort of adults with type 1 diabetes with long-term continuous subcutaneous insulin infusion treatment. J. Diabetes Sci. Technol. 8, 1005–1010 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Orr, C. J., Hopman, W., Yen, J. L. & Houlden, R. L. Long-term efficacy of insulin pump therapy on glycemic control in adults with type 1 diabetes mellitus. Diabetes Technol. Ther. 17, 49–54 (2015).

    Article  PubMed  CAS  Google Scholar 

  23. Johnson, S. R., Cooper, M. N., Jones, T. W. & Davis, E. A. Long-term outcome of insulin pump therapy in children with type 1 diabetes assessed in a large population-based case-control study. Diabetologia 56, 2392–2400 (2013).

    Article  PubMed  CAS  Google Scholar 

  24. Steineck, I. et al. Insulin pump therapy, multiple daily injections, and cardiovascular mortality in 18,168 people with type 1 diabetes: observational study. BMJ 350, h3234 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Karges, B. et al. Association of insulin pump therapy versus insulin injection therapy with severe hypoglycemia, ketoacidosis, and glycemic control among children, adolescents, and young adults with type 1 diabetes. JAMA 318, 1358–1366 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Lin, M. H. et al. Race, socioeconomic status, and treatment center are associated with insulin pump therapy in youth in the first year following diagnosis of type 1 diabetes. Diabetes Technol. Ther. 15, 929–934 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Khanolkar, A. R. et al. Young people with Type 1 diabetes of non-white ethnicity and lower socio-economic status have poorer glycaemic control in England and Wales. Diabet. Med. 33, 1508–1515 (2016).

    Article  PubMed  CAS  Google Scholar 

  28. American Diabetes Association. Standards of medical care in diabetes — 2017. Diabetes Care 40 (Suppl. 1), S1–S135 (2017).

    Google Scholar 

  29. Rewers, M. J. et al. ISPAD clinical practice consensus guidelines 2014. Assessment and monitoring of glycemic control in children and adolescents with diabetes. Pediatr. Diabetes 15 (Suppl. 20), 102–114 (2014).

    Article  PubMed  CAS  Google Scholar 

  30. Ziegler, R. et al. Frequency of SMBG correlates with HbA1c and acute complications in children and adolescents with type 1 diabetes. Pediatr. Diabetes 12, 11–17 (2011).

    Article  PubMed  Google Scholar 

  31. Miller, K. M. et al. Evidence of a strong association between frequency of self-monitoring of blood glucose and hemoglobin A1c levels in T1D exchange clinic registry participants. Diabetes Care 36, 2009–2014 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ziegler, R. et al. Use of an insulin bolus advisor improves glycemic control in multiple daily insulin injection (MDI) therapy patients with suboptimal glycemic control: first results from the ABACUS trial. Diabetes Care 36, 3613–3619 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Vallejo Mora, M. D. R. et al. Bolus calculator reduces hypoglycemia in the short term and fear of hypoglycemia in the long term in subjects with type 1 diabetes (CBMDI study). Diabetes Technol. Ther. 19, 402–409 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Vallejo-Mora, M. D. et al. The Calculating Boluses on Multiple Daily Injections (CBMDI) study: a randomized controlled trial on the effect on metabolic control of adding a bolus calculator to multiple daily injections in people with type 1 diabetes. J. Diabetes 9, 24–33 (2017).

    Article  PubMed  CAS  Google Scholar 

  35. Bailey, T., Bode, B. W., Christiansen, M. P., Klaff, L. J. & Alva, S. The performance and usability of a factory-calibrated flash glucose monitoring system. Diabetes Technol. Ther. 17, 787–794 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Kropff, J. et al. Accuracy and longevity of an implantable continuous glucose sensor in the PRECISE study: a 180-day, prospective, multicenter, pivotal trial. Diabetes Care 40, 63–68 (2017).

    Article  PubMed  Google Scholar 

  37. Bergenstal, R. M. Continuous glucose monitoring: transforming diabetes management step by step. Lancet 391, 1334–1336 (2018).

    Article  PubMed  Google Scholar 

  38. DeSalvo, D. et al. Continuous glucose monitoring (CGM) and glycemic control among youth with type 1 diabetes (T1D): international comparison from the T1D Exchange (T1DX) and the DPV Initiative. 43rd Annual Conference of the International Society for Pediatric and Adolescent Diabetes, Innsbruck, Austria (2017).

  39. Bailey, T. S., Chang, A. & Christiansen, M. Clinical accuracy of a continuous glucose monitoring system with an advanced algorithm. J. Diabetes Sci. Technol. 9, 209–214 (2015).

    Article  PubMed  CAS  Google Scholar 

  40. Laffel, L. Improved accuracy of continuous glucose monitoring systems in pediatric patients with diabetes mellitus: results from two studies. Diabetes Technol. Ther. 18 (Suppl. 2), S223–S233 (2016).

    Article  PubMed  CAS  Google Scholar 

  41. Garg, S. K. et al. Glucose outcomes with the in-home use of a hybrid closed-loop insulin delivery system in adolescents and adults with type 1 diabetes. Diabetes Technol. Ther. 19, 155–163 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kropff, J. et al. Accuracy of two continuous glucose monitoring systems: a head-to-head comparison under clinical research centre and daily life conditions. Diabetes Obes. Metab. 17, 343–349 (2015).

    Article  PubMed  CAS  Google Scholar 

  43. Pleus, S. et al. Rate-of-change dependence of the performance of two CGM systems during induced glucose swings. J. Diabetes Sci. Technol. 9, 801–807 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Kovatchev, B. P., Patek, S. D., Ortiz, E. A. & Breton, M. D. Assessing sensor accuracy for non-adjunct use of continuous glucose monitoring. Diabetes Technol. Ther. 17, 177–186 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Aleppo, G. et al. REPLACE-BG: a randomized trial comparing continuous glucose monitoring with and without routine blood glucose monitoring in adults with well-controlled type 1 diabetes. Diabetes Care 40, 538–545 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Agiostratidou, G. et al. Standardizing clinically meaningful outcome measures beyond HbA1c for type 1 diabetes: a consensus report of the American Association of Clinical Endocrinologists, the American Association of Diabetes Educators, the American Diabetes Association, the Endocrine Society, JDRF International, The Leona M. and Harry B. Helmsley Charitable Trust, the Pediatric Endocrine Society, and the T1D Exchange. Diabetes Care 40, 1622–1630 (2017).

    Article  PubMed  Google Scholar 

  47. Danne, T. et al. International consensus on use of continuous glucose monitoring. Diabetes Care 40, 1631–1640 (2017).

    Article  PubMed  Google Scholar 

  48. Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group et al. Continuous glucose monitoring and intensive treatment of type 1 diabetes. N. Engl. J. Med. 359, 1464–1476 (2008).

    Article  Google Scholar 

  49. Pickup, J. C., Freeman, S. C. & Sutton, A. J. Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self monitoring of blood glucose: meta-analysis of randomised controlled trials using individual patient data. BMJ 343, d3805 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Langendam, M. et al. Continuous glucose monitoring systems for type 1 diabetes mellitus. Cochrane Database Syst. Rev. 1, Cd008101 (2012).

    PubMed  Google Scholar 

  51. Szypowska, A., Ramotowska, A., Dzygalo, K. & Golicki, D. Beneficial effect of real-time continuous glucose monitoring system on glycemic control in type 1 diabetic patients: systematic review and meta-analysis of randomized trials. Eur. J. Endocrinol. 166, 567–574 (2012).

    Article  PubMed  CAS  Google Scholar 

  52. Hoeks, L. B., Greven, W. L. & de Valk, H. W. Real-time continuous glucose monitoring system for treatment of diabetes: a systematic review. Diabet. Med. 28, 386–394 (2011).

    Article  PubMed  CAS  Google Scholar 

  53. Golicki, D. T., Golicka, D., Groele, L. & Pankowska, E. Continuous glucose monitoring system in children with type 1 diabetes mellitus: a systematic review and meta-analysis. Diabetologia 51, 233–240 (2008).

    Article  PubMed  CAS  Google Scholar 

  54. Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. Effectiveness of continuous glucose monitoring in a clinical care environment: evidence from the Juvenile Diabetes Research Foundation continuous glucose monitoring (JDRF-CGM) trial. Diabetes Care 33, 17–22 (2010).

    Article  CAS  Google Scholar 

  55. Bergenstal, R. M. et al. Effectiveness of sensor-augmented insulin-pump therapy in type 1 diabetes. N. Engl. J. Med. 363, 311–320 (2010).

    Article  PubMed  CAS  Google Scholar 

  56. Bergenstal, R. M. et al. Sensor-augmented pump therapy for A1C reduction (STAR 3) study: results from the 6-month continuation phase. Diabetes Care 34, 2403–2405 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Battelino, T. et al. Effect of continuous glucose monitoring on hypoglycemia in type 1 diabetes. Diabetes Care 34, 795–800 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Battelino, T. et al. The use and efficacy of continuous glucose monitoring in type 1 diabetes treated with insulin pump therapy: a randomised controlled trial. Diabetologia 55, 3155–3162 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Beck, R. W. et al. Effect of continuous glucose monitoring on glycemic control in adults with type 1 diabetes using insulin injections: the DIAMOND randomized clinical trial. JAMA 317, 371–378 (2017).

    Article  PubMed  CAS  Google Scholar 

  60. Fonseca, V. A. et al. Continuous glucose monitoring: a consensus conference of the American Association of Clinical Endocrinologists and American College of Endocrinology. Endocr. Pract. 22, 1008–1021 (2016).

    Article  PubMed  Google Scholar 

  61. Foster, N. C. et al. Continuous glucose monitoring in patients with type 1 diabetes using insulin injections. Diabetes Care 39, e81–e82 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Lind, M. et al. Continuous glucose monitoring versus conventional therapy for glycemic control in adults with type 1 diabetes treated with multiple daily insulin injections: the GOLD randomized clinical trial. JAMA 317, 379–387 (2017).

    Article  PubMed  CAS  Google Scholar 

  63. Bolinder, J., Antuna, R., Geelhoed-Duijvestijn, P., Kröger, J. & Weitgasser, R. Novel glucose-sensing technology and hypoglycaemia in type 1 diabetes: a multicentre, non-masked, randomised controlled trial. Lancet 388, 2254–2263 (2016).

    Article  PubMed  Google Scholar 

  64. Edge, J. et al. An alternative sensor-based method for glucose monitoring in children and young people with diabetes. Arch. Dis. Child 102, 543–549 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ish-Shalom, M., Wainstein, J., Raz, I. & Mosenzon, O. Improvement in glucose control in difficult-to-control patients with diabetes using a novel flash glucose monitoring device. J. Diabetes Sci. Technol. 10, 1412–1413 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Dover, A. R., Stimson, R. H., Zammitt, N. N. & Gibb, F. W. Flash glucose monitoring improves outcomes in a type 1 diabetes clinic. J. Diabetes Sci. Technol. 11, 442–443 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. McKnight, J. A. & Gibb, F. W. Flash glucose monitoring is associated with improved glycaemic control but use is largely limited to more affluent people in a UK diabetes centre. Diabet. Med. 34, 732 (2017).

    Article  PubMed  CAS  Google Scholar 

  68. Reddy, M. et al. A randomized controlled pilot study of continuous glucose monitoring and flash glucose monitoring in people with Type 1 diabetes and impaired awareness of hypoglycaemia. Diabet. Med. 35, 483–490 (2018).

    Article  PubMed  CAS  Google Scholar 

  69. Dunn, T. C., Xu, Y., Hayter, G. & Ajjan, R. A. Real-world flash glucose monitoring patterns and associations between self-monitoring frequency and glycaemic measures: a European analysis of over 60 million glucose tests. Diabetes Res. Clin. Pract. 137, 37–46 (2018).

    Article  PubMed  Google Scholar 

  70. Ly, T. T. et al. Effect of sensor-augmented insulin pump therapy and automated insulin suspension versus standard insulin pump therapy on hypoglycemia in patients with type 1 diabetes: a randomized clinical trial. JAMA 310, 1240–1247 (2013).

    Article  PubMed  CAS  Google Scholar 

  71. Bergenstal, R. M. et al. Threshold-based insulin-pump interruption for reduction of hypoglycemia. N. Engl. J. Med. 369, 224–232 (2013).

    Article  PubMed  CAS  Google Scholar 

  72. Weiss, R. et al. Hypoglycemia reduction and changes in hemoglobin A1c in the ASPIRE in-home study. Diabetes Technol. Ther. 17, 542–547 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Danne, T. et al. Prevention of hypoglycemia by using low glucose suspend function in sensor-augmented pump therapy. Diabetes Technol. Ther. 13, 1129–1134 (2011).

    Article  PubMed  Google Scholar 

  74. Choudhary, P. et al. Insulin pump therapy with automated insulin suspension in response to hypoglycemia: reduction in nocturnal hypoglycemia in those at greatest risk. Diabetes Care 34, 2023–2025 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Agrawal, P., Zhong, A., Welsh, J. B., Shah, R. & Kaufman, F. R. Retrospective analysis of the real-world use of the threshold suspend feature of sensor-augmented insulin pumps. Diabetes Technol. Ther. 17, 316–319 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Maahs, D. M. et al. A randomized trial of a home system to reduce nocturnal hypoglycemia in type 1 diabetes. Diabetes Care 37, 1885–1891 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Buckingham, B. A. et al. Predictive low-glucose insulin suspension reduces duration of nocturnal hypoglycemia in children without increasing ketosis. Diabetes Care 38, 1197–1204 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Battelino, T., Nimri, R., Dovc, K., Phillip, M. & Bratina, N. Prevention of hypoglycemia with predictive low glucose insulin suspension in children with type 1 diabetes: a randomized controlled trial. Diabetes Care 40, 764–770 (2017).

    Article  PubMed  CAS  Google Scholar 

  79. Steil, G. M., Rebrin, K., Darwin, C., Hariri, F. & Saad, M. F. Feasibility of automating insulin delivery for the treatment of type 1 diabetes. Diabetes 55, 3344–3350 (2006).

    Article  PubMed  CAS  Google Scholar 

  80. Weinzimer, S. A. et al. Fully automated closed-loop insulin delivery versus semiautomated hybrid control in pediatric patients with type 1 diabetes using an artificial pancreas. Diabetes Care 31, 934–939 (2008).

    Article  PubMed  Google Scholar 

  81. Hovorka, R. et al. Manual closed-loop insulin delivery in children and adolescents with type 1 diabetes: a phase 2 randomised crossover trial. Lancet 375, 743–751 (2010).

    Article  PubMed  CAS  Google Scholar 

  82. Atlas, E., Nimri, R., Miller, S., Grunberg, E. A. & Phillip, M. MD-logic artificial pancreas system: a pilot study in adults with type 1 diabetes. Diabetes Care 33, 1072–1076 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  83. El-Khatib, F. H., Russell, S. J., Nathan, D. M., Sutherlin, R. G. & Damiano, E. R. A bihormonal closed-loop artificial pancreas for type 1 diabetes. Sci. Transl Med. 2, 27ra27 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Bakhtiani, P. A., Zhao, L. M., El Youssef, J., Castle, J. R. & Ward, W. K. A review of artificial pancreas technologies with an emphasis on bi-hormonal therapy. Diabetes Obes. Metab. 15, 1065–1070 (2013).

    Article  PubMed  CAS  Google Scholar 

  85. Weisman, A., Bai, J. W., Cardinez, M., Kramer, C. K. & Perkins, B. A. Effect of artificial pancreas systems on glycaemic control in patients with type 1 diabetes: a systematic review and meta-analysis of outpatient randomised controlled trials. Lancet Diabetes Endocrinol. 5, 501–512 (2017).

    Article  PubMed  CAS  Google Scholar 

  86. Thabit, H. et al. Home use of an artificial beta cell in type 1 diabetes. N. Engl. J. Med. 373, 2129–2140 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Kropff, J. et al. 2 month evening and night closed-loop glucose control in patients with type 1 diabetes under free-living conditions: a randomised crossover trial. Lancet Diabetes Endocrinol. 3, 939–947 (2015).

    Article  PubMed  Google Scholar 

  88. Bergenstal, R. M. et al. Safety of a hybrid closed-loop insulin delivery system in patients with type 1 diabetes. JAMA 316, 1407–1408 (2016).

    Article  PubMed  Google Scholar 

  89. Garg, S. K. et al. Effects of sotagliflozin added to insulin in patients with type 1 diabetes. N. Engl. J. Med. 377, 2337–2348 (2017).

    Article  PubMed  CAS  Google Scholar 

  90. Lewis, D. OpenAPS. https://openaps.org/ (2017).

  91. Lewis, D., Leibrand, S. & OpenAPS Community. Real-world use of open source artificial pancreas systems. J. Diabetes Sci. Technol. 10, 1411 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Duke, D. C. et al. Distal technologies and type 1 diabetes management. Lancet Diabetes Endocrinol. 6, 143–156 (2018).

    Article  PubMed  Google Scholar 

  93. Mazze, R. S. et al. Characterizing glucose exposure for individuals with normal glucose tolerance using continuous glucose monitoring and ambulatory glucose profile analysis. Diabetes Technol. Ther. 10, 149–159 (2008).

    Article  PubMed  CAS  Google Scholar 

  94. Wong, J. C., Neinstein, A. B., Spindler, M. & Adi, S. A minority of patients with type 1 diabetes routinely downloads and retrospectively reviews device data. Diabetes Technol. Ther. 17, 555–562 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Beck, R. W. Downloading diabetes device data: empowering patients to download at home to achieve better outcomes. Diabetes Technol. Ther. 17, 536–537 (2015).

    Article  PubMed  Google Scholar 

  96. Lee, J. M. et al. Real-world use and self-reported health outcomes of a patient-designed do-it-yourself mobile technology system for diabetes: lessons for mobile health. Diabetes Technol. Ther. 19, 209–219 (2017).

    Article  PubMed  Google Scholar 

  97. Lee, J. M., Hirschfeld, E. & Wedding, J. A patient-designed do-it-yourself mobile technology system for diabetes: promise and challenges for a new era in medicine. JAMA 315, 1447–1448 (2016).

    Article  PubMed  CAS  Google Scholar 

  98. Trawley, S. et al. The use of mobile applications among adolescents with type 1 diabetes: results from Diabetes MILES Youth-Australia. Diabetes Technol. Ther. 18, 813–819 (2016).

    Article  PubMed  CAS  Google Scholar 

  99. Frøisland, D. H., Arsand, E. & Skårderud, F. Improving diabetes care for young people with type 1 diabetes through visual learning on mobile phones: mixed-methods study. J. Med. Internet Res. 14, e111 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Hanauer, D. A., Wentzell, K., Laffel, N. & Laffel, L. M. Computerized Automated Reminder Diabetes System (CARDS): e-mail and SMS cell phone text messaging reminders to support diabetes management. Diabetes Technol. Ther. 11, 99–106 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Cafazzo, J. A., Casselman, M., Hamming, N., Katzman, D. K. & Palmert, M. R. Design of an mHealth app for the self-management of adolescent type 1 diabetes: a pilot study. J. Med. Internet Res. 14, e70 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Goyal, S. et al. A mobile app for the self-management of type 1 diabetes among adolescents: a randomized controlled trial. JMIR Mhealth Uhealth 5, e82 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Neinstein, A. et al. A case study in open source innovation: developing the Tidepool Platform for interoperability in type 1 diabetes management. J. Am. Med. Inform. Assoc. 23, 324–332 (2016).

    Article  PubMed  Google Scholar 

  104. Hou, C., Carter, B., Hewitt, J., Francisa, T. & Mayor, S. Do mobile phone applications improve glycemic control (HbA1c) in the self-management of diabetes? A systematic review, meta-analysis, and GRADE of 14 randomized trials. Diabetes Care 39, 2089–2095 (2016).

    Article  PubMed  Google Scholar 

  105. Wu, Y. et al. Mobile app-based interventions to support diabetes self-management: a systematic review of randomized controlled trials to identify functions associated with glycemic efficacy. JMIR Mhealth Uhealth 5, e35 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Bailey, T. S. et al. American Assiciation of Clinical Endocrinologists and American College of Endocrinology 2016 outpatient glucose monitoring consensus statement. Endocr. Pract. 22, 231–261 (2016).

    Article  PubMed  Google Scholar 

  107. Grunberger, G. et al. Consensus statement by the American Association of Clinical Endocrinologists/American College of Endocrinology insulin pump management task force. Endocr. Pract. 20, 463–489 (2014).

    Article  PubMed  Google Scholar 

  108. Klonoff, D. C. et al. Continuous glucose monitoring: an Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 96, 2968–2979 (2011).

    Article  PubMed  CAS  Google Scholar 

  109. Peters, A. L. et al. Diabetes technology-continuous subcutaneous insulin infusion therapy and continuous glucose monitoring in adults: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 101, 3922–3937 (2016).

    Article  PubMed  CAS  Google Scholar 

  110. Danne, T. et al. ISPAD clinical practice consensus guidelines 2014. Insulin treatment in children and adolescents with diabetes. Pediatr. Diabetes 15 (Suppl. 20), 115–134 (2014).

    Article  PubMed  CAS  Google Scholar 

  111. National Institute for Health and Care Excellence. NICE guideline (NG) 18, diabetes (type 1 and type 2) in children and young people: diagnosis and management. NICE http://nice.org.uk/guidance/ng18 (2015).

  112. National Institute for Health and Care Excellence. NICE guideline (NG) 17, type 1 diabetes in adults: diagnosis and management. NICE http://nice.org.uk/guidance/ng17 (2015).

  113. National Institute for Health and Care Excellence. Technology appraisal guidance (TA151). Continuous subcutaneous insulin infusion for the treatment of diabetes mellitus. NICE nice.org.uk/guidance/ta151 (2008).

  114. National Institute for Health and Care Excellence. Diagnostics guidance (DG21). Integrated sensor-augmented pump therapy systems for managing blood glucose levels in type 1 diabetes (the MiniMed Paradigm Veo system and the Vibe and G4 PLATINUM CGM system). NICE nice.org.uk/guidance/dg21 (2016).

  115. Edelman, S. V. Regulation catches up to reality. J. Diabetes Sci. Technol. 11, 160–164 (2017).

    Article  PubMed  CAS  Google Scholar 

  116. Pettus, J. & Edelman, S. V. Recommendations for using real-time continuous glucose monitoring (rtCGM) data for insulin adjustments in type 1 diabetes. J. Diabetes Sci. Technol. 11, 138–147 (2017).

    Article  PubMed  CAS  Google Scholar 

  117. Castle, J. R. & Jacobs, P. G. Nonadjunctive use of continuous glucose monitoring for diabetes treatment decisions. J. Diabetes Sci. Technol. 10, 1169–1173 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Forlenza, G. P., Argento, N. B. & Laffel, L. M. Practical considerations on the use of continuous glucose monitoring in pediatrics and older adults and nonadjunctive use. Diabetes Technol. Ther. 19 (S3), S13–S20 (2017).

    Article  PubMed  Google Scholar 

  119. National Institute for Health and Care Excellence. FreeStyle Libre for glucose monitoring. Medtech innovation briefing. NICE http://nice.org.uk/guidance/mib110 (2017).

  120. Wang, Y. et al. “Learning” can improve the blood glucose control performance for type 1 diabetes mellitus. Diabetes Technol. Ther. 19, 41–48 (2017).

    Article  PubMed  CAS  Google Scholar 

  121. Dassau, E. et al. Adjustment of open-loop settings to improve closed-loop results in type 1 diabetes: a multicenter randomized trial. J. Clin. Endocrinol. Metab. 100, 3878–3886 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Reddy, M. et al. Clinical safety and feasibility of the advanced bolus calculator for type 1 diabetes based on case-based reasoning: a 6-week nonrandomized single-arm pilot study. Diabetes Technol. Ther. 18, 487–493 (2016).

    Article  PubMed  CAS  Google Scholar 

  123. Klonoff, D. C. & Fellow AIMBE. Trends in FDA regulation of software to control insulin dosing. J. Diabetes Sci. Technol. 9, 503–506 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Bally, L., Thabit, H. & Hovorka, R. Finding the right route for insulin delivery — an overview of implantable pump therapy. Expert Opin. Drug Deliv. 14, 1103–1111 (2017).

    Article  PubMed  CAS  Google Scholar 

  125. Dassau, E. et al. Intraperitoneal insulin delivery provides superior glycaemic regulation to subcutaneous insulin delivery in model predictive control-based fully-automated artificial pancreas in patients with type 1 diabetes: a pilot study. Diabetes Obes. Metab. 19, 1698–1705 (2017).

    Article  PubMed  CAS  Google Scholar 

  126. Lindpointner, S. et al. Use of the site of subcutaneous insulin administration for the measurement of glucose in patients with type 1 diabetes. Diabetes Care 33, 595–601 (2010).

    Article  PubMed  CAS  Google Scholar 

  127. Regittnig, W. et al. Periodic extraction of interstitial fluid from the site of subcutaneous insulin infusion for the measurement of glucose: a novel single-port technique for the treatment of type 1 diabetes patients. Diabetes Technol. Ther. 15, 50–59 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Nørgaard, K., Shin, J., Welsh, J. B. & Gjessing, H. Performance and acceptability of a combined device for insulin infusion and glucose sensing in the home setting. J. Diabetes Sci. Technol. 9, 215–220 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Haidar, A., Smaoui, M. R., Legault, L. & Rabasa-Lhoret, R. The role of glucagon in the artificial pancreas. Lancet Diabetes Endocrinol. 4, 476–479 (2016).

    Article  PubMed  Google Scholar 

  130. Haidar, A. et al. Outpatient overnight glucose control with dual-hormone artificial pancreas, single-hormone artificial pancreas, or conventional insulin pump therapy in children and adolescents with type 1 diabetes: an open-label, randomised controlled trial. Lancet Diabetes Endocrinol. 3, 595–604 (2015).

    Article  PubMed  CAS  Google Scholar 

  131. Russell, S. J. et al. Outpatient glycemic control with a bionic pancreas in type 1 diabetes. N. Engl. J. Med. 371, 313–325 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Jackson, M. A. et al. Stable liquid glucagon formulations for rescue treatment and bi-hormonal closed-loop pancreas. Curr. Diab. Rep. 12, 705–710 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Weinzimer, S. A. et al. Effect of pramlintide on prandial glycemic excursions during closed-loop control in adolescents and young adults with type 1 diabetes. Diabetes Care 35, 1994–1999 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Renukuntla, V. S., Ramchandani, N., Trast, J., Cantwell, M. & Heptulla, R. A. Role of glucagon-like peptide-1 analogue versus amylin as an adjuvant therapy in type 1 diabetes in a closed loop setting with ePID algorithm. J. Diabetes Sci. Technol. 8, 1011–1017 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Sherr, J. L. et al. Mitigating meal-related glycemic excursions in an insulin-sparing manner during closed-loop insulin delivery: the beneficial effects of adjunctive pramlintide and liraglutide. Diabetes Care 39, 1127–1134 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Malek, R. & Davis, S. N. Novel methods of insulin replacement: the artificial pancreas and encapsulated islets. Rev. Recent Clin. Trials 11, 106–123 (2016).

    Article  PubMed  CAS  Google Scholar 

  137. Rege, N. K., Phillips, N. F. B. & Weiss, M. A. Development of glucose-responsive ‘smart’ insulin systems. Curr. Opin. Endocrinol. Diabetes Obes. 24, 267–278 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  138. Valdes-Gonzalez, R. et al. Long-term follow-up of patients with type 1 diabetes transplanted with neonatal pig islets. Clin. Exp. Immunol. 162, 537–542 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Elliott, R. B. et al. Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation. Xenotransplantation 14, 157–161 (2007).

    Article  PubMed  Google Scholar 

  140. Basta, G. et al. Long-term metabolic and immunological follow-up of nonimmunosuppressed patients with type 1 diabetes treated with microencapsulated islet allografts: four cases. Diabetes Care 34, 2406–2409 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the National Institute of Health Research Cambridge Biomedical Research Centre, the Efficacy and Mechanism Evaluation National Institute for Health Research (#14/23/09), The Leona M. and Harry B. Helmsley Charitable Trust (#2016PG-T1D045), Wellcome Strategic Award (100574/Z/12/Z), JDRF (#2-SRA-2014-256-M-R), the National Institute of Diabetes and Digestive and Kidney Diseases (1UC4DK108520-01) and Diabetes UK (#14/0004878).

Review criteria

The narrative is based on results from clinical studies and meta-analyses known to the authors. Relevant studies were identified by searching PubMed and Web of Science for articles on each of the technologies up to November 2017, as well as using cited literature in retrieved articles. Information relevant to children, adolescents and adults with type 1 diabetes mellitus was considered; studies in pregnancy complicated by diabetes were excluded. Priority was given to meta-analyses and systematic reviews.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to all aspects of the article.

Corresponding author

Correspondence to Roman Hovorka.

Ethics declarations

Competing interests

R.H. has received speaker honoraria from Eli Lilly, Novo Nordisk and Astra Zeneca, has served on the advisory panel for Eli Lilly and Novo Nordisk, has received licence fees from B. Braun and Medtronic, has served as a consultant to B. Braun and has patents and patent applications related to closed-loop systems. M.T. has received speaker honoraria from Medtronic and Novo Nordisk.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tauschmann, M., Hovorka, R. Technology in the management of type 1 diabetes mellitus — current status and future prospects. Nat Rev Endocrinol 14, 464–475 (2018). https://doi.org/10.1038/s41574-018-0044-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-018-0044-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing