Review Article | Published:

The somatostatin-secreting pancreatic δ-cell in health and disease

Nature Reviews Endocrinologyvolume 14pages404414 (2018) | Download Citation


The somatostatin-secreting δ-cells comprise ~5% of the cells of the pancreatic islets. The δ-cells have complex morphology and might interact with many more islet cells than suggested by their low numbers. δ-Cells contain ATP-sensitive potassium channels, which open at low levels of glucose but close when glucose is elevated. This closure initiates membrane depolarization and electrical activity and increased somatostatin secretion. Factors released by neighbouring α-cells or β-cells amplify the glucose-induced effects on somatostatin secretion from δ-cells, which act locally within the islets as paracrine or autocrine inhibitors of insulin, glucagon and somatostatin secretion. The effects of somatostatin are mediated by activation of somatostatin receptors coupled to the inhibitory G protein, which culminates in suppression of the electrical activity and exocytosis in α-cells and β-cells. Somatostatin secretion is perturbed in animal models of diabetes mellitus, which might explain the loss of appropriate hypoglycaemia-induced glucagon secretion, a defect that could be mitigated by somatostatin receptor 2 antagonists. Somatostatin antagonists or agents that suppress somatostatin secretion have been proposed as an adjunct to insulin therapy. In this Review, we summarize the cell physiology of somatostatin secretion, what might go wrong in diabetes mellitus and the therapeutic potential of agents targeting somatostatin secretion or action.

Key points

  • The δ-cells of the pancreatic islets secrete somatostatin, a powerful paracrine inhibitor of both insulin and glucagon secretion from islet α-cells and β-cells.

  • δ-Cells are electrically excitable, and glucose stimulates action potential firing and somatostatin secretion by both metabolic and non-metabolic effects.

  • Factors (such as GABA and urocortin 3) released by the β-cells stimulate somatostatin secretion, thereby providing a mechanism for feedback control of insulin and glucagon secretion during hyperglycaemia.

  • Diabetes mellitus is associated with impaired glucagon secretion in response to hypoglycaemia; this effect is corrected by somatostatin antagonists, suggesting that diabetes mellitus involves hypersecretion of somatostatin during hypoglycaemia.

  • Agents that inhibit somatostatin secretion or action might reduce the risk of insulin-induced hypoglycaemia and should be considered as an adjunct to insulin therapy.

  • Subscribe to Nature Reviews Endocrinology for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Hellman, B. Actual distribution of the number and volume of the islets of Langerhans in different size classes in non-diabetic humans of varying ages. Nature 184 (Suppl. 19), 1498–1499 (1959).

  2. 2.

    Ionescu-Tirgoviste, C. et al. A 3D map of the islet routes throughout the healthy human pancreas. Sci. Rep. 5, 14634 (2015).

  3. 3.

    Frayn, K. N. Metabolic Regulation: A Human Perspective 3rd edn (Wiley-Blackwell, 2010).

  4. 4.

    Cabrera, O. et al. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl Acad. Sci. USA 103, 2334–2339 (2006).

  5. 5.

    Gerich, J. E., Langlois, M., Noacco, C., Karam, J. H. & Forsham, P. H. Lack of glucagon response to hypoglycemia in diabetes: evidence for an intrinsic pancreatic alpha cell defect. Science 182, 171–173 (1973).

  6. 6.

    Muller, W. A., Faloona, G. R., Aguilar-Parada, E. & Unger, R. H. Abnormal alpha-cell function in diabetes. Response to carbohydrate and protein ingestion. N. Engl. J. Med. 283, 109–115 (1970).

  7. 7.

    Cryer, P. E. Hypoglycemia-associated autonomic failure in diabetes: maladaptive, adaptive, or both? Diabetes 64, 2322–2323 (2015).

  8. 8.

    Ashcroft, F. M. & Rorsman, P. Diabetes mellitus and the beta cell: the last ten years. Cell 148, 1160–1171 (2012).

  9. 9.

    Rorsman, P. & Braun, M. Regulation of insulin secretion in human pancreatic islets. Annu. Rev. Physiol. 75, 155–179 (2013).

  10. 10.

    Rorsman, P., Ramracheya, R., Rorsman, N. J. & Zhang, Q. ATP-regulated potassium channels and voltage-gated calcium channels in pancreatic alpha and beta cells: similar functions but reciprocal effects on secretion. Diabetologia 57, 1749–1761 (2014).

  11. 11.

    Gylfe, E. & Gilon, P. Glucose regulation of glucagon secretion. Diabetes Res. Clin. Pract. 103, 1–10 (2014).

  12. 12.

    Karimian, N. et al. Somatostatin receptor type 2 antagonism improves glucagon counterregulation in biobreeding diabetic rats. Diabetes 62, 2968–2977 (2013).

  13. 13.

    Yue, J. T. et al. Amelioration of hypoglycemia via somatostatin receptor type 2 antagonism in recurrently hypoglycemic diabetic rats. Diabetes 62, 2215–2222 (2013).

  14. 14.

    Yue, J. T. et al. Somatostatin receptor type 2 antagonism improves glucagon and corticosterone counterregulatory responses to hypoglycemia in streptozotocin-induced diabetic rats. Diabetes 61, 197–207 (2012).

  15. 15.

    Dobbs, R. et al. Glucagon: role in the hyperglycemia of diabetes mellitus. Science 187, 544–547 (1975).

  16. 16.

    Gerich, J. E. et al. Prevention of human diabetic ketoacidosis by somatostatin. Evidence for an essential role of glucagon. N. Engl. J. Med. 292, 985–989 (1975).

  17. 17.

    Raskin, P. & Unger, R. H. Hyperglucagonemia and its suppression. Importance in the metabolic control of diabetes. N. Engl. J. Med. 299, 433–436 (1978).

  18. 18.

    Gerich, J. E., Schultz, T. A., Lewis, S. B. & Karam, J. H. Clinical evaluation of somatostatin as a potential adjunct to insulin in management of diabetes-mellitus. Diabetologia 13, 537–544 (1977).

  19. 19.

    Brazeau, P. et al. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179, 77–79 (1973).

  20. 20.

    Guillemin, R. Somatostatin: the early days. Metabolism 41, 2–4 (1992).

  21. 21.

    Baskin, D. G. A. Historical perspective on the identification of cell types in pancreatic islets of Langerhans by staining and histochemical techniques. J. Histochem. Cytochem. 63, 543–558 (2015).

  22. 22.

    Weckbecker, G. et al. Opportunities in somatostatin research: biological, chemical and therapeutic aspects. Nat. Rev. Drug Discov. 2, 999–1017 (2003).

  23. 23.

    Brereton, M. F., Vergari, E., Zhang, Q. & Clark, A. Alpha-, Delta- and PP-cells: are they the architectural cornerstones of islet structure and co-ordination? J. Histochem. Cytochem. 63, 575–591 (2015).

  24. 24.

    Rorsman, P. & Ashcroft, F. M. Pancreatic β-cell electrical activity and insulin secretion: of mice and men. Physiol. Rev. 98, 117–214 (2018).

  25. 25.

    Zhang, Q. et al. Role of K-ATP channels in glucose-regulated glucagon secretion and impaired counterregulation in type 2 diabetes. Cell Metab. 18, 871–882 (2013).

  26. 26.

    Vieira, E., Salehi, A. & Gylfe, E. Glucose inhibits glucagon secretion by a direct effect on mouse pancreatic alpha cells. Diabetologia 50, 370–379 (2007).

  27. 27.

    Zhang, Q. et al. Na+ current properties in islet alpha- and beta-cells reflect cell-specific Scn3a and Scn9a expression. J. Physiol. 592, 4677–4696 (2014).

  28. 28.

    Adriaenssens, A. et al. A transcriptome-led exploration of molecular mechanisms regulating somatostatin-producing D-cells in the gastric epithelium. Endocrinology 156, 3924–3936 (2015).

  29. 29.

    Benninger, R. K. P., Zhang, M., Head, W. S., & Satin, L. S. & Piston, D. W. Gap junction coupling and calcium waves in the pancreatic islet. Biophys. J. 95, 5048–5061 (2008).

  30. 30.

    Ravier, M. A. et al. Loss of connexin36 channels alters beta-cell coupling, islet synchronization of glucose-induced Ca2+ and insulin oscillations, and basal insulin release. Diabetes 54, 1798–1807 (2005).

  31. 31.

    Zhang, Q. et al. Cell coupling in mouse pancreatic beta-cells measured in intact islets of Langerhans. Philos. Trans. A Math. Phys. Eng. Sci. 366, 3503–3523 (2008).

  32. 32.

    Briant, L. J. B. et al. delta-cells and beta-cells are electrically coupled and regulate alpha-cell activity via somatostatin. J. Physiol. 596, 197–215 (2018).

  33. 33.

    Martinez, V. & Taché, Y. in Encyclopedia of Gastroenterology (ed. Johnson, L. R.) 426–433 (Elsevier, 2004).

  34. 34.

    Gribble, F. M. & Reimann, F. Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu. Rev. Physiol. 78, 277–299 (2016).

  35. 35.

    Mace, O. J., Tehan, B. & Marshall, F. Pharmacology and physiology of gastrointestinal enteroendocrine cells. Pharmacol. Res. Persp. 3, e00155 (2015).

  36. 36.

    Sosa-Pineda, B., Chowdhury, K., Torres, M., Oliver, G. & Gruss, P. The Pax4 gene is essential for differentiation of insulin-producing beta cells in the mammalian pancreas. Nature 386, 399–402 (1997).

  37. 37.

    Adriaenssens, A. E. et al. Transcriptomic profiling of pancreatic alpha, beta and delta cell populations identifies delta cells as a principal target for ghrelin in mouse islets. Diabetologia 59, 2156–2165 (2016).

  38. 38.

    DiGruccio, M. R. et al. Comprehensive alpha, beta and delta cell transcriptomes reveal that ghrelin selectively activates delta cells and promotes somatostatin release from pancreatic islets. Mol. Metab. 5, 449–458 (2016).

  39. 39.

    Walker, J. N. et al. Regulation of glucagon secretion by glucose: paracrine, intrinsic or both? Diabetes Obes. Metab. 13 (Suppl. 1), 95–105 (2011).

  40. 40.

    Zhang, Q. et al. R-Type Ca(2+)-channel-evoked CICR regulates glucose-induced somatostatin secretion. Nat. Cell Biol. 9, 453–460 (2007).

  41. 41.

    Hermansen, K. Pancreatic D-cell recognition of D-glucose: studies with D-glucose, D-glyceraldehyde, dihydroxyacetone, D-mannoheptulose, D-fructose, D-galactose, and D-ribose. Diabetes 30, 203–210 (1981).

  42. 42.

    Sako, Y., Wasada, T., Umeda, F. & Ibayashi, H. Effect of glibenclamide on pancreatic hormone release from isolated perifused islets of normal and cysteamine-treated rats. Metabolism 35, 944–949 (1986).

  43. 43.

    Patton, G. S. et al. Pancreatic immunoreactive somatostatin release. Proc. Natl Acad. Sci. USA 74, 2140–2143 (1977).

  44. 44.

    Ipp, E. et al. Release of immunoreactive somatostatin from the pancreas in response to glucose, amino acids, pancreozymin-cholecystokinin, and tolbutamide. J. Clin. Invest. 60, 760–765 (1977).

  45. 45.

    Gerber, P. P., Trimble, E. R., Wollheim, C. B. & Renold, A. E. Effect of insulin on glucose- and arginine-stimulated somatostatin secretion from the isolated perfused rat pancreas. Endocrinology 109, 279–283 (1981).

  46. 46.

    Ashcroft, F. M., Coles, B., Gummerson, N., Sakura, H. & Smith, P. A. 2 cationic amino-acid transporters expressed in pancreatic beta-cells. J. Physiol. 487P, P192–P193 (1995).

  47. 47.

    Panten, U., Kriegstein, E., Poser, W., Schonborn, J. & Hasselblatt, A. Effects of L-leucine and alpha-ketoisocaproic acid upon insulin secretion and metabolism of isolated pancreatic islets. FEBS Lett. 20, 225–228 (1972).

  48. 48.

    Richieri, G. V. & Kleinfeld, A. M. Unbound free fatty-acid levels in human serum. J. Lipid Res. 36, 229–240 (1995).

  49. 49.

    Olofsson, C. S., Salehi, A., Gopel, S. O., Holm, C. & Rorsman, P. Palmitate stimulation of glucagon secretion in mouse pancreatic alpha-cells results from activation of L-type calcium channels and elevation of cytoplasmic calcium. Diabetes 53, 2836–2843 (2004).

  50. 50.

    Stone, V. M. et al. GPR120 (FFAR4) is preferentially expressed in pancreatic delta cells and regulates somatostatin secretion from murine islets of Langerhans. Diabetologia 57, 1182–1191 (2014).

  51. 51.

    Olofsson, C. S., Salehi, A., Holm, C. & Rorsman, P. Palmitate increases L-type Ca2+ currents and the size of the readily releasable granule pool in mouse pancreatic beta-cells. J. Physiol. 557, 935–948 (2004).

  52. 52.

    Efendic, S., Enzmann, F., Nylen, A., Uvnas-Wallensten, K. & Luft, R. Effect of glucose/sulfonylurea interaction on release of insulin, glucagon, and somatostatin from isolated perfused rat pancreas. Proc. Natl Acad. Sci. USA 76, 5901–5904 (1979).

  53. 53.

    Hauge-Evans, A. C. et al. Somatostatin secreted by islet delta-cells fulfills multiple roles as a paracrine regulator of islet function. Diabetes 58, 403–411 (2009).

  54. 54.

    Hermansen, K. Tolbutamide, glucose, calcium, and somatostatin secretion. Acta Endocrinol. 99, 86–93 (1982).

  55. 55.

    van der Meulen, T. et al. Urocortin3 mediates somatostatin-dependent negative feedback control of insulin secretion. Nat. Med. 21, 769–776 (2015).

  56. 56.

    Braun, M. et al. Somatostatin release, electrical activity, membrane currents and exocytosis in human pancreatic delta cells. Diabetologia 52, 1566–1578 (2009).

  57. 57.

    Gopel, S. O., Kanno, T., Barg, S. & Rorsman, P. Patch-clamp characterisation of somatostatin-secreting -cells in intact mouse pancreatic islets. J. Physiol. 528, 497–507 (2000).

  58. 58.

    Hermansen, K., Lindskog, S. & Ahren, B. Stimulation of somatostatin secretion by 3-O-methylglucose in the perfused dog pancreas. Int. J. Pancreatol. 20, 103–107 (1996).

  59. 59.

    Briant, L. J. et al. Functional identification of islet cell types by electrophysiological fingerprinting. J. R. Soc. Interface 14, 20160999 (2017).

  60. 60.

    Segerstolpe, A. et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell. Metab. 24, 593–607 (2016).

  61. 61.

    Samols, E., Stagner, J. I., Ewart, R. B. L. & Marks, V. The order of islet microvascular cellular perfusion is B→A→D in the perfused rat pancreas. J. Clin. Invest. 82, 350–353 (1988).

  62. 62.

    Hauge-Evans, A. C., Anderson, R. L., Persaud, S. J. & Jones, P. M. Delta cell secretory responses to insulin secretagogues are not mediated indirectly by insulin. Diabetologia 55, 1995–2004 (2012).

  63. 63.

    Honey, R. N., Fallon, M. B. & Weir, G. C. Effects of exogenous insulin, glucagon, and somatostatin on islet hormone secretion in the perfused chicken pancreas. Metabolism 29, 1242–1246 (1980).

  64. 64.

    Weir, G. C., Samols, E., Day, J. A. Jr & Patel, Y. C. Glucose and glucagon stimulate the secretion of somatostatin from the perfused canine pancreas. Metabolism 27, 1223–1226 (1978).

  65. 65.

    Lewis, K. et al. Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF2 receptor. Proc. Natl Acad. Sci. USA 98, 7570–7575 (2001).

  66. 66.

    Braun, M. et al. Gamma-aminobutyric acid (GABA) is an autocrine excitatory transmitter in human pancreatic beta-cells. Diabetes 59, 1694–1701 (2010).

  67. 67.

    Rodriguez-Diaz, R. et al. Innervation patterns of autonomic axons in the human endocrine pancreas. Cell Metab. 14, 45–54 (2011).

  68. 68.

    de Heer, J., Rasmussen, C., Coy, D. H. & Holst, J. J. Glucagon-like peptide-1, but not glucose-dependent insulinotropic peptide, inhibits glucagon secretion via somatostatin (receptor subtype 2) in the perfused rat pancreas. Diabetologia 51, 2263–2270 (2008).

  69. 69.

    Gerber, P. P., Trimble, E. R., Wollheim, C. B., Renold, A. E. & Miller, R. E. Glucose and cyclic AMP as stimulators of somatostatin and insulin secretion from the isolated, perfused rat pancreas: a quantitative study. Diabetes 30, 40–44 (1981).

  70. 70.

    Sorenson, R. L., Elde, R. P. & Seybold, V. Effect of norepinephrine on insulin, glucagon, and somatostatin secretion in isolated perifused rat islets. Diabetes 28, 899–904 (1979).

  71. 71.

    Berts, A., Ball, A., Dryselius, G., Gylfe, E. & Hellman, B. Glucose stimulation of somatostatin-producing islet cells involves oscillatory Ca2+ signaling. Endocrinology 137, 693–697 (1996).

  72. 72.

    Nadal, A., Quesada, I. & Soria, B. Homologous and heterologous asynchronicity between identified alpha-, beta- and delta-cells within intact islets of Langerhans in the mouse. J. Physiol. 517, 85–93 (1999).

  73. 73.

    Quesada, I., Nadal, A. & Soria, B. Different effects of tolbutamide and diazoxide in alpha, beta-, and delta-cells within intact islets of Langerhans. Diabetes 48, 2390–2397 (1999).

  74. 74.

    Hermansen, K., Christensen, S. E. & Orskov, H. Characterization of somatostatin release from the pancreas: the role of potassium. Scand. J. Clin. Lab. Invest. 39, 717–722 (1979).

  75. 75.

    Fill, M. & Copello, J. A. Ryanodine receptor calcium release channels. Physiol. Rev. 82, 893–922 (2002).

  76. 76.

    D’Alessio, D. A. & Ensinck, J. W. Fasting and postprandial concentrations of somatostatin-28 and somatostatin-14 in type II diabetes in men. Diabetes 39, 1198–1202 (1990).

  77. 77.

    Taborsky, G. J. Jr & Ensinck, J. W. Contribution of the pancreas to circulating somatostatin-like immunoreactivity in the normal dog. J. Clin. Invest. 73, 216–223 (1984).

  78. 78.

    Schusdziarra, V., Dobbs, R. E., Harris, V. & Unger, R. H. Immunoreactive somatostatin levels in plasma of normal and alloxan diabetic dogs. FEBS Lett. 81, 69–72 (1977).

  79. 79.

    Patel, Y. C. Somatostatin and its receptor family. Front. Neuroendocrinol. 20, 157–198 (1999).

  80. 80.

    Blodgett, D. M. et al. Novel observations from next-generation RNA sequencing of highly purified human adult and fetal islet cell subsets. Diabetes 64, 3172–3181 (2015).

  81. 81.

    Braun, M. The somatostatin receptor in human pancreatic beta-cells. Vitam. Horm. 95, 165–193 (2014).

  82. 82.

    Kailey, B. et al. SSTR2 is the functionally dominant somatostatin receptor in human pancreatic beta- and alpha-cells. Am. J. Physiol. Endocrinol. Metab. 303, E1107–1116 (2012).

  83. 83.

    Renstrom, E., Ding, W. G., Bokvist, K. & Rorsman, P. Neurotransmitter-induced inhibition of exocytosis in insulin-secreting beta cells by activation of calcineurin. Neuron 17, 513–522 (1996).

  84. 84.

    Gromada, J., Hoy, M., Buschard, K., Salehi, A. & Rorsman, P. Somatostatin inhibits exocytosis in rat pancreatic alpha-cells by G(i2)-dependent activation of calcineurin and depriming of secretory granules. J. Physiol. 535, 519–532 (2001).

  85. 85.

    Orgaard, A. & Holst, J. J. The role of somatostatin in GLP-1-induced inhibition of glucagon secretion in mice. Diabetologia 60, 1731–1739 (2017).

  86. 86.

    Reubi, J. C. & Schonbrunn, A. Illuminating somatostatin analog action at neuroendocrine tumor receptors. Trends Pharmacol. Sci. 34, 676–688 (2013).

  87. 87.

    Yoshitomi, H. et al. Involvement of MAP kinase and c-fos signaling in the inhibition of cell growth by somatostatin. Am. J. Physiol. Endocrinol. Metab. 272, E769–E774 (1997).

  88. 88.

    Vivot, K. et al. The regulator of G-protein signaling RGS16 promotes insulin secretion and beta-cell proliferation in rodent and human islets. Mol. Metab. 5, 988–996 (2016).

  89. 89.

    Berger, M. et al. G alpha(i/o)-coupled receptor signaling restricts pancreatic beta-cell expansion. Proc. Natl Acad. Sci. USA 112, 2888–2893 (2015).

  90. 90.

    Chera, S. et al. Diabetes recovery by age-dependent conversion of pancreatic delta-cells into insulin producers. Nature 514, 503–507 (2014).

  91. 91.

    Unger, R. H. The Banting Memorial Lecture 1975. Diabetes and the alpha cell. Diabetes 25, 136–151 (1976).

  92. 92.

    Hermansen, K., Orskov, H. & Christensen, S. E. Streptozotocin diabetes: a glucoreceptor dysfunction affecting D cells as well as B and A cells. Diabetologia 17, 385–389 (1979).

  93. 93.

    Abdel-Halim, S. M., Guenifi, A., Efendic, S. & Ostenson, C. G. Both somatostatin and insulin responses to glucose are impaired in the perfused pancreas of the spontaneously noninsulin-dependent diabetic GK (Goto-Kakizaki) rats. Acta Physiol. Scand. 148, 219–226 (1993).

  94. 94.

    Weir, G. C., Clore, E. T., Zmachinski, C. J. & Bonner-Weir, S. Islet secretion in a new experimental model for non-insulin-dependent diabetes. Diabetes 30, 590–595 (1981).

  95. 95.

    Conlon, J. M., Mcculloch, A. J. & Alberti, K. G. M. M. Circulating somatostatin concentrations in healthy and non-insulin-dependent (type-II) diabetic subjects. Diabetes 32, 723–729 (1983).

  96. 96.

    Cryer, P. E. Glycemic goals in diabetes: trade-off between glycemic control and iatrogenic hypoglycemia. Diabetes 63, 2188–2195 (2014).

  97. 97.

    Currie, C. J. et al. Survival as a function of HbA(1c) in people with type 2 diabetes: a retrospective cohort study. Lancet 375, 481–489 (2010).

  98. 98.

    Saaddine, J. B. et al. Distribution of HbA(1c) levels for children and young adults in the U. S.: Third National Health and Nutrition Examination Survey. Diabetes Care 25, 1326–1330 (2002).

  99. 99.

    Taleb, N. & Rabasa-Lhoret, R. Can somatostatin antagonism prevent hypoglycaemia during exercise in type 1 diabetes? Diabetologia 59, 1632–1635 (2016).

  100. 100.

    Nicolas, G. P. et al. Safety, biodistribution, and radiation dosimetry of 68Ga-OPS202 (68Ga-NODAGA-JR11) in patients with gastroenteropancreatic neuroendocrine tumors: a prospective phase I imaging study. J. Nucl. Med. (2017).

  101. 101.

    Caduff, A. et al. Dynamics of blood electrolytes in repeated hyper- and/or hypoglycaemic events in patients with type 1 diabetes. Diabetologia 54, 2678–2689 (2011).

  102. 102.

    Jensen, H. K., Brabrand, M., Vinholt, P. J., Hallas, J. & Lassen, A. T. Hypokalemia in acute medical patients: risk factors and prognosis. Am. J. Med. 128, 60–67.e1 (2015).

  103. 103.

    Kacheva, S. et al. QT prolongation caused by insulin-induced hypoglycaemia — an interventional study in 119 individuals. Diabetes Res. Clin. Pract. 123, 165–172 (2017).

  104. 104.

    Hermansen, K., Christensen, S. E. & Orskov, H. The significance of the Na+/K+ pump for somatostatin release. Horm. Metab. Res. 12, 23–25 (1980).

  105. 105.

    Rolfe, D. F. & Brown, G. C. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol. Rev. 77, 731–758 (1997).

Download references


Work discussed in this Review was supported by a Wellcome Trust Senior Investigator Award (095531), the Knut and Alice Wallenberg Foundation, the Swedish Research Council, the Hartwell Foundation for Biomedical Research (201500731), the Juvenile Diabetes Research Foundation (CDA-2-2013-54) and the US NIH (DK110276).

Reviewer information

Nature Reviews Endocrinology thanks P. Flatt and G. Weir for their contribution to the peer review of this work.

Author information


  1. Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, University of Oxford, Oxford, UK

    • Patrik Rorsman
  2. Department of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden

    • Patrik Rorsman
  3. Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA, USA

    • Mark O. Huising
  4. Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA, USA

    • Mark O. Huising


  1. Search for Patrik Rorsman in:

  2. Search for Mark O. Huising in:


P.R. and M.O.H. both researched the data for the article, provided substantial contributions to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Patrik Rorsman.

About this article

Publication history



Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.