Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protein isoform-centric therapeutics: expanding targets and increasing specificity

Abstract

Most protein-coding genes produce multiple protein isoforms; however, these isoforms are commonly neglected in drug discovery. The expression of protein isoforms can be specific to a disease, tissue and/or developmental stage, and this specific expression can be harnessed to achieve greater drug specificity than pan-targeting of all gene products and to enable improved treatments for diseases caused by aberrant protein isoform production. In recent years, several protein isoform-centric therapeutics have been developed. Here, we collate these studies and clinical trials to highlight three distinct but overlapping modes of action for protein isoform-centric drugs: isoform switching, isoform introduction or depletion, and modulation of isoform activity. In addition, we discuss how protein isoforms can be used clinically as targets for cell type-specific drug delivery and immunotherapy, diagnostic biomarkers and sources of cancer neoantigens. Collectively, we emphasize the value of a focus on isoforms as a route to discovering drugs with greater specificity and fewer adverse effects. This approach could enable the targeting of proteins for which pan-inhibition of all isoforms is toxic and poorly tolerated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genes can give rise to multiple protein isoforms through alternative RNA splicing.
Fig. 2: Three modes of action for function-dependent protein isoform-centric therapeutics.
Fig. 3: Examples of function-dependent protein isoform-centric therapies.
Fig. 4: Function-agnostic clinical uses for protein isoforms.

Similar content being viewed by others

References

  1. Hopkins, A. L. & Groom, C. R. The druggable genome. Nat. Rev. Drug Discov. 1, 727–730 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Pan, Q., Shai, O., Lee, L. J., Frey, B. J. & Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413–1415 (2008). This article, together with Wang et al., 2008 (ref. 4), demonstrates that most genes undergo alternative splicing.

    Article  CAS  PubMed  Google Scholar 

  3. Sinitcyn, P. et al. Global detection of human variants and isoforms by deep proteome sequencing. Nat. Biotechnol. 41, 1776–1786 (2023). Provides evidence that most frame-preserving alternative splicing events give rise to detectable protein isoforms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008). This article, together with Pan et al., 2008 (ref. 2), demonstrates that most genes undergo alternative splicing and that alternative transcripts contribute substantially to total transcripts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weatheritt, R. J., Sterne-Weiler, T. & Blencowe, B. J. The ribosome-engaged landscape of alternative splicing. Nat. Struct. Mol. Biol. 23, 1117–1123 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kjer-Hansen, P. & Weatheritt, R. J. The function of alternative splicing in the proteome: rewiring protein interactomes to put old functions into new contexts. Nat. Struct. Mol. Biol. 30, 1844–1856 (2023). Summarizes the way in which alternative splicing alters the interaction of proteins with all the major classes of biological macromolecule with impacts on almost every cellular processes.

    Article  CAS  PubMed  Google Scholar 

  7. Onkal, R. et al. Alternative splicing of Nav1.5: an electrophysiological comparison of ‘neonatal’ and ‘adult’ isoforms and critical involvement of a lysine residue. J. Cell Physiol. 216, 716–726 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Pang, P. D. et al. CRISPR-mediated expression of the fetal Scn5a isoform in adult mice causes conduction defects and arrhythmias. J. Am. Heart Assoc. 7, e010393 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Veerman, C. C. et al. Switch from fetal to adult SCN5A isoform in human induced pluripotent stem cell-derived cardiomyocytes unmasks the cellular phenotype of a conduction disease-causing mutation. J. Am. Heart Assoc. 6, e005135 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Freyermuth, F. et al. Splicing misregulation of SCN5A contributes to cardiac-conduction delay and heart arrhythmia in myotonic dystrophy. Nat. Commun. 7, 11067 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, R., Helbig, I., Edmondson, A. C., Lin, L. & Xing, Y. Splicing defects in rare diseases: transcriptomics and machine learning strategies towards genetic diagnosis. Brief. Bioinform. 24, bbad284 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li, Y. I. et al. RNA splicing is a primary link between genetic variation and disease. Science 352, 600–604 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lim, W. F. & Rinaldi, C. RNA transcript diversity in neuromuscular research. J. Neuromuscul. Dis. 10, 473–482 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Quesnel-Vallieres, M., Weatheritt, R. J., Cordes, S. P. & Blencowe, B. J. Autism spectrum disorder: insights into convergent mechanisms from transcriptomics. Nat. Rev. Genet. 20, 51–63 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Bradley, R. K. & Anczukow, O. RNA splicing dysregulation and the hallmarks of cancer. Nat. Rev. Cancer 23, 135–155 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Krawczak, M. et al. Single base-pair substitutions in exon–intron junctions of human genes: nature, distribution, and consequences for mRNA splicing. Hum. Mutat. 28, 150–158 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Vanoye, C. G. et al. Molecular and cellular context influences SCN8A variant function. JCI Insight 9, e177530 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Abayev-Avraham, M., Salzberg, Y., Gliksberg, D., Oren-Suissa, M. & Rosenzweig, R. DNAJB6 mutants display toxic gain of function through unregulated interaction with Hsp70 chaperones. Nat. Commun. 14, 7066 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Splawski, I. et al. Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119, 19–31 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Graham, W. V. et al. Intracellular MLCK1 diversion reverses barrier loss to restore mucosal homeostasis. Nat. Med. 25, 690–700 (2019). Demonstrates that an isoform-specific IgCAM domain in MLCK1 can be targeted through rational drug design so MLCK1 is a possible target in treatment of gastrointestinal disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Horowitz, A., Chanez-Paredes, S. D., Haest, X. & Turner, J. R. Paracellular permeability and tight junction regulation in gut health and disease. Nat. Rev. Gastroenterol. Hepatol. 20, 417–432 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Batista, N. J. et al. The molecular and cellular basis of Hutchinson–Gilford progeria syndrome and potential treatments. Genes 14, 602 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nikom, D. & Zheng, S. Alternative splicing in neurodegenerative disease and the promise of RNA therapies. Nat. Rev. Neurosci. 24, 457–473 (2023).

    Article  CAS  PubMed  Google Scholar 

  24. Baralle, M. & Baralle, F. E. Alternative splicing and liver disease. Ann. Hepatol. 26, 100534 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Ren, P. et al. Alternative splicing: a new cause and potential therapeutic target in autoimmune disease. Front. Immunol. 12, 713540 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hoy, S. M. Nusinersen: first global approval. Drugs 77, 473–479 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Kim, J. et al. Patient-customized oligonucleotide therapy for a rare genetic disease. N. Engl. J. Med. 381, 1644–1652 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Scaglioni, D. et al. The administration of antisense oligonucleotide golodirsen reduces pathological regeneration in patients with Duchenne muscular dystrophy. Acta Neuropathol. Commun. 9, 7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Singh, R. N., Ottesen, E. W. & Singh, N. N. The first orally deliverable small molecule for the treatment of spinal muscular atrophy. Neurosci. Insights 15, 2633105520973985 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Eriksson, M. et al. Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 423, 293–298 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Parthasarathy, S. et al. A recurrent de novo splice site variant involving DNM1 exon 10a causes developmental and epileptic encephalopathy through a dominant-negative mechanism. Am. J. Hum. Genet. 109, 2253–2269 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bolduc, V. et al. A recurrent COL6A1 pseudoexon insertion causes muscular dystrophy and is effectively targeted by splice-correction therapies. JCI Insight 4, e124403 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chen, X. et al. Antisense oligonucleotide therapeutic approach for Timothy syndrome. Nature 628, 818–825 (2024). Demonstrates the use of ASOs to favour the production of one of two endogenously occurring CACNA1C isoforms that are functionally similar when the other isoform contains pathogenic gain-of-function mutations. This alleviates disease-relevant neural pathophysiology in rat transplant disease models for Timothy syndrome type 1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gupta, D. et al. Modulation of pro-inflammatory IL-6 trans-signaling axis by splice switching oligonucleotides as a therapeutic modality in inflammation. Cells 12, 2285 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cruse, G. et al. Exon skipping of FcεRIβ eliminates expression of the high-affinity IgE receptor in mast cells with therapeutic potential for allergy. Proc. Natl Acad. Sci. USA 113, 14115–14120 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Koblan, L. W. et al. In vivo base editing rescues Hutchinson–Gilford progeria syndrome in mice. Nature 589, 608–614 (2021). Demonstrates the use of DNA base editors to correct the progeria-causing mutation LMNA c.1824C>T and to extend lifespan in mouse models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Weldon, C. et al. Specific G-quadruplex ligands modulate the alternative splicing of Bcl-X. Nucleic Acids Res. 46, 886–896 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Muniz, J. A. et al. SMaRT modulation of tau isoforms rescues cognitive and motor impairments in a preclinical model of tauopathy. Front. Bioeng. Biotechnol. 10, 951384 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Catenacci, D. V. T. et al. Phase I escalation and expansion study of bemarituzumab (FPA144) in patients with advanced solid tumors and FGFR2b-selected gastroesophageal adenocarcinoma. J. Clin. Oncol. 38, 2418–2426 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sparks, R. et al. A specific small-molecule inhibitor of protein kinase CδI activity improves metabolic dysfunction in human adipocytes from obese individuals. J. Biol. Chem. 294, 14896–14910 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wainberg, Z. A. et al. Bemarituzumab in patients with FGFR2b-selected gastric or gastro-oesophageal junction adenocarcinoma (FIGHT): a randomised, double-blind, placebo-controlled, phase 2 study. Lancet Oncol. 23, 1430–1440 (2022). Demonstrates promising clinical efficacy of treating patients with gastric cancer with FGFR2b-specific antibodies.

    Article  CAS  PubMed  Google Scholar 

  42. Dhillon, S. Lonafarnib: first approval. Drugs 81, 283–289 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Scaffidi, P. & Misteli, T. Reversal of the cellular phenotype in the premature aging disease Hutchinson–Gilford progeria syndrome. Nat. Med. 11, 440–445 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Erdos, M. R. et al. A targeted antisense therapeutic approach for Hutchinson–Gilford progeria syndrome. Nat. Med. 27, 536–545 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee, J. M. et al. Modulation of LMNA splicing as a strategy to treat prelamin A diseases. J. Clin. Invest. 126, 1592–1602 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lee, S. J. et al. Interruption of progerin-lamin A/C binding ameliorates Hutchinson–Gilford progeria syndrome phenotype. J. Clin. Invest. 126, 3879–3893 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Osorio, F. G. et al. Splicing-directed therapy in a new mouse model of human accelerated aging. Sci. Transl Med. 3, 106ra107 (2011).

    Article  PubMed  Google Scholar 

  48. Puttaraju, M. et al. Systematic screening identifies therapeutic antisense oligonucleotides for Hutchinson–Gilford progeria syndrome. Nat. Med. 27, 526–535 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kang, S. M. et al. Progerinin, an optimized progerin-lamin A binding inhibitor, ameliorates premature senescence phenotypes of Hutchinson–Gilford progeria syndrome. Commun. Biol. 4, 5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang, S. H., Qiao, X., Fong, L. G. & Young, S. G. Treatment with a farnesyltransferase inhibitor improves survival in mice with a Hutchinson–Gilford progeria syndrome mutation. Biochim. Biophys. Acta 1781, 36–39 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Aguti, S., Marrosu, E., Muntoni, F. & Zhou, H. Gapmer antisense oligonucleotides to selectively suppress the mutant allele in COL6A genes in dominant Ullrich congenital muscular dystrophy. Methods Mol. Biol. 2176, 221–230 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Hinrich, A. J. et al. Therapeutic correction of ApoER2 splicing in Alzheimer’s disease mice using antisense oligonucleotides. EMBO Mol. Med. 8, 328–345 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mogilevsky, M. et al. Modulation of MKNK2 alternative splicing by splice-switching oligonucleotides as a novel approach for glioblastoma treatment. Nucleic Acids Res. 46, 11396–11404 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Brandt, A. C. et al. Splice switching an oncogenic ratio of SmgGDS isoforms as a strategy to diminish malignancy. Proc. Natl Acad. Sci. USA 117, 3627–3636 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang, J. et al. Correction of Bcl-x splicing improves responses to imatinib in chronic myeloid leukaemia cells and mouse models. Br. J. Haematol. 189, 1141–1150 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Li, Z. et al. Pro-apoptotic effects of splice-switching oligonucleotides targeting Bcl-x pre-mRNA in human glioma cell lines. Oncol. Rep. 35, 1013–1019 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Bauman, J. A., Li, S. D., Yang, A., Huang, L. & Kole, R. Anti-tumor activity of splice-switching oligonucleotides. Nucleic Acids Res. 38, 8348–8356 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schneider, H. et al. Prenatal correction of X-linked hypohidrotic ectodermal dysplasia. N. Engl. J. Med. 378, 1604–1610 (2018). Demonstrates that intra-amniotic administration of a recombinant protein isoform can correct XHLED in humans.

    Article  CAS  PubMed  Google Scholar 

  59. Manso, A. M. et al. Systemic AAV9.LAMP2B injection reverses metabolic and physiologic multiorgan dysfunction in a murine model of Danon disease. Sci. Transl Med. 12, eaax1744 (2020). Demonstrates that gene therapy-based long-term introduction of the LAMP2b protein isoform alleviates Danon disease severity in mice.

    Article  CAS  PubMed  Google Scholar 

  60. Davis, S. M. et al. Chemical optimization of siRNA for safe and efficient silencing of placental sFLT1. Mol. Ther. Nucleic Acids 29, 135–149 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Turanov, A. A. et al. RNAi modulation of placental sFLT1 for the treatment of preeclampsia. Nat. Biotechnol. https://doi.org/10.1038/nbt.4297 (2018). Demonstrates that siRNA-based transcript isoform knockdown to reduce soluble FLT1 leads to reduced clinical signs of pre-eclampsia in a baboon pre-eclampsia model.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Khan, S. et al. A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity. Nat. Med. 25, 1938–1947 (2019). Demonstrates how a BCL-XL isoform-specific PROTAC can overcome the on-target toxicity of BCL-XL inhibitors by relying on a mechanism that is more pronounced in tumour cells than in thrombocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Anttila, V. et al. Direct intramyocardial injection of VEGF mRNA in patients undergoing coronary artery bypass grafting. Mol. Ther. 31, 866–874 (2023).

    Article  CAS  PubMed  Google Scholar 

  64. Gan, L. M. et al. Intradermal delivery of modified mRNA encoding VEGF-A in patients with type 2 diabetes. Nat. Commun. 10, 871 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zhang, J. et al. VEGFA165 gene therapy ameliorates blood-labyrinth barrier breakdown and hearing loss. JCI Insight 6, e143285 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gaide, O. & Schneider, P. Permanent correction of an inherited ectodermal dysplasia with recombinant EDA. Nat. Med. 9, 614–618 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Nishino, I. et al. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 406, 906–910 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Cenacchi, G. et al. Review: danon disease: review of natural history and recent advances. Neuropathol. Appl. Neurobiol. 46, 303–322 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Chi, C. et al. LAMP-2B regulates human cardiomyocyte function by mediating autophagosome-lysosome fusion. Proc. Natl Acad. Sci. USA 116, 556–565 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Hubert, V. et al. LAMP-2 is required for incorporating syntaxin-17 into autophagosomes and for their fusion with lysosomes. Biol. Open 5, 1516–1529 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Konecki, D. S., Foetisch, K., Zimmer, K. P., Schlotter, M. & Lichter-Konecki, U. An alternatively spliced form of the human lysosome-associated membrane protein-2 gene is expressed in a tissue-specific manner. Biochem. Biophys. Res. Commun. 215, 757–767 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Clarke, A., Phillips, D. I., Brown, R. & Harper, P. S. Clinical aspects of X-linked hypohidrotic ectodermal dysplasia. Arch. Dis. Child. 62, 989–996 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bluschke, G., Nusken, K. D. & Schneider, H. Prevalence and prevention of severe complications of hypohidrotic ectodermal dysplasia in infancy. Early Hum. Dev. 86, 397–399 (2010).

    Article  PubMed  Google Scholar 

  74. Newton, K., French, D. M., Yan, M., Frantz, G. D. & Dixit, V. M. Myodegeneration in EDA-A2 transgenic mice is prevented by XEDAR deficiency. Mol. Cell Biol. 24, 1608–1613 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yan, M. et al. Two-amino acid molecular switch in an epithelial morphogen that regulates binding to two distinct receptors. Science 290, 523–527 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Headon, D. J. & Overbeek, P. A. Involvement of a novel Tnf receptor homologue in hair follicle induction. Nat. Genet. 22, 370–374 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Margolis, C. A. et al. Prenatal treatment of X-linked hypohidrotic ectodermal dysplasia using recombinant ectodysplasin in a canine model. J. Pharmacol. Exp. Ther. 370, 806–813 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schneider, H., Schweikl, C., Faschingbauer, F., Hadj-Rabia, S. & Schneider, P. A causal treatment for X-linked hypohidrotic ectodermal dysplasia: long-term results of short-term perinatal ectodysplasin A1 replacement. Int. J. Mol. Sci. 24, 7155 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schneider, H. et al. Protocol for the phase 2 EDELIFE trial investigating the efficacy and safety of intra-amniotic ER004 administration to male subjects with X-linked hypohidrotic ectodermal dysplasia. Genes 14, 153 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Findlay, A. R. et al. DNAJB6 isoform specific knockdown: therapeutic potential for limb girdle muscular dystrophy D1. Mol. Ther. Nucleic Acids 32, 937–948 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Palmer, K. R., Tong, S. & Kaitu’u-Lino, T. J. Placental-specific sFLT-1: role in pre-eclamptic pathophysiology and its translational possibilities for clinical prediction and diagnosis. Mol. Hum. Reprod. 23, 69–78 (2017).

    CAS  PubMed  Google Scholar 

  82. Ashar-Patel, A. et al. FLT1 and transcriptome-wide polyadenylation site (PAS) analysis in preeclampsia. Sci. Rep. 7, 12139 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Nalawansha, D. A. & Crews, C. M. PROTACs: an emerging therapeutic modality in precision medicine. Cell Chem. Biol. 27, 998–1014 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sasso, J. M. et al. Molecular glues: the adhesive connecting targeted protein degradation to the clinic. Biochemistry 62, 601–623 (2023).

    Article  CAS  PubMed  Google Scholar 

  85. Bekes, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dou, Z. et al. Aberrant Bcl-x splicing in cancer: from molecular mechanism to therapeutic modulation. J. Exp. Clin. Cancer Res. 40, 194 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Keller, M. A. et al. Bcl-x short-isoform is essential for maintaining homeostasis of multiple tissues. iScience 26, 106409 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Leverson, J. D. et al. Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer therapy. Sci. Transl Med. 7, 279ra240 (2015).

    Article  Google Scholar 

  89. Tao, Z. F. et al. Structure-based design of A-1293102, a potent and selective BCL-XL inhibitor. ACS Med. Chem. Lett. 12, 1011–1016 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tao, Z. F. et al. Discovery of a potent and selective BCL-XL inhibitor with in vivo activity. ACS Med. Chem. Lett. 5, 1088–1093 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mason, K. D. et al. Programmed anuclear cell death delimits platelet life span. Cell 128, 1173–1186 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Wilson, W. H. et al. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol. 11, 1149–1159 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shebl, B. et al. Targeting BCL-XL in fibrolamellar hepatocellular carcinoma. JCI Insight 7, e161820 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Thummuri, D. et al. Overcoming gemcitabine resistance in pancreatic cancer using the BCL-XL-specific degrader DT2216. Mol. Cancer Ther. 21, 184–192 (2022).

    Article  CAS  PubMed  Google Scholar 

  95. Negi, A. & Voisin-Chiret, A. S. Strategies to reduce the on-target platelet toxicity of Bcl-xL inhibitors: PROTACs, SNIPERs and prodrug-based approaches. Chembiochem 23, e202100689 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kim, D. G. et al. Allosteric inhibition of the tumor-promoting interaction between exon 2-depleted splice variant of aminoacyl-transfer RNA synthetase-interacting multifunctional protein 2 and heat shock protein 70. J. Pharmacol. Exp. Ther. 379, 358–371 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Sivaraman, A. et al. Synthesis and structure-activity relationships of arylsulfonamides as AIMP2-DX2 inhibitors for the development of a novel anticancer therapy. J. Med. Chem. 63, 5139–5158 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Lim, S. et al. Targeting the interaction of AIMP2-DX2 with HSP70 suppresses cancer development. Nat. Chem. Biol. 16, 31–41 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Xiang, H. et al. Preclinical characterization of bemarituzumab, an anti-FGFR2b antibody for the treatment of cancer. MAbs 13, 1981202 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  100. He, W. Q. et al. Contributions of myosin light chain kinase to regulation of epithelial paracellular permeability and mucosal homeostasis. Int. J. Mol. Sci. 21, 993 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Clayburgh, D. R. et al. A differentiation-dependent splice variant of myosin light chain kinase, MLCK1, regulates epithelial tight junction permeability. J. Biol. Chem. 279, 55506–55513 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Dudek, S. M., Birukov, K. G., Zhan, X. & Garcia, J. G. Novel interaction of cortactin with endothelial cell myosin light chain kinase. Biochem. Biophys. Res. Commun. 298, 511–519 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Zuo, L. et al. Tacrolimus-binding protein FKBP8 directs myosin light chain kinase-dependent barrier regulation and is a potential therapeutic target in Crohn’s disease. Gut 72, 870–881 (2023).

    Article  CAS  PubMed  Google Scholar 

  104. Chanez-Paredes, S. D. et al. Mechanisms underlying distinct subcellular localization and regulation of epithelial long myosin light-chain kinase splice variants. J. Biol. Chem. 300, 105643 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gordon, A., Johnston, E., Lau, D. K. & Starling, N. Targeting FGFR2 positive gastroesophageal cancer: current and clinical developments. Onco Targets Ther. 15, 1183–1196 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tabernero, J. et al. Phase I dose-escalation study of JNJ-42756493, an oral pan-fibroblast growth factor receptor inhibitor, in patients with advanced solid tumors. J. Clin. Oncol. 33, 3401–3408 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Sommer, A. et al. Preclinical efficacy of the auristatin-based antibody-drug conjugate BAY 1187982 for the treatment of FGFR2-positive solid tumors. Cancer Res. 76, 6331–6339 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Kim, S. B. et al. First-in-human phase I study of aprutumab ixadotin, a fibroblast growth factor receptor 2 antibody-drug conjugate (BAY 1187982) in patients with advanced cancer. Target. Oncol. 14, 591–601 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Xie, N. et al. Neoantigens: promising targets for cancer therapy. Signal Transduct. Target. Ther. 8, 9 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Laumont, C. M., Banville, A. C., Gilardi, M., Hollern, D. P. & Nelson, B. H. Tumour-infiltrating B cells: immunological mechanisms, clinical impact and therapeutic opportunities. Nat. Rev. Cancer 22, 414–430 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ng, K. W. et al. Antibodies against endogenous retroviruses promote lung cancer immunotherapy. Nature 616, 563–573 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sahin, U. et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature 585, 107–112 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Hu, Z. et al. Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma. Nat. Med. 27, 515–525 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rojas, L. A. et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 618, 144–150 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Khattak, A. et al. A personalized cancer vaccine, mRNA-4157, combined with pembrolizumab versus pembrolizumab in patients with resected high-risk melanoma: efficacy and safety results from the randomized, open-label phase 2 mRNA-4157-P201/Keynote-942 trial. Cancer Res. 83, Abstr. CT001 (2023).

    Article  Google Scholar 

  117. Weber, J. S. et al. Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study. Lancet 403, 632–644 (2024).

    Article  CAS  PubMed  Google Scholar 

  118. Katsikis, P. D., Ishii, K. J. & Schliehe, C. Challenges in developing personalized neoantigen cancer vaccines. Nat. Rev. Immunol. 24, 213–237 (2023).

    Article  PubMed  Google Scholar 

  119. Wang, T. Y. et al. A pan-cancer transcriptome analysis of exitron splicing identifies novel cancer driver genes and neoepitopes. Mol. Cell 81, 2246–2260 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bigot, J. et al. Splicing patterns in SF3B1-mutated uveal melanoma generate shared immunogenic tumor-specific neoepitopes. Cancer Discov. 11, 1938–1951 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Burbage, M. et al. Epigenetically controlled tumor antigens derived from splice junctions between exons and transposable elements. Sci. Immunol. 8, eabm6360 (2023).

    Article  CAS  PubMed  Google Scholar 

  122. Merlotti, A. et al. Noncanonical splicing junctions between exons and transposable elements represent a source of immunogenic recurrent neo-antigens in patients with lung cancer. Sci. Immunol. 8, eabm6359 (2023).

    Article  CAS  PubMed  Google Scholar 

  123. Kahles, A. et al. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell 34, 211–224 e216 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Trincado, J. L. et al. ISOTOPE: ISOform-guided prediction of epiTOPEs in cancer. PLoS Comput. Biol. 17, e1009411 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Oka, M. et al. Aberrant splicing isoforms detected by full-length transcriptome sequencing as transcripts of potential neoantigens in non-small cell lung cancer. Genome Biol. 22, 9 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Li, G. et al. Splicing neoantigen discovery with SNAF reveals shared targets for cancer immunotherapy. Sci. Transl Med. 16, eade2886 (2024). Demonstrates the recurrence of many cancer neoantigens across patients with melanoma.

    Article  CAS  PubMed  Google Scholar 

  127. Kwok, D. W. et al. Tumor-wide RNA splicing aberrations generate immunogenic public neoantigens. Preprint at bioRxiv https://doi.org/10.1101/2023.10.19.563178 (2023).

  128. Lu, S. X. et al. Pharmacologic modulation of RNA splicing enhances anti-tumor immunity. Cell 184, 4032–4047 (2021). Demonstrates how splice-modulating drugs mediate part of their anti-cancer efficacy by triggering adaptive immune responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Matsushima, S. et al. Chemical induction of splice-neoantigens attenuates tumor growth in a preclinical model of colorectal cancer. Sci. Transl Med. 14, eabn6056 (2022).

    Article  CAS  PubMed  Google Scholar 

  130. Kubota, Y. & Shitara, K. Zolbetuximab for Claudin18.2-positive gastric or gastroesophageal junction cancer. Ther. Adv. Med. Oncol. 16, 17588359231217967 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Gouyou et al. Therapeutic evaluation of antibody-based targeted delivery of interleukin 9 in experimental pulmonary hypertension. Int. J. Mol. Sci. 22, 3460 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Heiss, J. et al. Targeted Interleukin-9 delivery in pulmonary hypertension: comparison of immunocytokine formats and effector cell study. Eur. J. Clin. Invest. 53, e13907 (2023).

    Article  CAS  PubMed  Google Scholar 

  133. Schwager, K. et al. Preclinical characterization of DEKAVIL (F8-IL10), a novel clinical-stage immunocytokine which inhibits the progression of collagen-induced arthritis. Arthritis Res. Ther. 11, R142 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Bootz, F., Ziffels, B. & Neri, D. Antibody-based targeted delivery of interleukin-22 promotes rapid clinical recovery in mice with DSS-induced colitis. Inflamm. Bowel Dis. 22, 2098–2105 (2016).

    Article  PubMed  Google Scholar 

  135. Weiss, T. et al. Immunocytokines are a promising immunotherapeutic approach against glioblastoma. Sci. Transl Med. 12, eabb2311 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Ciulean, I. S. et al. CD44v6 specific CAR-NK cells for targeted immunotherapy of head and neck squamous cell carcinoma. Front. Immunol. 14, 1290488 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Fu, Z., Li, S., Han, S., Shi, C. & Zhang, Y. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct. Target. Ther. 7, 93 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lu, L. L., Suscovich, T. J., Fortune, S. M. & Alter, G. Beyond binding: antibody effector functions in infectious diseases. Nat. Rev. Immunol. 18, 46–61 (2018).

    Article  CAS  PubMed  Google Scholar 

  139. Femel, J. et al. Therapeutic vaccination against fibronectin ED-A attenuates progression of metastatic breast cancer. Oncotarget 5, 12418–12427 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Xie, Y. J. et al. Nanobody-based CAR T cells that target the tumor microenvironment inhibit the growth of solid tumors in immunocompetent mice. Proc. Natl Acad. Sci. USA 116, 7624–7631 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Nadal, L. et al. Novel human monoclonal antibodies specific to the alternatively spliced domain D of tenascin C efficiently target tumors in vivo. MAbs 12, 1836713 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Shah, M. A. et al. Zolbetuximab plus CAPOX in CLDN18.2-positive gastric or gastroesophageal junction adenocarcinoma: the randomized, phase 3 GLOW trial. Nat. Med. 29, 2133–2141 (2023). This article, together with Shitara et al., 2023 (ref. 143), demonstrates extended progression-free survival in patients treated with antibodies directed at the tumour-associated claudin 18.2 isoform.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Shitara, K. et al. Zolbetuximab plus mFOLFOX6 in patients with CLDN18.2-positive, HER2-negative, untreated, locally advanced unresectable or metastatic gastric or gastro-oesophageal junction adenocarcinoma (SPOTLIGHT): a multicentre, randomised, double-blind, phase 3 trial. Lancet 401, 1655–1668 (2023). This article, together with Shah et al., 2023 (ref. 142), demonstrates extended progression-free survival in patients treated with antibodies directed at the tumour-associated claudin 18.2 isoform.

    Article  CAS  PubMed  Google Scholar 

  144. Sahin, U. et al. Claudin-18 splice variant 2 is a pan-cancer target suitable for therapeutic antibody development. Clin. Cancer Res. 14, 7624–7634 (2008). Exemplifies the identification of protein isoforms that are enriched on the target cell population for function-agnostic isoform-directed therapies.

    Article  CAS  PubMed  Google Scholar 

  145. Mullard, A. Claudin-18.2 attracts the cancer crowd. Nat. Rev. Drug Discov. 22, 683–686 (2023).

    Article  CAS  PubMed  Google Scholar 

  146. Singh, P., Toom, S. & Huang, Y. Anti-claudin 18.2 antibody as new targeted therapy for advanced gastric cancer. J. Hematol. Oncol. 10, 105 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Niimi, T. et al. Claudin-18, a novel downstream target gene for the T/EBP/NKX2.1 homeodomain transcription factor, encodes lung- and stomach-specific isoforms through alternative splicing. Mol. Cell Biol. 21, 7380–7390 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Bootz, F., Schmid, A. S. & Neri, D. Alternatively spliced EDA domain of fibronectin is a target for pharmacodelivery applications in inflammatory bowel disease. Inflamm. Bowel Dis. 21, 1908–1917 (2015).

    Article  PubMed  Google Scholar 

  149. Trachsel, E. et al. Antibody-mediated delivery of IL-10 inhibits the progression of established collagen-induced arthritis. Arthritis Res. Ther. 9, R9 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Saraiva, M., Vieira, P. & O’Garra, A. Biology and therapeutic potential of interleukin-10. J. Exp. Med. 217, e20190418 (2020).

    Article  PubMed  Google Scholar 

  151. Schmid, A. S. & Neri, D. Advances in antibody engineering for rheumatic diseases. Nat. Rev. Rheumatol. 15, 197–207 (2019). Discusses the design and use of immunocytokines directed at extracellular protein isoforms for isoform-targeted drug delivery to tune immune cells.

    Article  PubMed  Google Scholar 

  152. Neri, D. & Sondel, P. M. Immunocytokines for cancer treatment: past, present and future. Curr. Opin. Immunol. 40, 96–102 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Galeazzi, M. et al. FRI0118 Dekavil (F8IL10) – update on the results of clinical trials investigating the immunocytokine in patients with rheumatoid arthritis. Ann. Rheum. Dis. 77, 603–604 (2018).

    Google Scholar 

  154. Armstrong, A. J. et al. Prospective multicenter validation of androgen receptor splice variant 7 and hormone therapy resistance in high-risk castration-resistant prostate cancer: the PROPHECY study. J. Clin. Oncol. 37, 1120–1129 (2019). Demonstrates that androgen receptor v7 isoform status of metastatic castration-resistant prostate cancer impacts response to anti-androgen therapy and therefore should inform treatment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Coverley, D. et al. A quantitative immunoassay for lung cancer biomarker CIZ1b in patient plasma. Clin. Biochem. 50, 336–343 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. He, Y. et al. Soluble PD-L1: a potential dynamic predictive biomarker for immunotherapy in patients with proficient mismatch repair colorectal cancer. J. Transl Med. 21, 25 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Higgins, G. et al. Variant Ciz1 is a circulating biomarker for early-stage lung cancer. Proc. Natl Acad. Sci. USA 109, E3128–E3135 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Metrick, M. A. et al. A single ultrasensitive assay for detection and discrimination of tau aggregates of Alzheimer and Pick diseases. Acta Neuropathol. Commun. 8, 22 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Saijo, E. et al. 4-Repeat tau seeds and templating subtypes as brain and CSF biomarkers of frontotemporal lobar degeneration. Acta Neuropathol. 139, 63–77 (2020).

    Article  CAS  PubMed  Google Scholar 

  160. Zeisler, H. et al. Predictive value of the sFlt-1:plgf ratio in women with suspected preeclampsia. N. Engl. J. Med. 374, 13–22 (2016).

    Article  CAS  PubMed  Google Scholar 

  161. Guo, Z. et al. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res. 69, 2305–2313 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Hu, R. et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res. 69, 16–22 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Tong, Y. et al. Programming inactive RNA-binding small molecules into bioactive degraders. Nature 618, 169–179 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Mikutis, S. et al. Proximity-induced nucleic acid degrader (PINAD) approach to targeted RNA degradation using small molecules. ACS Cent. Sci. 9, 892–904 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kim, J. et al. A framework for individualized splice-switching oligonucleotide therapy. Nature 619, 828–836 (2023). Provides a framework of how to perform individualized splice-switching therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Myerson, J. W. et al. Supramolecular arrangement of protein in nanoparticle structures predicts nanoparticle tropism for neutrophils in acute lung inflammation. Nat. Nanotechnol. 17, 86–97 (2022).

    Article  CAS  PubMed  Google Scholar 

  168. Roberts, T. C., Langer, R. & Wood, M. J. A. Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. 19, 673–694 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Raina, K. et al. Regulated induced proximity targeting chimeras-RIPTACs-A heterobifunctional small molecule strategy for cancer selective therapies. Cell Chem. Biol. 1490–1502 (2024). Describes the RIPTAC modality, which could be promising in using intracellular protein isoforms for isoform-targeted drug delivery.

  170. Ellis, J. D. et al. Tissue-specific alternative splicing remodels protein–protein interaction networks. Mol. Cell 46, 884–892 (2012).

    Article  CAS  PubMed  Google Scholar 

  171. Gonatopoulos-Pournatzis, T. et al. Genetic interaction mapping and exon-resolution functional genomics with a hybrid Cas9–Cas12a platform. Nat. Biotechnol. 38, 638–648 (2020).

    Article  CAS  PubMed  Google Scholar 

  172. Yang, X. et al. Widespread expansion of protein interaction capabilities by alternative splicing. Cell 164, 805–817 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Gregoire, E. P. et al. The −KTS splice variant of WT1 is essential for ovarian determination in mice. Science 382, 600–606 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Tapial, J. et al. An atlas of alternative splicing profiles and functional associations reveals new regulatory programs and genes that simultaneously express multiple major isoforms. Genome Res. 27, 1759–1768 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wright, C. J., Smith, C. W. J. & Jiggins, C. D. Alternative splicing as a source of phenotypic diversity. Nat. Rev. Genet. 23, 697–710 (2022).

    Article  CAS  PubMed  Google Scholar 

  176. Tan, J. H. et al. Alternative splicing of coq-2 controls the levels of rhodoquinone in animals. eLife 9, e56376 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Lautens, M. J. et al. Identification of enzymes that have helminth-specific active sites and are required for rhodoquinone-dependent metabolism as targets for new anthelmintics. PLoS Negl. Trop. Dis. 15, e0009991 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Santiago-Fernandez, O. et al. Development of a CRISPR/Cas9-based therapy for Hutchinson−Gilford progeria syndrome. Nat. Med. 25, 423–426 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Whisenant, D. et al. Transient expression of an adenine base editor corrects the Hutchinson−Gilford progeria syndrome mutation and improves the skin phenotype in mice. Nat. Commun. 13, 3068 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Aguti, S. et al. Exon-skipping oligonucleotides restore functional collagen VI by correcting a common COL6A1 mutation in Ullrich CMD. Mol. Ther. Nucleic Acids 21, 205–216 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Chang, J. L. et al. Targeting amyloid-β precursor protein, APP, splicing with antisense oligonucleotides reduces toxic amyloid-β production. Mol. Ther. 26, 1539–1551 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Espindola, S. L. et al. Modulation of tau isoforms imbalance precludes tau pathology and cognitive decline in a mouse model of tauopathy. Cell Rep. 23, 709–715 (2018).

    Article  CAS  PubMed  Google Scholar 

  183. Rodriguez-Martin, T. et al. Correction of tau mis-splicing caused by FTDP-17 MAPT mutations by spliceosome-mediated RNA trans-splicing. Hum. Mol. Genet. 18, 3266–3273 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Schoch, K. M. et al. Increased 4R-Tau induces pathological changes in a human-tau mouse model. Neuron 90, 941–947 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Liang, L., Wu, S., Lin, C., Chang, Y. J. & Tao, Y. X. Alternative splicing of nrcam gene in dorsal root ganglion contributes to neuropathic pain. J. Pain 21, 892–904 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Graziewicz, M. A. et al. An endogenous TNF-α antagonist induced by splice-switching oligonucleotides reduces inflammation in hepatitis and arthritis mouse models. Mol. Ther. 16, 1316–1322 (2008).

    Article  CAS  PubMed  Google Scholar 

  187. Liu, J. et al. Overcoming imatinib resistance conferred by the BIM deletion polymorphism in chronic myeloid leukemia with splice-switching antisense oligonucleotides. Oncotarget 8, 77567–77585 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Van Etten, J. L. et al. Targeting a single alternative polyadenylation site coordinately blocks expression of androgen receptor mRNA splice variants in prostate cancer. Cancer Res. 77, 5228–5235 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Ma, W. K. et al. ASO-based PKM splice-switching therapy inhibits hepatocellular carcinoma growth. Cancer Res. 82, 900–915 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Sun, J., Bai, J., Jiang, T., Gao, Y. & Hua, Y. Modulation of PDCD1 exon 3 splicing. RNA Biol. 16, 1794–1805 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Zammarchi, F. et al. Antitumorigenic potential of STAT3 alternative splicing modulation. Proc. Natl Acad. Sci. USA 108, 17779–17784 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Nielsen, T. O., Sorensen, S., Dagnaes-Hansen, F., Kjems, J. & Sorensen, B. S. Directing HER4 mRNA expression towards the CYT2 isoform by antisense oligonucleotide decreases growth of breast cancer cells in vitro and in vivo. Br. J. Cancer 108, 2291–2298 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Hajaj, E. et al. Alternative splicing of the inhibitory immune checkpoint receptor SLAMF6 generates a dominant positive form, boosting T-cell effector functions. Cancer Immunol. Res. 9, 637–650 (2021).

    Article  CAS  PubMed  Google Scholar 

  194. Khurshid, S. et al. Splice-switching of the insulin receptor pre-mRNA alleviates tumorigenic hallmarks in rhabdomyosarcoma. NPJ Precis. Oncol. 6, 1 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Fish, L. et al. A prometastatic splicing program regulated by SNRPA1 interactions with structured RNA elements. Science 372, eabc7531 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Escobar-Hoyos, L. F. et al. Altered RNA splicing by mutant p53 activates oncogenic RAS signaling in pancreatic cancer. Cancer Cell 38, 198–211 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Iversen, P. L. et al. A novel therapeutic vaccine targeting the soluble TNFα receptor II to limit the progression of cardiovascular disease: AtheroVax™. Front. Cardiovasc. Med. 10, 1206541 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Carlsson, L. et al. Biocompatible, purified VEGF-A mRNA improves cardiac function after intracardiac injection 1 week post-myocardial infarction in swine. Mol. Ther. Methods Clin. Dev. 9, 330–346 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Ved, N. et al. Vascular endothelial growth factor-A(165)b ameliorates outer-retinal barrier and vascular dysfunction in the diabetic retina. Clin. Sci. 131, 1225–1243 (2017).

    Article  CAS  Google Scholar 

  200. Korber, I. et al. Safety and immunogenicity of Fc-EDA, a recombinant ectodysplasin A1 replacement protein, in human subjects. Br. J. Clin. Pharmacol. 86, 2063–2069 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Lykens, N. M., Coughlin, D. J., Reddi, J. M., Lutz, G. J. & Tallent, M. K. AMPA GluA1-flip targeted oligonucleotide therapy reduces neonatal seizures and hyperexcitability. PLoS ONE 12, e0171538 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Kim, C. J. et al. Anti-oncogenic activities of cyclin D1b siRNA on human bladder cancer cells via induction of apoptosis and suppression of cancer cell stemness and invasiveness. Int. J. Oncol. 52, 231–240 (2018).

    CAS  PubMed  Google Scholar 

  203. Wei, M. et al. Knocking down cyclin D1b inhibits breast cancer cell growth and suppresses tumor development in a breast cancer model. Cancer Sci. 102, 1537–1544 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Lee, B. et al. Synthesis and discovery of the first potent proteolysis targeting chimaera (PROTAC) degrader of AIMP2-DX2 as a lung cancer drug. J. Enzym. Inhib. Med. Chem. 38, 51–66 (2023).

    Article  CAS  Google Scholar 

  205. Dardente, H., English, W. R., Valluru, M. K., Kanthou, C. & Simpson, D. Debunking the myth of the endogenous antiangiogenic vegfaxxxb transcripts. Trends Endocrinol. Metab. 31, 398–409 (2020).

    Article  CAS  PubMed  Google Scholar 

  206. Zhang, N. et al. Unique progerin C-terminal peptide ameliorates Hutchinson–Gilford progeria syndrome phenotype by rescuing BUBR1. Nat. Aging 3, 185–201 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Carrington, E. M. et al. BCL-XL antagonism selectively reduces neutrophil life span within inflamed tissues without causing neutropenia. Blood Adv. 5, 2550–2562 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Zager, J. S. et al. Percutaneous hepatic perfusion (PHP) with melphalan for patients with ocular melanoma liver metastases: preliminary results of FOCUS (PHP-OCM-301/301A) phase III trial. J. Clin. Oncol. 39, 9510 (2021).

    Article  Google Scholar 

  209. Can, K. N. et al. M. targeting a dominant negative splice variant of TRAIL to enhance CART cell functions. Blood 140, 632–633 (2022).

    Article  Google Scholar 

  210. Qi, C. et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results. Nat. Med. 28, 1189–1198 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Martin-Otal, C. et al. Targeting the extra domain A of fibronectin for cancer therapy with CAR-T cells. J. Immunother. Cancer 10, e004479 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Wagner, J. et al. Antitumor effects of CAR T cells redirected to the EDB splice variant of fibronectin. Cancer Immunol. Res. 9, 279–290 (2021).

    Article  CAS  PubMed  Google Scholar 

  213. Zhang, Z. et al. Treating solid tumors with TCR-based chimeric antigen receptor targeting extra domain B-containing fibronectin. J. Immunother. Cancer 11, e007199 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Casucci, M. et al. CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma. Blood 122, 3461–3472 (2013).

    Article  CAS  PubMed  Google Scholar 

  215. Haist, C. et al. CD44v6-targeted CAR T-cells specifically eliminate CD44 isoform 6 expressing head/neck squamous cell carcinoma cells. Oral Oncol. 116, 105259 (2021).

    Article  CAS  PubMed  Google Scholar 

  216. Heiss, J. et al. Expression of inflammatory genes in murine lungs in a model of experimental pulmonary hypertension: effects of an antibody-based targeted delivery of interleukin-9. Adv. Respir. Med. 92, 27–35 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Schwager, K. et al. The antibody-mediated targeted delivery of interleukin-10 inhibits endometriosis in a syngeneic mouse model. Hum. Reprod. 26, 2344–2352 (2011).

    Article  CAS  PubMed  Google Scholar 

  218. Rowson, S. et al. Comparison of circulating total sFLT-1 to placental-specific sFLT-1 e15a in women with suspected preeclampsia. Placenta 120, 73–78 (2022).

    Article  CAS  PubMed  Google Scholar 

  219. Ha, S., Gujrati, H. & Wang, B. D. Aberrant PI3Kδ splice isoform as a potential biomarker and novel therapeutic target for endocrine cancers. Front. Endocrinol. 14, 1190479 (2023).

    Article  Google Scholar 

  220. Mahoney, K. M. et al. Soluble PD-L1 as an early marker of progressive disease on nivolumab. J. Immunother. Cancer 10, e003527 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Szeles, A. et al. Pre-treatment soluble PD-L1 as a predictor of overall survival for immune checkpoint inhibitor therapy: a systematic review and meta-analysis. Cancer Immunol. Immunother. 72, 1061–1073 (2023).

    Article  CAS  PubMed  Google Scholar 

  222. Ugurel, S. et al. Elevated baseline serum PD-1 or PD-L1 predicts poor outcome of PD-1 inhibition therapy in metastatic melanoma. Ann. Oncol. 31, 144–152 (2020).

    Article  CAS  PubMed  Google Scholar 

  223. Lamba, J. K. & Meshinchi, S. Time to reconsider CD33 single nucleotide polymorphism in the response to gemtuzumab ozogamicin. Haematologica 106, 2796–2798 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Short, N. J. et al. Impact of CD33 and ABCB1 single nucleotide polymorphisms in patients with acute myeloid leukemia and advanced myeloid malignancies treated with decitabine plus gemtuzumab ozogamicin. Am. J. Hematol. 95, E225–E228 (2020).

    Article  CAS  PubMed  Google Scholar 

  225. Gale, R. E. et al. No evidence that CD33 splicing SNP impacts the response to GO in younger adults with AML treated on UK MRC/NCRI trials. Blood 131, 468–471 (2018).

    Article  CAS  PubMed  Google Scholar 

  226. Teich, K. et al. Cluster of differentiation 33 single nucleotide polymorphism rs12459419 is a predictive factor in patients with nucleophosmin1-mutated acute myeloid leukemia receiving gemtuzumab ozogamicin. Haematologica 106, 2986–2989 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Lamba, J. K. et al. CD33 splicing polymorphism determines gemtuzumab ozogamicin response in de novo acute myeloid leukemia: report from randomized phase III Children’s Oncology Group trial AAML0531. J. Clin. Oncol. 35, 2674–2682 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Park, E., Pan, Z., Zhang, Z., Lin, L. & Xing, Y. The expanding landscape of alternative splicing variation in human populations. Am. J. Hum. Genet. 102, 11–26 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Venables, J. P. et al. Multiple and specific mRNA processing targets for the major human hnRNP proteins. Mol. Cell Biol. 28, 6033–6043 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Katz, Y., Wang, E. T., Airoldi, E. M. & Burge, C. B. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat. Methods 7, 1009–1015 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Sterne-Weiler, T., Weatheritt, R. J., Best, A. J., Ha, K. C. H. & Blencowe, B. J. Efficient and accurate quantitative profiling of alternative splicing patterns of any complexity on a laptop. Mol. Cell 72, 187–200 (2018).

    Article  CAS  PubMed  Google Scholar 

  232. Avgan, N., Wang, J. I., Fernandez-Chamorro, J. & Weatheritt, R. J. Multilayered control of exon acquisition permits the emergence of novel forms of regulatory control. Genome Biol. 20, 141 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Drexler, H. L., Choquet, K. & Churchman, L. S. Splicing kinetics and coordination revealed by direct nascent RNA sequencing through nanopores. Mol. Cell 77, 985–998 (2020).

    Article  CAS  PubMed  Google Scholar 

  234. Gupta, I. et al. Single-cell isoform RNA sequencing characterizes isoforms in thousands of cerebellar cells. Nat. Biotechnol. https://doi.org/10.1038/nbt.4259 (2018).

    Article  PubMed  Google Scholar 

  235. Wang, X. et al. Detection of proteome diversity resulted from alternative splicing is limited by trypsin cleavage specificity. Mol. Cell Proteom. 17, 422–430 (2018).

    Article  CAS  Google Scholar 

  236. Giansanti, P., Tsiatsiani, L., Low, T. Y. & Heck, A. J. Six alternative proteases for mass spectrometry-based proteomics beyond trypsin. Nat. Protoc. 11, 993–1006 (2016).

    Article  CAS  PubMed  Google Scholar 

  237. Marx, V. Inside the chase after those elusive proteoforms. Nat. Methods 21, 158–163 (2024).

    Article  CAS  PubMed  Google Scholar 

  238. Smith, L. M. & Kelleher, N. L. Proteoforms as the next proteomics currency. Science 359, 1106–1107 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Cristobal, A. et al. Toward an optimized workflow for middle-down proteomics. Anal. Chem. 89, 3318–3325 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Havens, M. A. & Hastings, M. L. Splice-switching antisense oligonucleotides as therapeutic drugs. Nucleic Acids Res. 44, 6549–6563 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Dominski, Z. & Kole, R. Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc. Natl Acad. Sci. USA 90, 8673–8677 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Roth, J. F. et al. Systematic analysis of alternative exon-dependent interactome remodeling reveals multitasking functions of gene regulatory factors. Mol. Cell 83, 4222–4238 (2023).

    Article  CAS  PubMed  Google Scholar 

  243. Gapinske, M. et al. CRISPR-SKIP: programmable gene splicing with single base editors. Genome Biol. 19, 107 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Du, M., Jillette, N., Zhu, J. J., Li, S. & Cheng, A. W. CRISPR artificial splicing factors. Nat. Commun. 11, 2973 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Konermann, S. et al. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173, 665–676 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Davuluri, R. V., Suzuki, Y., Sugano, S., Plass, C. & Huang, T. H. The functional consequences of alternative promoter use in mammalian genomes. Trends Genet. 24, 167–177 (2008).

    Article  CAS  PubMed  Google Scholar 

  247. Lim, W. F. et al. Gene therapy with AR isoform 2 rescues spinal and bulbar muscular atrophy phenotype by modulating AR transcriptional activity. Sci. Adv. 7, eabi6896 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Derti, A. et al. A quantitative atlas of polyadenylation in five mammals. Genome Res. 22, 1173–1183 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Booth, B. J. et al. RNA editing: expanding the potential of RNA therapeutics. Mol. Ther. 31, 1533–1549 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Disterer, P. et al. Exon skipping of hepatic APOB pre-mRNA with splice-switching oligonucleotides reduces LDL cholesterol in vivo. Mol. Ther. 21, 602–609 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Bogaert, A., Fernandez, E. & Gevaert, K. N-terminal proteoforms in human disease. Trends Biochem. Sci. 45, 308–320 (2020).

    Article  CAS  PubMed  Google Scholar 

  252. Spelier, S., van Doorn, E. P. M., van der Ent, C. K., Beekman, J. M. & Koppens, M. A. J. Readthrough compounds for nonsense mutations: bridging the translational gap. Trends Mol. Med. 29, 297–314 (2023).

    Article  CAS  PubMed  Google Scholar 

  253. Mort, M., Ivanov, D., Cooper, D. N. & Chuzhanova, N. A. A meta-analysis of nonsense mutations causing human genetic disease. Hum. Mutat. 29, 1037–1047 (2008).

    Article  CAS  PubMed  Google Scholar 

  254. Sharma, J. et al. A small molecule that induces translational readthrough of CFTR nonsense mutations by eRF1 depletion. Nat. Commun. 12, 4358 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Addala, V. et al. Computational immunogenomic approaches to predict response to cancer immunotherapies. Nat. Rev. Clin. Oncol. 21, 28–46 (2024).

    Article  PubMed  Google Scholar 

  256. Smart, A. C. et al. Intron retention is a source of neoepitopes in cancer. Nat. Biotechnol. 36, 1056–1058 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Pan, Y. et al. IRIS: discovery of cancer immunotherapy targets arising from pre-mRNA alternative splicing. Proc. Natl Acad. Sci. USA 120, e2221116120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Chong, C., Coukos, G. & Bassani-Sternberg, M. Identification of tumor antigens with immunopeptidomics. Nat. Biotechnol. 40, 175–188 (2022).

    Article  CAS  PubMed  Google Scholar 

  259. Poloni, C. et al. T-cell activation-induced marker assays in health and disease. Immunol. Cell Biol. 101, 491–503 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Slota, M., Lim, J. B., Dang, Y. & Disis, M. L. ELISpot for measuring human immune responses to vaccines. Expert Rev. Vaccines 10, 299–306 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Lovelace, P. & Maecker, H. T. Multiparameter intracellular cytokine staining. Methods Mol. Biol. 699, 165–178 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Bowyer, G. et al. Activation-induced markers detect vaccine-specific CD4+ T cell responses not measured by assays conventionally used in clinical trials. Vaccines 6, 50 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Reiss, S. et al. Comparative analysis of activation induced marker (AIM) assays for sensitive identification of antigen-specific CD4 T cells. PLoS ONE 12, e0186998 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the members of the Weatheritt lab for fruitful discussions on protein isoforms and their therapeutic uses. They also thank S. Zinn, D. Christ and A. Cooper, for critical reading of the manuscript and helpful suggestions. They thank A. Grootveld for discussions on vaccination responses and P. Sinitcyn for discussions on using mass spectrometry for protein isoform characterization. P.K.-H. discloses support for this work from a University International Postgraduate Award scholarship from the University of New South Wales and a Peter & Emma Thomsens legat (stipend). T.G.P. is supported by the Australian National Health and Medical Research Council (NHMRC) Investigator Grant (APPID1155678), the Kinghorn Foundation, Cancer Institute NSW, Australian Cancer Research Foundation and the Tour de Cure. R.J.W. discloses support for this work from E. P. Oldham — Viertel Senior Medical Fellowship, the Scrimshaw Family Foundation, EMBL Australia, Australian Research Council Future Fellowship and Discovery Project, NSW Institute of Cancer Research and NSW Cancer Council.

Author information

Authors and Affiliations

Authors

Contributions

P.K.-H. and R.J.W. researched data for the article. All authors contributed substantially to discussion of the content. P.K.-H. and R.J.W. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Peter Kjer-Hansen or Robert J. Weatheritt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Rotem Karni and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrials.gov: https://clinicaltrials.gov

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kjer-Hansen, P., Phan, T.G. & Weatheritt, R.J. Protein isoform-centric therapeutics: expanding targets and increasing specificity. Nat Rev Drug Discov 23, 759–779 (2024). https://doi.org/10.1038/s41573-024-01025-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-024-01025-z

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research