Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting the peripheral neural-tumour microenvironment for cancer therapy

Abstract

As the field of cancer neuroscience expands, the strategic targeting of interactions between neurons, cancer cells and other elements in the tumour microenvironment represents a potential paradigm shift in cancer treatment, comparable to the advent of our current understanding of tumour immunology. Cancer cells actively release growth factors that stimulate tumour neo-neurogenesis, and accumulating evidence indicates that tumour neo-innervation propels tumour progression, inhibits tumour-related pro-inflammatory cytokines, promotes neovascularization, facilitates metastasis and regulates immune exhaustion and evasion. In this Review, we give an up-to-date overview of the dynamics of the tumour microenvironment with an emphasis on tumour innervation by the peripheral nervous system, as well as current preclinical and clinical evidence of the benefits of targeting the nervous system in cancer, laying a scientific foundation for further clinical trials. Combining empirical data with a biomarker-driven approach to identify and hone neuronal targets implicated in cancer and its spread can pave the way for swift clinical integration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of the neural niche.
Fig. 2: Interactions within the tumour niche.
Fig. 3: Neuronal signatures in cancer.
Fig. 4: Expression of neuronal-related genes across different cell types in the tumour microenvironment (TME).

Similar content being viewed by others

References

  1. Young, H. H. On the presence of nerves in tumors and of other structures in them as revealed by a modification of Ehrlich’s method of ‘vital staining’ with methylene blue. J. Exp. Med. 2, 1–12 (1897).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rutledge, A., Jobling, P., Walker, M. M., Denham, J. W. & Hondermarck, H. Spinal cord injuries and nerve dependence in prostate cancer. Trends Cancer 3, 812–815 (2017).

    Article  PubMed  Google Scholar 

  3. Zhao, C.-M. et al. Denervation suppresses gastric tumorigenesis. Sci. Transl. Med. 6, 250ra115 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Stopczynski, R. E. et al. Neuroplastic changes occur early in the development of pancreatic ductal adenocarcinoma. Cancer Res. 74, 1718–1727 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ayala, G. E. et al. Cancer-related axonogenesis and neurogenesis in prostate cancer. Clin. Cancer Res. 14, 7593–7603 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Saloman, J. L. et al. Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer. Proc. Natl Acad. Sci. USA 113, 3078–3083 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lu, Z. et al. Tracking cell-type-specific temporal dynamics in human and mouse brains. Cell 186, 4345–4364.e24 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lyubetskaya, A. et al. Assessment of spatial transcriptomics for oncology discovery. Cell Rep. Methods 2, 100340 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Seferbekova, Z., Lomakin, A., Yates, L. R. & Gerstung, M. Spatial biology of cancer evolution. Nat. Rev. Genet. 24, 295–313 (2023).

    Article  CAS  PubMed  Google Scholar 

  10. Sunderland, S. The intraneural topography of the radial, median and ulnar nerves. Brain 68, 243–299 (1945).

    Article  CAS  PubMed  Google Scholar 

  11. Williams, H. B. & Jabaley, M. E. The importance of internal anatomy of the peripheral nerves to nerve repair in the forearm and hand. Hand Clin. 2, 689–707 (1986).

    Article  CAS  PubMed  Google Scholar 

  12. Boilly, B., Faulkner, S., Jobling, P. & Hondermarck, H. Nerve dependence: from regeneration to cancer. Cancer Cell 31, 342–354 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Kaucká, M. & Adameyko, I. Non-canonical functions of the peripheral nerve. Exp. Cell Res. 321, 17–24 (2014).

    Article  PubMed  Google Scholar 

  14. Roosterman, D., Goerge, T., Schneider, S. W., Bunnett, N. W. & Steinhoff, M. Neuronal control of skin function: the skin as a neuroimmunoendocrine organ. Physiol. Rev. 86, 1309–1379 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Kumar, A. & Brockes, J. P. Nerve dependence in tissue, organ, and appendage regeneration. Trends Neurosci. 35, 691–699 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Chéret, J., Lebonvallet, N., Carré, J. L., Misery, L. & Le Gall-Ianotto, C. Role of neuropeptides, neurotrophins, and neurohormones in skin wound healing. in. Wound Repair. Regen. 21, 772–788 (2013).

    Article  PubMed  Google Scholar 

  17. Laverdet, B. et al. Skin innervation: important roles during normal and pathological cutaneous repair. Histol. Histopathol. 30, 875–892 (2015).

    CAS  PubMed  Google Scholar 

  18. Donnelly, C. R., Chen, O. & Ji, R.-R. How do sensory neurons sense danger signals? Trends Neurosci. 43, 822–838 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schäffer, M., Beiter, T., Becker, H. D. & Hunt, T. K. Neuropeptides: mediators of inflammation and tissue repair? Arch. Surg. 133, 1107–1116 (1998).

    Article  PubMed  Google Scholar 

  20. Hanahan, D. & Monje, M. Cancer hallmarks intersect with neuroscience in the tumor microenvironment. Cancer Cell 41, 573–580 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Elphick, M. R., Mirabeau, O. & Larhammar, D. Evolution of neuropeptide signalling systems. J. Exp. Biol. 221, jeb151092 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Larhammar, D. in Encyclopedia of Neuroscience Volume 1 (eds. Squire, L. R., Bloom, F. E., Spitzer, N. C., Gage, F. & Albright, T.) 873–880 (Elsevier, 2009).

  23. Costas-Insua, C. et al. Neuronal cannabinoid CB1 receptors suppress the growth of melanoma brain metastases by inhibiting glutamatergic signalling. Cancers 15, 2439 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Geppetti, P., Veldhuis, N. A., Lieu, T. & Bunnett, N. W. G protein-coupled receptors: dynamic machines for signaling pain and itch. Neuron 88, 635–649 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Palczewski, K. & Orban, T. From atomic structures to neuronal functions of G protein-coupled receptors. Annu. Rev. Neurosci. 36, 139–164 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pucci, S., Zoli, M., Clementi, F. & Gotti, C. α9-containing nicotinic receptors in cancer. Front. Cell Neurosci. 15, 805123 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Restaino, A. C. et al. Functional neuronal circuits promote disease progression in cancer. Sci. Adv. 9, eade4443 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Venkatesh, H. & Monje, M. Neuronal activity in ontogeny and oncology. Trends Cancer 3, 89–112 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Davenport, A. P., Scully, C. C. G., de Graaf, C., Brown, A. J. H. & Maguire, J. J. Advances in therapeutic peptides targeting G protein-coupled receptors. Nat. Rev. Drug Discov. 19, 389–413 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Marlin, M. C. & Li, G. Biogenesis and function of the NGF/TrkA signaling endosome. Int. Rev. Cell Mol. Biol. 314, 239–257 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Downward, J. & Targeting, R. A. S. signalling pathways in cancer therapy. Nat. Rev. Cancer 3, 11–22 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Belgacem, Y. H. & Borodinsky, L. NCREB at the crossroads of activity-dependent regulation of nervous system development and function. Adv. Exp. Med. Biol. 1015, 19–39 (2017).

    Article  PubMed  Google Scholar 

  33. Zhang, H., Kong, Q., Wang, J., Jiang, Y. & Hua, H. Complex roles of cAMP–PKA–CREB signaling in cancer. Exp. Hematol. Oncol. 9, 32 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mehra, S., Singh, S. & Nagathihalli, N. Emerging role of CREB in epithelial to mesenchymal plasticity of pancreatic cancer. Front. Oncol. 12, 925687 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Steven, A. et al. What turns CREB on? And off? And why does it matter? Cell Mol. Life Sci. 77, 4049–4067 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zheng, T. et al. Systematical analysis reveals a strong cancer relevance of CREB1-regulated genes. Cancer Cell Int. 21, 530 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. O’Reilly, E. M. & Hechtman, J. F. Tumour response to TRK inhibition in a patient with pancreatic adenocarcinoma harbouring an NTRK gene fusion. Ann. Oncol. 30, viii36–viii40 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sapio, L. et al. Targeting CREB in cancer therapy: a key candidate or one of many? An update. Cancers 12, 3166 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vaishnavi, A. et al. Inhibition of MEK1/2 forestalls the onset of acquired resistance to entrectinib in multiple models of NTRK1-driven cancer. Cell Rep. 32, 107994 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xiao, X., Li, B. X., Mitton, B., Ikeda, A. & Sakamoto, K. M. Targeting CREB for cancer therapy: friend or foe. Curr. Cancer Drug Targets 10, 384–391 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Klapproth, H. et al. Non-neuronal acetylcholine, a signalling molecule synthezised by surface cells of rat and man. Naunyn Schmiedebergs Arch. Pharmacol. 355, 515–523 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Nie, M. et al. Targeting acetylcholine signaling modulates persistent drug tolerance in EGFR-mutant lung cancer and impedes tumor relapse. J. Clin. Invest. 132, e160152 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bui, A., Jiang, C., McKay, R. M., Klesse, L. J. & Le, L. Q. Insights into the pathogenesis of NF1-associated neoplasms. JID Innovations. 1, 100044 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yang, F. C. et al. Nf1+/− mast cells induce neurofibroma like phenotypes through secreted TGF-β signaling. Hum. Mol. Genet. 15, 2421–2437 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Jiang, C. et al. Basement membrane proteins in extracellular matrix characterize NF1 neurofibroma development and response to MEK inhibitor. J. Clin. Invest. 133, e168227 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Flint, A. C. et al. Combined CDK4/6 and ERK1/2 inhibition enhances antitumor activity in Nf1-associated plexiform neurofibroma. Clin. Cancer Res. 29, 3438–3456 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dombi, E. et al. Activity of selumetinib in neurofibromatosis type 1-related plexiform neurofibromas. N. Engl. J. Med. 375, 2550–2560 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gross, A. M. et al. Selumetinib in children with inoperable plexiform neurofibromas. N. Engl. J. Med. 382, 1430–1442 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang, F. C. et al. Nf1-dependent tumors require a microenvironment containing Nf1+/− and c-kit-dependent bone marrow. Cell 135, 437–448 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Robertson, K. A. et al. Imatinib mesylate for plexiform neurofibromas in patients with neurofibromatosis type 1: a phase 2 trial. Lancet Oncol. 13, 1218–1224 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fisher, M. J. et al. Cabozantinib for neurofibromatosis type 1-related plexiform neurofibromas: a phase 2 trial. Nat. Med. 27, 165–173 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Helbing, D.-L., Schulz, A. & Morrison, H. Pathomechanisms in schwannoma development and progression. Oncogene 39, 5421–5429 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hilton, D. A. & Hanemann, C. O. Schwannomas and their pathogenesis. Brain Pathol. 24, 205–220 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chen, P., Piao, X. & Bonaldo, P. Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathol. 130, 605–618 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Deborde, S. et al. Reprogrammed schwann cells organize into dynamic tracks that promote pancreatic cancer invasion. Cancer Discov. 12, 2454–2473 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cavel, O. et al. Endoneurial macrophages induce perineural invasion of pancreatic cancer cells by secretion of GDNF and activation of RET tyrosine kinase receptor. Cancer Res. 72, 5733–5743 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Farid, M. et al. Malignant peripheral nerve sheath tumors. Oncologist 19, 193–201 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Brosseau, J. P. et al. NF1 heterozygosity fosters de novo tumorigenesis but impairs malignant transformation. Nat. Commun. 9, 5014 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Somatilaka, B. N., Sadek, A., McKay, R. M. & Le, L. Q. Malignant peripheral nerve sheath tumor: models, biology, and translation. Oncogene 41, 2405–2421 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Miao, R. et al. Radiation-induced and neurofibromatosis-associated malignant peripheral nerve sheath tumors (MPNST) have worse outcomes than sporadic MPNST. Radiother. Oncol. 137, 61–70 (2019).

    Article  PubMed  Google Scholar 

  61. Williams, K. B. & Largaespada, D. A. New model systems and the development of targeted therapies for the treatment of neurofibromatosis type 1-associated malignant peripheral nerve sheath tumors. Genes 11, 477 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tawadros, T. et al. IB1/JIP-1 controls JNK activation and increased during prostatic LNCaP cells neuroendocrine differentiation. Cell Signal. 17, 929–939 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Coulson, J. M., Edgson, J. L., Woll, P. J. & Quinn, J. P. A splice variant of the neuron-restrictive silencer factor repressor is expressed in small cell lung cancer: a potential role in derepression of neuroendocrine genes and a useful clinical marker. Cancer Res. 60, 1840–1844 (2000).

    CAS  PubMed  Google Scholar 

  64. Gurrola-Diaz, C., Lacroix, J., Dihlmann, S., Becker, C.-M. & von Knebel Doeberitz, M. Reduced expression of the neuron restrictive silencer factor permits transcription of glycine receptor alpha1 subunit in small-cell lung cancer cells. Oncogene 22, 5636–5645 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Westbrook, T. F. et al. A genetic screen for candidate tumor suppressors identifies REST. Cell 121, 837–848 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Arizmendi-Izazaga, A. et al. The NRSF/REST transcription factor in hallmarks of cancer: from molecular mechanisms to clinical relevance. Biochimie 206, 116–134 (2023).

    Article  CAS  PubMed  Google Scholar 

  67. Mishima, K., Obika, S. & Shimojo, M. Splice-switching antisense oligonucleotide controlling tumor suppressor REST is a novel therapeutic medicine for neuroendocrine cancer. Mol. Ther. Nucleic Acids, https://doi.org/10.1016/j.omtn.2024.102250 (2024).

    Article  Google Scholar 

  68. Venkataramani, V. et al. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature 573, 532–538 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Venkatesh, H. S. et al. Electrical and synaptic integration of glioma into neural circuits. Nature 573, 539–545 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Barr, J. et al. Tumor-infiltrating nerves functionally alter brain circuits and modulate behavior in a mouse model of head-and-neck cancer. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/2023.10.18.562990v3 (2023).

  71. Schmitt, A. et al. Functional synapses between small cell lung cancer and glutamatergic neurons. Preprint at bioRxiv, https://www.biorxiv.org/content/10.1101/2023.01.19.524045v1 (2023).

  72. Savchuk, S. et al. Neuronal-activity dependent mechanisms of small cell lung cancer progression. Preprint at bioRxiv, https://www.biorxiv.org/content/10.1101/2023.01.19.524430v1 (2023).

  73. Yeo, C. D. et al. Chronic nicotine exposure affects programmed death-ligand 1 expression and sensitivity to epidermal growth factor receptor-tyrosine kinase inhibitor in lung cancer. Transl. Cancer Res. 8, S378–S388 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yang, L., Bie, L., Sun, L. & Yue, Y. Neural activities are unfavorable for the prognosis of ovarian cancer through mRNA expression analysis. Biomark. Med. 13, 663–673 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Yin, L. et al. Cancer cell’s neuroendocrine feature can be acquired through cell-cell fusion during cancer-neural stem cell interaction. Sci. Rep. 10, 1216 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Neman, J. et al. Human breast cancer metastases to the brain display GABAergic properties in the neural niche. Proc. Natl Acad. Sci. USA 111, 984–989 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kleffman, K. et al. Melanoma-secreted amyloid beta suppresses neuroinflammation and promotes brain metastasis. Cancer Discov. 12, 1314–1335 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ahmad, A., Strohbuecker, S., Tufarelli, C. & Sottile, V. Expression of a SOX1 overlapping transcript in neural differentiation and cancer models. Cell Mol. Life Sci. 74, 4245–4258 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang, Z. et al. Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells. J. Biol. Chem. 292, 12842–12859 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lu, R. et al. Neurons generated from carcinoma stem cells support cancer progression. Signal Transduct. Target. Ther. 2, 16036 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Huang, S. et al. Lgr6 marks epidermal stem cells with a nerve-dependent role in wound re-epithelialization. Cell Stem Cell 28, 1582–1596.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Vaishnavi, A. et al. Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nat. Med. 19, 1469–1472 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lagadec, C. et al. TrkA overexpression enhances growth and metastasis of breast cancer cells. Oncogene 28, 1960–1970 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Adriaenssens, E. et al. Nerve growth factor is a potential therapeutic target in breast cancer. Cancer Res. 68, 346–351 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Allen, J. K. et al. Sustained adrenergic signaling promotes intratumoral innervation through BDNF induction. Cancer Res. 78, 3233–3242 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jobling, P. et al. Nerve-cancer cell cross-talk: a novel promoter of tumor progression. Cancer Res. 75, 1777–1781 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Zhou, W.-J., Geng, Z. H., Spence, J. R. & Geng, J.-G. Induction of intestinal stem cells by R-spondin 1 and Slit2 augments chemoradioprotection. Nature 501, 107–111 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Arese, M., Bussolino, F., Pergolizzi, M., Bizzozero, L. & Pascal, D. Tumor progression: the neuronal input. Ann. Transl. Med. 6, 89–89 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Faulkner, S., Jobling, P., March, B., Jiang, C. C. & Hondermarck, H. Tumor neurobiology and the war of nerves in cancer. Cancer Discov. 9, 702–710 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Pundavela, J. et al. ProNGF correlates with Gleason score and is a potential driver of nerve infiltration in prostate cancer. Am. J. Pathol. 184, 3156–3162 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Pundavela, J. et al. Nerve fibers infiltrate the tumor microenvironment and are associated with nerve growth factor production and lymph node invasion in breast cancer. Mol. Oncol. 9, 1626–1635 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hayakawa, Y. et al. Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell 31, 21–34 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Amit, M. et al. Loss of p53 drives neuron reprogramming in head and neck cancer. Nature 578, 449–454 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mauffrey, P. et al. Progenitors from the central nervous system drive neurogenesis in cancer. Nature 569, 672–678 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Chen, Z.-L., Yu, W.-M. & Strickland, S. Peripheral regeneration. Annu. Rev. Neurosci. 30, 209–233 (2007).

    Article  PubMed  Google Scholar 

  96. Jessen, K. R. & Mirsky, R. The repair Schwann cell and its function in regenerating nerves. J. Physiol. 594, 3521–3531 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cheng, Y.-C. et al. Topoisomerase I inhibition and peripheral nerve injury induce DNA breaks and ATF3-associated axon regeneration in sensory neurons. Cell Rep. 36, 109666 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Seijffers, R., Mills, C. D. & Woolf, C. J. ATF3 increases the intrinsic growth state of DRG neurons to enhance peripheral nerve regeneration. J. Neurosci. 27, 7911–7920 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Renthal, W. et al. Transcriptional reprogramming of distinct peripheral sensory neuron subtypes after axonal injury. Neuron 108, 128–144.e9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Becher, B., Spath, S. & Goverman, J. Cytokine networks in neuroinflammation. Nat. Rev. Immunol. 17, 49–59 (2017).

    Article  CAS  PubMed  Google Scholar 

  101. Rotshenker, S. Wallerian degeneration: the innate-immune response to traumatic nerve injury. J. Neuroinflammation 8, 109 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Siqueira Mietto, B. et al. Role of IL-10 in resolution of inflammation and functional recovery after peripheral nerve injury. J. Neurosci. 35, 16431–16442 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Xie, Y. et al. Transforming growth factor-β1 protects against LPC-induced cognitive deficit by attenuating pyroptosis of microglia via NF-κB/ERK1/2 pathways. J. Neuroinflammation 19, 194 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Amit, M. et al. Upregulation of RET induces perineurial invasion of pancreatic adenocarcinoma. Oncogene 36, 3232–3239 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. Gil, Z. et al. Paracrine regulation of pancreatic cancer cell invasion by peripheral nerves. JNCI: J. Natl Cancer Inst. 102, 107–118 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Baruch, E. N. et al. Inflammation induced by tumor-associated nerves promotes resistance to anti-PD-1 therapy in cancer patients and is targetable by interleukin-6 blockade. Preprint at Res. Sq. https://doi.org/10.21203/rs.3.rs-3161761/v1 (2023).

  107. Kahn, M. Can we safely target the WNT pathway? Nat. Rev. Drug Discov. 13, 513–532 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sabnis, A. J. & Bivona, T. G. Principles of resistance to targeted cancer therapy: lessons from basic and translational cancer biology. Trends Mol. Med. 25, 185–197 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Eng, J. W.-L. et al. A nervous tumor microenvironment: the impact of adrenergic stress on cancer cells, immunosuppression, and immunotherapeutic response. Cancer Immunol. Immunother. 63, 1115–1128 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sastry, K. S. R. et al. Epinephrine protects cancer cells from apoptosis via activation of cAMP-dependent protein kinase and BAD phosphorylation. J. Biol. Chem. 282, 14094–14100 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Zhang, D. et al. β2-adrenoceptor blockage induces G1/S phase arrest and apoptosis in pancreatic cancer cells via Ras/Akt/NFκB pathway. Mol. Cancer 10, 146 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Shan, T. et al. β2-adrenoceptor blocker synergizes with gemcitabine to inhibit the proliferation of pancreatic cancer cells via apoptosis induction. Eur. J. Pharmacol. 665, 1–7 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Zhang, D., Yong Ma, Q., Hu, H.-T. & Zhang, M. β2-adrenergic antagonists suppress pancreatic cancer cell invasion by inhibiting CREB, NF-κB and AP-1. Cancer Biol. Ther. 10, 19–29 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Zahalka, A. H. et al. Adrenergic nerves activate an angio-metabolic switch in prostate cancer. Science 358, 321–326 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kamiya, A. et al. Genetic manipulation of autonomic nerve fiber innervation and activity and its effect on breast cancer progression. Nat. Neurosci. 22, 1289–1305 (2019).

    Article  CAS  PubMed  Google Scholar 

  116. Lemeshow, S. et al. β-Blockers and survival among Danish patients with malignant melanoma: a population-based cohort study. Cancer Epidemiol. Biomark. Prev. 20, 2273–2279 (2011).

    Article  CAS  Google Scholar 

  117. Powe, D. G. et al. Beta-blocker drug therapy reduces secondary cancer formation in breast cancer and improves cancer specific survival. Oncotarget 1, 628–638 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Botteri, E. et al. Therapeutic effect of β-blockers in triple-negative breast cancer postmenopausal women. Breast Cancer Res. Treat. 140, 567–575 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Grytli, H. H., Fagerland, M. W., Fosså, S. D., Taskén, K. A. & Håheim, L. L. Use of β‐blockers is associated with prostate cancer‐specific survival in prostate cancer patients on androgen deprivation therapy. Prostate 73, 250–260 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Lu, H. et al. Impact of beta-blockers on prostate cancer mortality: a meta-analysis of 16,825 patients. Onco Targets Ther. 8, 985–990 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Hicks, B. M., Murray, L. J., Powe, D. G., Hughes, C. M. & Cardwell, C. R. β-Blocker usage and colorectal cancer mortality: a nested case-control study in the UK clinical practice research datalink cohort. Ann. Oncol. 24, 3100–3106 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Livingstone, E. et al. β-Blocker use and all-cause mortality of melanoma patients: results from a population-based Dutch cohort study. Eur. J. Cancer 49, 3863–3871 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. McCourt, C. et al. Beta-blocker usage after malignant melanoma diagnosis and survival: a population-based nested case-control study. Br. J. Dermatol. 170, 930–938 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Aydiner, A., Ciftci, R., Karabulut, S. & Kilic, L. Does beta-blocker therapy improve the survival of patients with metastatic non-small cell lung cancer? Asian Pac. J. Cancer Prev. 14, 6109–6114 (2013).

    Article  PubMed  Google Scholar 

  125. Cardwell, C. R., Coleman, H. G., Murray, L. J., Entschladen, F. & Powe, D. G. Beta-blocker usage and breast cancer survival: a nested case-control study within a UK Clinical Practice Research Datalink Cohort. Int. J. Epidemiol. 42, 1852–1861 (2013).

    Article  PubMed  Google Scholar 

  126. Holmes, M. D., Hankinson, S. E., Feskanich, D. & Chen, W. Y. Beta blockers and angiotensin-converting enzyme inhibitors’ purported benefit on breast cancer survival may be explained by aspirin use. Breast Cancer Res. Treat. 139, 507–513 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Melhem-Bertrandt, A. et al. Beta-blocker use is associated with improved relapse-free survival in patients with triple-negative breast cancer. J. Clin. Oncol. 29, 2645–2652 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Heitz, F. et al. Impact of beta blocker medication in patients with platinum sensitive recurrent ovarian cancer – a combined analysis of 2 prospective multicenter trials by the AGO Study Group, NCIC-CTG and EORTC-GCG. Gynecol. Oncol. 129, 463–466 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Assayag, J., Pollak, M. N. & Azoulay, L. Post-diagnostic use of beta-blockers and the risk of death in patients with prostate cancer. Eur. J. Cancer 50, 2838–2845 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Wang, H. M. et al. Improved survival outcomes with the incidental use of beta-blockers among patients with non-small-cell lung cancer treated with definitive radiation therapy. Ann. Oncol. 24, 1312–1319 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Watkins, J. L. et al. Clinical impact of selective and nonselective beta-blockers on survival in patients with ovarian cancer. Cancer 121, 3444–3451 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Chen, H. Y. et al. Beta-blocker use is associated with worse relapse-free survival in patients with head and neck cancer. JCO Precis. Oncol. 7, e2200490 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Weberpals, J., Jansen, L., Carr, P. R., Hoffmeister, M. & Brenner, H. Beta blockers and cancer prognosis – the role of immortal time bias: a systematic review and meta-analysis. Cancer Treat. Rev. 47, 1–11 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Wang, Z., Lu, J. & Hu, J. Association between antihypertensive drugs and hepatocellular carcinoma: a trans-ancestry and drug-target Mendelian randomization study. Liver Int. 43, 1320–1331 (2023).

    Article  CAS  PubMed  Google Scholar 

  135. Scanzano, A. et al. Adrenergic modulation of migration, CD11b and CD18 expression, ROS and interleukin-8 production by human polymorphonuclear leukocytes. Inflamm. Res. 64, 127–135 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Padro, C. J. & Sanders, V. M. Neuroendocrine regulation of inflammation. Semin. Immunol. 26, 357–368 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Benschop, R. J., Oostveen, F. G., Heijnen, C. J. & Ballieux, R. E. Beta 2-adrenergic stimulation causes detachment of natural killer cells from cultured endothelium. Eur. J. Immunol. 23, 3242–3247 (1993).

    Article  CAS  PubMed  Google Scholar 

  138. Globig, A.-M. et al. The β1-adrenergic receptor links sympathetic nerves to T cell exhaustion. Nature 622, 383–392 (2023).

    Article  CAS  PubMed  Google Scholar 

  139. Zhu, J. et al. Tumour immune rejection triggered by activation of α2-adrenergic receptors. Nature 618, 607–615 (2023).

    Article  CAS  PubMed  Google Scholar 

  140. Magnon, C. et al. Autonomic nerve development contributes to prostate cancer progression. Science 341, 1236361 (2013).

    Article  PubMed  Google Scholar 

  141. Bucsek, M. J. et al. β-adrenergic signaling in mice housed at standard temperatures suppresses an effector phenotype in CD8+ T cells and undermines checkpoint inhibitor therapy. Cancer Res. 77, 5639–5651 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kennedy, O. J. et al. Prognostic and predictive value of β-blockers in the EORTC 1325/KEYNOTE-054 phase III trial of pembrolizumab versus placebo in resected high-risk stage III melanoma. Eur. J. Cancer 165, 97–112 (2022).

    Article  CAS  PubMed  Google Scholar 

  143. Oh, M. S. et al. The impact of beta blockers on survival outcomes in patients with non-small-cell lung cancer treated with immune checkpoint inhibitors. Clin. Lung Cancer 22, e57–e62 (2021).

    Article  CAS  PubMed  Google Scholar 

  144. Carnet Le Provost, K., Kepp, O., Kroemer, G. & Bezu, L. Trial watch: beta-blockers in cancer therapy. Oncoimmunology 12, 2284486 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Wu, Y. L. et al. Outcomes of beta blocker use in advanced hepatocellular carcinoma treated with immune checkpoint inhibitors. Front. Oncol. 13, 1128569 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhang, Y. et al. The effect of concomitant use of statins, NSAIDs, low-dose aspirin, metformin and beta-blockers on outcomes in patients receiving immune checkpoint inhibitors: a systematic review and meta-analysis. Oncoimmunology 10, 1957605 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Carlson, A. B. & Kraus, G. P. Physiology, cholinergic receptors. StatPearls. (2024).

  148. Aronowitz, A. L., Ali, S. R., Glaun, M. D. E. & Amit, M. Acetylcholine in carcinogenesis and targeting cholinergic receptors in oncology. Adv. Biol. 6, e2200053 (2022).

    Article  Google Scholar 

  149. Sales, M. E. et al. Role of muscarinic acetylcholine receptors in breast cancer: design of metronomic chemotherapy. Curr. Clin. Pharmacol. 14, 91–100 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Alessandrini, F. et al. The activation of M2 muscarinic receptor inhibits cell growth and survival in human glioblastoma cancer stem cells. Int. Immunopharmacol. 29, 105–109 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Xu, R. et al. Activation of M3 muscarinic receptor by acetylcholine promotes non-small cell lung cancer cell proliferation and invasion via EGFR/PI3K/AKT pathway. Tumour Biol. 36, 4091–4100 (2015).

    Article  CAS  PubMed  Google Scholar 

  152. Kodaira, M. et al. Functional muscarinic m3 receptor expressed in gastric cancer cells stimulates tyrosine phosphorylation and MAP kinase. J. Gastroenterol. 34, 163–171 (1999).

    Article  CAS  PubMed  Google Scholar 

  153. Yagle, K., Lu, H., Guizzetti, M., Möller, T. & Costa, L. G. Activation of mitogen-activated protein kinase by muscarinic receptors in astroglial cells: role in DNA synthesis and effect of ethanol. Glia 35, 111–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  154. Song, W., Yuan, M. & Zhao, S. Variation of M3 muscarinic receptor expression in different prostate tissues and its significance. Saudi Med. J. 30, 1010–1016 (2009).

    PubMed  Google Scholar 

  155. Nagy, D. et al. Cytoplasmic Ca2+ concentration changes evoked by muscarinic cholinergic stimulation in primary and metastatic melanoma cell lines. Melanoma Res. 21, 12–23 (2011).

    Article  CAS  PubMed  Google Scholar 

  156. Linnoila, R. I. From nicotine to breast cancer, implications of cholinergic receptor pathway. J. Natl Cancer Inst. 102, 1298–1299 (2010).

    Article  CAS  PubMed  Google Scholar 

  157. Lee, C.-H. et al. Overexpression and activation of the alpha9-nicotinic receptor during tumorigenesis in human breast epithelial cells. J. Natl Cancer Inst. 102, 1322–1335 (2010).

    Article  CAS  PubMed  Google Scholar 

  158. Schuller, H. M. Is cancer triggered by altered signalling of nicotinic acetylcholine receptors? Nat. Rev. Cancer 9, 195–205 (2009).

    Article  CAS  PubMed  Google Scholar 

  159. Grando, S. A. Connections of nicotine to cancer. Nat. Rev. Cancer 14, 419–429 (2014).

    Article  CAS  PubMed  Google Scholar 

  160. Dasgupta, P. et al. Nicotine induces cell proliferation, invasion and epithelial-mesenchymal transition in a variety of human cancer cell lines. Int. J. Cancer 124, 36–45 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Zahalka, A. H. & Frenette, P. S. Nerves in cancer. Nat. Rev. Cancer 20, 143–157 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Song, P. et al. Activated cholinergic signaling provides a target in squamous cell lung carcinoma. Cancer Res. 68, 4693–4700 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Yu, H. et al. Acetylcholine acts through M3 muscarinic receptor to activate the EGFR signaling and promotes gastric cancer cell proliferation. Sci. Rep. 7, 40828 (2017).

    Google Scholar 

  164. Zhao, Y. et al. Acetylcholinesterase, a key prognostic predictor for hepatocellular carcinoma, suppresses cell growth and induces chemosensitization. Hepatology 53, 493–503 (2011).

    Article  CAS  PubMed  Google Scholar 

  165. Cheng, K. et al. Acetylcholine release by human colon cancer cells mediates autocrine stimulation of cell proliferation. Am. J. Physiol. Gastrointest. Liver Physiol. 295, 591–597 (2008).

    Article  Google Scholar 

  166. Olofsson, P. S. et al. Blood pressure regulation by CD4+ lymphocytes expressing choline acetyltransferase. Nat. Biotechnol. 34, 1066–1071 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Chang, Y.-C. et al. Local anesthetics induce apoptosis in human breast tumor cells. Anesth. Analg. 118, 116–124 (2014).

    Article  CAS  PubMed  Google Scholar 

  168. Galoș, E. V. et al. Neutrophil extracellular trapping and angiogenesis biomarkers after intravenous or inhalation anaesthesia with or without intravenous lidocaine for breast cancer surgery: a prospective, randomised trial. Br. J. Anaesth. 125, 712–721 (2020).

    Article  PubMed  Google Scholar 

  169. Young, S. Z. & Bordey, A. GABA’s control of stem and cancer cell proliferation in adult neural and peripheral niches. Physiology 24, 171–185 (2009).

    Article  CAS  PubMed  Google Scholar 

  170. Tian, J. & Kaufman, D. L. The GABA and GABA-receptor system in inflammation, anti-tumor immune responses, and COVID-19. Biomedicines 11, 254 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Yang, Y. et al. GABAergic signaling as a potential therapeutic target in cancers. Biomed. Pharmacother. 161, 114410 (2023).

    Article  CAS  PubMed  Google Scholar 

  172. Abdul, M., Mccray, S. D. & Hoosein, N. M. Expression of gamma-aminobutyric acid receptor (subtype A) in prostate cancer. Acta Oncol. 47, 1546–1550 (2008).

    Article  CAS  PubMed  Google Scholar 

  173. Jiang, S.-H. et al. GABRP regulates chemokine signalling, macrophage recruitment and tumour progression in pancreatic cancer through tuning KCNN4-mediated Ca2+ signalling in a GABA-independent manner. Gut 68, 1994–2006 (2019).

    Article  CAS  PubMed  Google Scholar 

  174. Wang, T., Huang, W. & Chen, F. Baclofen, a GABAB receptor agonist, inhibits human hepatocellular carcinoma cell growth in vitro and in vivo. Life Sci. 82, 536–541 (2008).

    Article  CAS  PubMed  Google Scholar 

  175. Schuller, H. M. Regulatory role of G protein-coupled receptors in pancreatic cancer development and progression. Curr. Med. Chem. 25, 2566–2575 (2018).

    Article  CAS  PubMed  Google Scholar 

  176. Zhang, X., Du, Z., Liu, J. & He, J. Γ-aminobutyric acid receptors affect the progression and migration of tumor cells. J. Recept. Signal Transduct. Res. 34, 431–439 (2014).

    Article  CAS  PubMed  Google Scholar 

  177. Lee, Y.-Y. et al. Glutamate decarboxylase 1 overexpression as a poor prognostic factor in patients with nasopharyngeal carcinoma. J. Cancer 7, 1716–1723 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Gao, X. et al. Regulation of gamma-aminobutyric acid transaminase expression and its clinical significance in hepatocellular carcinoma. Front. Oncol. 12, 879810 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Lu, J. et al. ABAT and ALDH6A1, regulated by transcription factor HNF4A, suppress tumorigenic capability in clear cell renal cell carcinoma. J. Transl. Med. 18, 101 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Zhang, B. et al. B cell-derived GABA elicits IL-10+ macrophages to limit anti-tumour immunity. Nature 599, 471–476 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Balood, M. et al. Nociceptor neurons affect cancer immunosurveillance. Nature 611, 405–412 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Crosson, T. & Talbot, S. Anatomical differences in nociceptor neurons sensitivity. Bioelectron. Med. 8, 7 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Crosson, T. et al. Profiling of how nociceptor neurons detect danger – new and old foes. J. Intern. Med. 286, 268–289 (2019).

    Article  CAS  PubMed  Google Scholar 

  184. Crosson, T. et al. FcεR1-expressing nociceptors trigger allergic airway inflammation. J. Allergy Clin. Immunol. 147, 2330–2342 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. McIlvried, L. A., Atherton, M. A., Horan, N. L., Goch, T. N. & Scheff, N. N. Sensory neurotransmitter calcitonin gene‐related peptide modulates tumor growth and lymphocyte infiltration in oral squamous cell carcinoma. Adv. Biol. 6, 2200019 (2022).

    Article  CAS  Google Scholar 

  186. Gutierrez, S. & Boada, M. D. Neuropeptide-induced modulation of carcinogenesis in a metastatic breast cancer cell line (MDA-MB-231LUC+). Cancer Cell Int. 18, 216 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Shalabi, S., Belayachi, A. & Larrivée, B. Involvement of neuronal factors in tumor angiogenesis and the shaping of the cancer microenvironment. Front. Immunol. 15, 1284629 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Toda, M. et al. Neuronal system-dependent facilitation of tumor angiogenesis and tumor growth by calcitonin gene-related peptide. Proc. Natl Acad. Sci. USA 105, 13550–13555 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Huang, S. et al. Lymph nodes are innervated by a unique population of sensory neurons with immunomodulatory potential. Cell 184, 441–459.e25 (2021).

    Article  CAS  PubMed  Google Scholar 

  190. Prazeres, P. H. D. M. et al. Ablation of sensory nerves favours melanoma progression. J. Cell Mol. Med. 24, 9574–9589 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Vats, K. et al. Sensory nerves impede the formation of tertiary lymphoid structures and development of protective antimelanoma immune responses. Cancer Immunol. Res. 10, 1141–1154 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Zhang, Y. et al. Cancer cells co-opt nociceptive nerves to thrive in nutrient-poor environments and upon nutrient-starvation therapies. Cell Metab. 34, 1999–2017.e10 (2022).

    Article  CAS  PubMed  Google Scholar 

  193. Deen, M. et al. Blocking CGRP in migraine patients – a review of pros and cons. J. Headache Pain 18, 96 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Tebas, P. et al. Reduction of soluble CD163, substance P, programmed death 1 and inflammatory markers: phase 1B trial of aprepitant in HIV-1-infected adults. AIDS 29, 931–939 (2015).

    Article  CAS  PubMed  Google Scholar 

  195. Muñoz, M., Rosso, M., González-Ortega, A. & Coveñas, R. The NK-1 receptor antagonist L-732,138 induces apoptosis and counteracts substance p-related mitogenesis in human melanoma cell lines. Cancers 2, 611–623 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Garcia-Recio, S. et al. Substance P autocrine signaling contributes to persistent HER2 activation that drives malignant progression and drug resistance in breast cancer. Cancer Res. 73, 6424–6434 (2013).

    Article  CAS  PubMed  Google Scholar 

  197. Palma, C., Nardelli, F., Manzini, S. & Maggi, C. A. Substance P activates responses correlated with tumour growth in human glioma cell lines bearing tachykinin NK1 receptors. Br. J. Cancer 79, 236–243 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Muñoz, M., Crespo, J. C., Crespo, J. P. & Coveñas, R. Neurokinin-1 receptor antagonist aprepitant and radiotherapy, a successful combination therapy in a patient with lung cancer: a case report. Mol. Clin. Oncol. 11, 50–54 (2019).

    PubMed  PubMed Central  Google Scholar 

  199. Nizam, E., Köksoy, S. & Erin, N. NK1R antagonist decreases inflammation and metastasis of breast carcinoma cells metastasized to liver but not to brain; phenotype-dependent therapeutic and toxic consequences. Cancer Immunol. Immunother. 69, 1639–1650 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Ravindranathan, S. et al. Targeting vasoactive intestinal peptide-mediated signaling enhances response to immune checkpoint therapy in pancreatic ductal adenocarcinoma. Nat. Commun. 13, 6418 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. McGregor, C. E., Irwin, A. M. & English, A. W. The Val66Met BDNF polymorphism and peripheral nerve injury: enhanced regeneration in mouse met-carriers is not further improved with activity-dependent treatment. Neurorehabil. Neural Repair. 33, 407–418 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Meng, L. et al. Targeting the BDNF/TrkB pathway for the treatment of tumors (Review). Oncol. Lett. 17, 2031–2039 (2018).

    PubMed  PubMed Central  Google Scholar 

  203. Duechler, M. et al. The heterogeneous immune microenvironment in breast cancer is affected by hypoxia-related genes. Immunobiology 219, 158–165 (2014).

    Article  CAS  PubMed  Google Scholar 

  204. Liu, B. & Wei, C. Hypoxia induces overexpression of CCL28 to recruit treg cells to enhance angiogenesis in lung adenocarcinoma. J. Env. Pathol. Toxicol. Oncol. 40, 65–74 (2021).

    Article  CAS  Google Scholar 

  205. So, T. et al. Haplotype loss of HLA class I antigen as an escape mechanism from immune attack in lung cancer. Cancer Res. 65, 5945–5952 (2005).

    Article  CAS  PubMed  Google Scholar 

  206. Keiser, M. J. et al. Predicting new molecular targets for known drugs. Nature 462, 175–181 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Paolini, G. V., Shapland, R. H. B., Van Hoorn, W. P., Mason, J. S. & Hopkins, A. L. Global mapping of pharmacological space. Nat. Biotechnol. 24, 805–815 (2006).

    Article  CAS  PubMed  Google Scholar 

  208. Sisignano, M., Gribbon, P. & Geisslinger, G. Drug repurposing to target neuroinflammation and sensory neuron-dependent pain. Drugs 82, 357–373 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Uniyal, A. et al. Targeting sensory neuron GPCRs for peripheral neuropathic pain. Trends Pharmacol. Sci. 44, 1009–1027 (2023).

    Article  CAS  PubMed  Google Scholar 

  210. Pantziarka, P., Bouche, G., Meheus, L., Sukhatme, V. & Sukhatme, V. P. Repurposing drugs in your medicine cabinet: untapped opportunities for cancer therapy? Future Oncol. 11, 181–184 (2015).

    Article  CAS  PubMed  Google Scholar 

  211. Gugala, Z., Olmsted-Davis, E. A., Xiong, Y., Davis, E. L. & Davis, A. R. Trauma-induced heterotopic ossification regulates the blood-nerve barrier. Front. Neurol. 9, 408 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Richner, M. et al. Functional and structural changes of the blood–nerve-barrier in diabetic neuropathy. Front. Neurosci. 12, 1038 (2018).

    Article  PubMed  Google Scholar 

  213. Runkle, E. A. & Mu, D. Tight junction proteins: from barrier to tumorigenesis. Cancer Lett. 337, 41–48 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Powell, H. C., Olee, T., Brostoff, S. W. & Mizisin, A. P. Comparative histology of experimental allergic neuritis induced with minimum length neuritogenic peptides by adoptive transfer with sensitized cells or direct sensitization. J. Neuropathol. Exp. Neurol. 50, 658–674 (1991).

    Article  CAS  PubMed  Google Scholar 

  215. Li, T.-J., Li, J., Jiang, Y.-L., Tang, X.-H. & Liang, L. Insights into the leveraging of GABAergic signaling in cancer therapy. Cancer Med. 12, 14498–14510 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Chen, J., Cheuk, I. W. Y., Shin, V. Y. & Kwong, A. Acetylcholine receptors: key players in cancer development. Surg. Oncol. 31, 46–53 (2019).

    Article  PubMed  Google Scholar 

  217. Muñoz, J. P. & Calaf, G. M. Acetylcholine another factor in breast cancer biology. Biology 12, 1418 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Song, P. et al. Acetylcholine is synthesized by and acts as an autocrine growth factor for small cell lung carcinoma. Cancer Res. 63, 14–21 (2003).

    Google Scholar 

  219. Yin, Q.-Q., Xu, L.-H., Zhang, M. & Xu, C. Muscarinic acetylcholine receptor M1 mediates prostate cancer cell migration and invasion through hedgehog signaling. Asian J. Androl. 20, 608–614 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Mannan Baig, A. et al. Differential receptor dependencies. Anti-Cancer Drugs 28, 75–87 (2017).

    Article  Google Scholar 

  221. Grant, C. E., Flis, A. L. & Ryan, B. M. Understanding the role of dopamine in cancer: past present and future. Carcinogenesis 43, 517–527 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Vale, N. & Moura, C. The role of dopamine in repurposing drugs for oncology. Biomedicines 11, 1917 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Vlachos, N., Lampros, M., Voulgaris, S. & Alexiou, G. A. Repurposing antipsychotics for cancer treatment. Biomedicines 9, 1785 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Coveñas, R. & Muñoz, M. Involvement of the substance P/neurokinin-1 receptor system in cancer. Cancers 14, 3539 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Munoz, M., Rosso, M. & Covenas, R. A new frontier in the treatment of cancer: NK-1 receptor antagonists. Curr. Med. Chem. 17, 504–516 (2010).

    Article  CAS  PubMed  Google Scholar 

  226. Garnier, A., Ilmer, M., Kappler, R. & Berger, M. Therapeutic innovations for targeting hepatoblastoma. Anticancer Res. 36, 5577–5592 (2016).

    Article  CAS  PubMed  Google Scholar 

  227. González-Moles, M. Á., Ramos-García, P. & Esteban, F. Significance of the overexpression of substance P and its receptor NK-1R in head and neck carcinogenesis: a systematic review and meta-analysis. Cancers 13, 1349 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  228. García-Arand, M., Téllez, T., McKenna, L. & Redondo, M. Neurokinin-1 receptor (NK-1R) antagonists as a new strategy to overcome cancer resistance. Cancers 14, 2255 (2022).

    Article  Google Scholar 

  229. Lisa A. et al. Sensory neurotransmitter calcitonin gene‐related peptide modulates tumor growth and lymphocyte infiltration in oral squamous cell carcinoma. Adv. Biol. 6, e2200019 (2022).

    Article  Google Scholar 

  230. Moody, T. W. & Gozes, I. Vasoactive intestinal peptide receptors: a molecular target in breast and lung cancer. Curr. Pharm. Design 13, 1099–1104 (2007).

    Article  CAS  Google Scholar 

  231. Moody, T W. et al. VIP receptor antagonists and chemotherapeutic drugs inhibit the growth of breast cancer cells. Breast Cancer Res. Treat. 68, 55–64 (2001).

    Article  CAS  PubMed  Google Scholar 

  232. Sruthi, R. T. Targeting vasoactive intestinal peptide-mediated signaling enhances response to immune checkpoint therapy in pancreatic ductal adenocarcinoma. Nat. Commun. 13, 6418 (2022).

    Article  Google Scholar 

  233. Koivisto, A-P., Belvisi, M. G., Gaudet, R. & Szallasi, A. Advances in TRP channel drug discovery: from target validation to clinical studies. Nat. Rev. Drug Discov. 21, 41–59 (2022).

    Article  CAS  PubMed  Google Scholar 

  234. Bednarczyk, P. et al. Inflammation cancer and immunity—implication of TRPV1 channel. Front. Oncol. 9, 1087 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Kiss, F., Pohóczky, K., Szállási, Á. & Helyes, Z. Transient receptor potential (TRP) channels in head-and-neck squamous cell carcinomas: diagnostic prognostic and therapeutic potentials. Int. J. Mol. Sci. 21, 6374 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Robertson, A. G. et al. Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell 171, 540–556.e25 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Weinstein, J. N. et al. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507, 315–322 (2014).

    Article  CAS  Google Scholar 

  238. Koboldt, D. C. et al. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

    Article  CAS  Google Scholar 

  239. Ciriello, G. et al. Comprehensive molecular portraits of invasive lobular breast cancer. Cell 163, 506–519 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Muzny, D. M. et al. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

    Article  CAS  Google Scholar 

  241. Brennan, C. W. et al. The somatic genomic landscape of glioblastoma. Cell 155, 462 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. McLendon, R. et al. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

    Article  CAS  Google Scholar 

  243. Lawrence, M. S. et al. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 517, 576–582 (2015).

    Article  CAS  Google Scholar 

  244. Campbell, J. D. et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat. Genet. 48, 607–616 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Hammerman, P. S. et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525 (2012).

    Article  CAS  Google Scholar 

  246. Raphael, B. J. et al. Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell 32, 185–203.e13 (2017).

    Article  Google Scholar 

  247. Abeshouse, A. et al. The molecular taxonomy of primary prostate cancer. Cell 163, 1011–1025 (2015).

    Article  CAS  Google Scholar 

  248. Akbani, R. et al. Genomic classification of cutaneous melanoma. Cell 161, 1681–1696 (2015).

    Article  Google Scholar 

  249. Puram, S. V. et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171, 1611–1624.e24 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Lee, H.-O. et al. Lineage-dependent gene expression programs influence the immune landscape of colorectal cancer. Nat. Genet. 52, 594–603 (2020).

    Article  CAS  PubMed  Google Scholar 

  251. Schmitd, L. B., Perez-Pacheco, C. & D’Silva, N. J. Nerve density in cancer: less is better. FASEB Bioadv. 3, 773–786 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Liebl, F. et al. The severity of neural invasion is associated with shortened survival in colon cancer. Clin. Cancer Res. 19, 50–61 (2013).

    Article  CAS  PubMed  Google Scholar 

  253. Schmitd, L. B. et al. Spatial and transcriptomic analysis of perineural invasion in oral cancer. Clin. Cancer Res. 28, 3557–3572 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Olar, A. et al. Biological correlates of prostate cancer perineural invasion diameter. Hum. Pathol. 45, 1365–1369 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Olar, A., He, D., Florentin, D., Ding, Y. & Ayala, G. Biologic correlates and significance of axonogenesis in prostate cancer. Hum. Pathol. 45, 1358–1364 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Perez-Pacheco, C. et al. Increased nerve density adversely affects outcome in oral cancer. Clin. Cancer Res. 29, 2501–2512 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Albo, D. et al. Neurogenesis in colorectal cancer is a marker of aggressive tumor behavior and poor outcomes. Cancer 117, 4834–4845 (2011).

    Article  CAS  PubMed  Google Scholar 

  258. Reeves, F. A. et al. Prostatic nerve subtypes independently predict biochemical recurrence in prostate cancer. J. Clin. Neurosci. 63, 213–219 (2019).

    Article  CAS  PubMed  Google Scholar 

  259. Ceyhan, G. O. et al. Pancreatic neuropathy and neuropathic pain-a comprehensive pathomorphological study of 546 cases. Gastroenterology 136, 177–186.e1 (2009).

    Article  PubMed  Google Scholar 

  260. Demir, I. E., Friess, H. & Ceyhan, G. O. Neural plasticity in pancreatitis and pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol. 12, 649–659 (2015).

    Article  CAS  PubMed  Google Scholar 

  261. Iwasaki, T. et al. Reduction of intrapancreatic neural density in cancer tissue predicts poorer outcome in pancreatic ductal carcinoma. Cancer Sci. 110, 1491–1502 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.A.’s work is supported by the NIH/NIDCR (R01DE032018); NIH/NCI (R37CA242006); the University of Texas MD Anderson Cancer SPORE in Melanoma (P50-CA093459), Jim Mulva Foundation and the NCI Cancer Moonshot programme. S.T.’s work is supported by the Canadian Institutes of Health Research (407016, 461274, 461275), Canadian Foundation for Innovation (44135), Knut and Alice Wallenberg Foundation (KAW 2021.0141, KAW 2022.0327), Swedish Research Council (2022-01661), Natural Sciences and Engineering Research Council of Canada (RGPIN-2019-06824) and NIH/NIDCR (R01DE032712).

Author information

Authors and Affiliations

Authors

Contributions

D.Y., B.M., F.O.G.-N. and M.A. researched data for the article and contributed substantially to discussion of the content. All authors wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Frederico O. Gleber-Netto or Moran Amit.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Frank Winkler and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Axoplasm

The fluid interior of the axon of a neuron, which contains cellular components and molecules essential for axon function.

High-plex protein labelling

An advanced technique that allows researchers to simultaneously tag and measure more than 100 different proteins in a single sample.

Immortal time bias

A potential source of error in cohort studies in which the analysis incorrectly includes a period during which the outcome of interest cannot occur for the exposed group, leading to biased results.

Myelin sheath

A fatty insulating layer that surrounds nerve fibres that enhances the speed of electrical impulse transmission along neurons.

NETosis

A type of cell death that is characterized by the release of decondensed chromatin and granular contents to the extracellular space, also known as neutrophil extracellular traps (NETs).

Neurotrophic

Describes a substance that promotes the survival, growth and function of neurons in the nervous system.

Optogenetics

An innovative neuroscience technique that uses light-sensitive proteins to control and study the activity of specific neurons in living tissue.

ROBO

A family of proteins that have a crucial role in guiding the growth and direction of axons during nervous system development.

Slit proteins

Signalling molecules that interact with ROBO receptors to regulate axon guidance and cell migration in the nervous system.

Somatosensory

Relating to the sensory system that detects and processes information about touch, temperature, body position and pain.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaniv, D., Mattson, B., Talbot, S. et al. Targeting the peripheral neural-tumour microenvironment for cancer therapy. Nat Rev Drug Discov 23, 780–796 (2024). https://doi.org/10.1038/s41573-024-01017-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-024-01017-z

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer