Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chromatin remodellers as therapeutic targets

Abstract

Large-scale cancer genome sequencing studies have revealed that chromatin regulators are frequently mutated in cancer. In particular, more than 20% of cancers harbour mutations in genes that encode subunits of SWI/SNF (BAF) chromatin remodelling complexes. Additional links of SWI/SNF complexes to disease have emerged with the findings that some oncogenes drive transformation by co-opting SWI/SNF function and that germline mutations in select SWI/SNF subunits are the basis of several neurodevelopmental disorders. Other chromatin remodellers, including members of the ISWI, CHD and INO80/SWR complexes, have also been linked to cancer and developmental disorders. Consequently, therapeutic manipulation of SWI/SNF and other remodelling complexes has become of great interest, and drugs that target SWI/SNF subunits have entered clinical trials. Genome-wide perturbation screens in cancer cell lines with SWI/SNF mutations have identified additional synthetic lethal targets and led to further compounds in clinical trials, including one that has progressed to FDA approval. Here, we review the progress in understanding the structure and function of SWI/SNF and other chromatin remodelling complexes, mechanisms by which SWI/SNF mutations cause cancer and neurological diseases, vulnerabilities that arise because of these mutations and efforts to target SWI/SNF complexes and synthetic lethal targets for therapeutic benefit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure and function of SWI/SNF complexes.
Fig. 2: SWI/SNF mutations in cancer.
Fig. 3: ‘Goldilocks’ phenomenon: targeting SWI/SNF defects via rescue or further impairment.
Fig. 4: Strategies to therapeutically inhibit SWI/SNF complexes.

Similar content being viewed by others

References

  1. Narlikar, G. J., Sundaramoorthy, R. & Owen-Hughes, T. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 154, 490–503 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gourisankar, S., Krokhotin, A., Wenderski, W. & Crabtree, G. R. Context-specific functions of chromatin remodellers in development and disease. Nat. Rev. Genet. 25, 340–361 (2023).

    Article  PubMed  Google Scholar 

  3. Clapier, C. R. Sophisticated conversations between chromatin and chromatin remodelers, and dissonances in cancer. Int. J. Mol. Sci. 22, 5578 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Reyes, A. A., Marcum, R. D. & He, Y. Structure and function of chromatin remodelers. J. Mol. Biol. 433, 166929 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hota, S. K. & Bruneau, B. G. ATP-dependent chromatin remodeling during mammalian development. Development 143, 2882–2897 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alendar, A. & Berns, A. Sentinels of chromatin: chromodomain helicase DNA-binding proteins in development and disease. Genes Dev. 35, 1403–1430 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Eustermann, S., Patel, A. B., Hopfner, K.-P., He, Y. & Korber, P. Energy-driven genome regulation by ATP-dependent chromatin remodellers. Nat. Rev. Mol. Cell Biol. 25, 309–332 (2023).

    Article  PubMed  Google Scholar 

  8. Mittal, P. & Roberts, C. W. M. The SWI/SNF complex in cancer — biology, biomarkers and therapy. Nat. Rev. Clin. Oncol. 17, 435–448 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kadoch, C. et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat. Genet. 45, 592–601 (2013). Early and robust analysis of SWI/SNF complex mutations in cancer genome sequencing studies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Valencia, A. M. et al. Landscape of mSWI/SNF chromatin remodeling complex perturbations in neurodevelopmental disorders. Nat. Genet. 55, 1400–1412 (2023). Comprehensive guide to SWI/SNF complex mutations in neurodevelopmental disorders.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shi, J. et al. Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation. Genes Dev. 27, 2648–2662 (2013). An early study highlighting the essential role of SWI/SNF complexes in gene activation by oncogenic TFs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boulay, G. et al. Cancer-specific retargeting of BAF complexes by a prion-like domain. Cell 171, 163–178.e119 (2017). Discovery that wild-type SWI/SNF complexes can be hijacked by fusion oncoproteins and may represent clinically actionable targets in these cancers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sandoval, G. J. et al. Binding of TMPRSS2-ERG to BAF chromatin remodeling complexes mediates prostate oncogenesis. Mol. Cell 71, 554–566.e557 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xiao, L. et al. Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer. Nature 601, 434–439 (2022). An elegant demonstration of how targeting SWI/SNF complexes collapses oncogenic transcriptional circuits in transcriptionally dysregulated cancers.

    Article  CAS  PubMed  Google Scholar 

  15. Takaku, M. et al. GATA3-dependent cellular reprogramming requires activation-domain dependent recruitment of a chromatin remodeler. Genome Biol. 17, 36 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tian, L. et al. Long-read sequencing unveils IGH-DUX4 translocation into the silenced IGH allele in B-cell acute lymphoblastic leukemia. Nat. Commun. 10, 2789 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Seong, B. K. A. et al. TRIM8 modulates the EWS/FLI oncoprotein to promote survival in Ewing sarcoma. Cancer Cell 39, 1262–1278.e1267 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oike, T. et al. A synthetic lethality-based strategy to treat cancers harboring a genetic deficiency in the chromatin remodeling factor BRG1. Cancer Res. 73, 5508–5518 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Helming, K. C. et al. ARID1B is a specific vulnerability in ARID1A-mutant cancers. Nat. Med. 20, 251–254 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hoffman, G. R. et al. Functional epigenetics approach identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers. Proc. Natl Acad. Sci. USA 111, 3128–3133 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wilson, B. G. et al. Residual complexes containing SMARCA2 (BRM) underlie the oncogenic drive of SMARCA4 (BRG1) mutation. Mol. Cell Biol. 34, 1136–1144 (2014). Demonstrates that cancers with mutations in one mutually exclusive SWI/SNF subunit can create an enhanced dependency upon another, which led to efforts to target these ‘paralogue dependencies’ clinically.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Michel, B. C. et al. A non-canonical SWI/SNF complex is a synthetic lethal target in cancers driven by BAF complex perturbation. Nat. Cell Biol. 20, 1410–1420 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brien, G. L. et al. Targeted degradation of BRD9 reverses oncogenic gene expression in synovial sarcoma. eLife 7, e41305 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang, X. et al. BRD9 defines a SWI/SNF sub-complex and constitutes a specific vulnerability in malignant rhabdoid tumors. Nat. Commun. 10, 1881 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schick, S. et al. Systematic characterization of BAF mutations provides insights into intracomplex synthetic lethalities in human cancers. Nat. Genet. 51, 1399–1410 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kia, S. K., Gorski, M. M., Giannakopoulos, S. & Verrijzer, C. P. SWI/SNF mediates Polycomb eviction and epigenetic reprogramming of the INK4b-ARF-INK4a locus. Mol. Cell Biol. 28, 3457–3464 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wilson, B. G. et al. Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell 18, 316–328 (2010). Identifies Polycomb repressive complexes as a synthetic lethal target in cancers with SWI/SNF mutations that led to the clinical advancement and, ultimately, FDA approval of EZH2 inhibitors in one SWI/SNF-mutant cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim, K. H. et al. SWI/SNF-mutant cancers depend on catalytic and non-catalytic activity of EZH2. Nat. Med. 21, 1491–1496 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bitler, B. G. et al. Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nat. Med. 21, 231–238 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Kawano, S. et al. Preclinical evidence of anti-tumor activity induced by EZH2 inhibition in human models of synovial sarcoma. PLoS ONE 11, e0158888 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chan-Penebre, E. et al. Selective killing of SMARCA2- and SMARCA4-deficient small cell carcinoma of the ovary, hypercalcemic type cells by inhibition of EZH2: in vitro and in vivo preclinical models. Mol. Cancer Ther. 16, 850–860 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Radko-Juettner, S. et al. Targeting DCAF5 suppresses SMARCB1-mutant cancer via stabilizing SWI/SNF. Nature 628, 422–449 (2024). Reveals that function of SMARCB1-deficient SWI/SNF complexes can be substantially rescued by targeting a ubiquitin ligase quality control factor that degrades SWI/SNF complexes in the absence of SMARCB1.

    Article  Google Scholar 

  33. Neigeborn, L. & Carlson, M. Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 108, 845–858 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Peterson, C. L. & Herskowitz, I. Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell 68, 573–583 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Cairns, B. R., Kim, Y. J., Sayre, M. H., Laurent, B. C. & Kornberg, R. D. A multisubunit complex containing the SWI1/ADR6, SWI2/SNF2, SWI3, SNF5, and SNF6 gene products isolated from yeast. Proc. Natl Acad. Sci. USA 91, 1950–1954 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Martens, J. A., Wu, P. Y. & Winston, F. Regulation of an intergenic transcript controls adjacent gene transcription in Saccharomyces cerevisiae. Genes Dev. 19, 2695–2704 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hernandez-Garcia, J. et al. Comprehensive identification of SWI/SNF complex subunits underpins deep eukaryotic ancestry and reveals new plant components. Commun. Biol. 5, 549 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mathur, R. et al. ARID1A loss impairs enhancer-mediated gene regulation and drives colon cancer in mice. Nat. Genet. 49, 296–302 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Nakayama, R. T. et al. SMARCB1 is required for widespread BAF complex-mediated activation of enhancers and bivalent promoters. Nat. Genet. 49, 1613–1623 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, X. et al. SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation. Nat. Genet. 49, 289–295 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Alver, B. H. et al. The SWI/SNF chromatin remodelling complex is required for maintenance of lineage specific enhancers. Nat. Commun. 8, 14648 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tolstorukov, M. Y. et al. Swi/Snf chromatin remodeling/tumor suppressor complex establishes nucleosome occupancy at target promoters. Proc. Natl Acad. Sci. USA 110, 10165–10170 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu, Z. et al. Mitotic bookmarking by SWI/SNF subunits. Nature 618, 180–187 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Singhal, N. et al. Chromatin-remodeling components of the BAF complex facilitate reprogramming. Cell 141, 943–955 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Wolf, B. K. et al. Cooperation of chromatin remodeling SWI/SNF complex and pioneer factor AP-1 shapes 3D enhancer landscapes. Nat. Struct. Mol. Biol. 30, 10–21 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Frederick, M. A. et al. A pioneer factor locally opens compacted chromatin to enable targeted ATP-dependent nucleosome remodeling. Nat. Struct. Mol. Biol. 30, 31–37 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schick, S. et al. Acute BAF perturbation causes immediate changes in chromatin accessibility. Nat. Genet. 53, 269–278 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Iurlaro, M. et al. Mammalian SWI/SNF continuously restores local accessibility to chromatin. Nat. Genet. 53, 279–287 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Lessard, J. et al. An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 55, 201–215 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ho, L. et al. An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Proc. Natl Acad. Sci. USA 106, 5181–5186 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bultman, S. et al. A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol. Cell 6, 1287–1295 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. de la Serna, I. L., Carlson, K. A. & Imbalzano, A. N. Mammalian SWI/SNF complexes promote MyoD-mediated muscle differentiation. Nat. Genet. 27, 187–190 (2001).

    Article  PubMed  Google Scholar 

  53. Lickert, H. et al. Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature 432, 107–112 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Olave, I., Wang, W., Xue, Y., Kuo, A. & Crabtree, G. R. Identification of a polymorphic, neuron-specific chromatin remodeling complex. Genes Dev. 16, 2509–2517 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Buscarlet, M. et al. Essential role of BRG, the ATPase subunit of BAF chromatin remodeling complexes, in leukemia maintenance. Blood 123, 1720–1728 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mashtalir, N. et al. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell 175, 1272–1288.e20 (2018). An elegant study that outlines how the three distinct SWI/SNF subfamilies are assembled.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Alpsoy, A. & Dykhuizen, E. C. Glioma tumor suppressor candidate region gene 1 (GLTSCR1) and its paralog GLTSCR1-like form SWI/SNF chromatin remodeling subcomplexes. J. Biol. Chem. 293, 3892–3903 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wagner, F. R. et al. Structure of SWI/SNF chromatin remodeller RSC bound to a nucleosome. Nature 579, 448–451 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shuang He, Z. W. et al. Structure of nucleosome-bound human BAF complex. Science 367, 875–881 (2020).

    Article  PubMed  Google Scholar 

  60. Han, Y., Reyes, A. A., Malik, S. & He, Y. Cryo-EM structure of SWI/SNF complex bound to a nucleosome. Nature 579, 452–455 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mashtalir, N. et al. A structural model of the endogenous human BAF complex informs disease mechanisms. Cell 183, 802–817 e824 (2020). In-depth, structurally informed analysis of SWI/SNF mutations found in disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yuan, J., Chen, K., Zhang, W. & Chen, Z. Structure of human chromatin-remodelling PBAF complex bound to a nucleosome. Nature 605, 166–171 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, L. et al. Structure of nucleosome-bound human PBAF complex. Nat. Commun. 13, 7644 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Valencia, A. M. et al. Recurrent SMARCB1 mutations reveal a nucleosome acidic patch interaction site that potentiates mSWI/SNF complex chromatin remodeling. Cell 179, 1342–1356.e1323 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zeng, L. et al. Mechanism and regulation of acetylated histone binding by the tandem PHD finger of DPF3b. Nature 466, 258–262 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Local, A. et al. Identification of H3K4me1-associated proteins at mammalian enhancers. Nat. Genet. 50, 73–82 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Mashtalir, N. et al. Chromatin landscape signals differentially dictate the activities of mSWI/SNF family complexes. Science 373, 306–315 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Esch, D. et al. A unique Oct4 interface is crucial for reprogramming to pluripotency. Nat. Cell Biol. 15, 295–301 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Mitrea, D. M., Mittasch, M., Gomes, B. F., Klein, I. A. & Murcko, M. A. Modulating biomolecular condensates: a novel approach to drug discovery. Nat. Rev. Drug Discov. 21, 841–862 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Patil, A. et al. A disordered region controls cBAF activity via condensation and partner recruitment. Cell 186, 4936–4955.e26 (2023).

    Article  CAS  PubMed  Google Scholar 

  71. Reddy, D. et al. Paraspeckles interact with SWI/SNF subunit ARID1B to regulate transcription and splicing. EMBO Rep. 24, e55345 (2023).

    Article  CAS  PubMed  Google Scholar 

  72. Shen, H. & Laird, P. W. Interplay between the cancer genome and epigenome. Cell 153, 38–55 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Garraway, L. A. & Lander, E. S. Lessons from the cancer genome. Cell 153, 17–37 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Bailey, M. H. et al. Comprehensive characterization of cancer driver genes and mutations. Cell 173, 371–385.e318 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tate, J. G. et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 47, D941–D947 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Zehir, A. et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 23, 703–713 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shain, A. H. & Pollack, J. R. The spectrum of SWI/SNF mutations, ubiquitous in human cancers. PLoS ONE 8, e55119 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Roberts, C. W., Leroux, M. M., Fleming, M. D. & Orkin, S. H. Highly penetrant, rapid tumorigenesis through conditional inversion of the tumor suppressor gene Snf5. Cancer Cell 2, 415–425 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Bultman, S. J. et al. Characterization of mammary tumors from Brg1 heterozygous mice. Oncogene 27, 460–468 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Gu, Y. F. et al. Modeling renal cell carcinoma in mice: bap1 and pbrm1 inactivation drive tumor grade. Cancer Discov. 7, 900–917 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Versteege, I. et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394, 203–206 (1998). Initial identification of a mutation in a chromatin remodelling complex as a cancer driver.

    Article  CAS  PubMed  Google Scholar 

  83. Biegel, J. A. et al. Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res. 59, 74–79 (1999).

    CAS  PubMed  Google Scholar 

  84. Sévenet, N. et al. Constitutional mutations of the hSNF5/INI1 gene predispose to a variety of cancers. Am. J. Hum. Genet. 65, 1342–1348 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Brennan, B., Stiller, C. & Bourdeaut, F. Extracranial rhabdoid tumours: what we have learned so far and future directions. Lancet Oncol. 14, e329–e336 (2013).

    Article  PubMed  Google Scholar 

  86. Broggi, G. et al. Atypical teratoid/rhabdoid tumor in adults: a systematic review of the literature with meta-analysis and additional reports of 4 cases. J. Neurooncol 157, 1–14 (2022).

    Article  CAS  PubMed  Google Scholar 

  87. Lee, R. S. et al. A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers. J. Clin. Invest. 122, 2983–2988 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dharia, N. V. et al. A first-generation pediatric cancer dependency map. Nat. Genet. 53, 529–538 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Betz, B. L., Strobeck, M. W., Reisman, D. N., Knudsen, E. S. & Weissman, B. E. Re-expression of hSNF5/INI1/BAF47 in pediatric tumor cells leads to G1 arrest associated with induction of p16ink4a and activation of RB. Oncogene 21, 5193–5203 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Schaefer, I. M. & Hornick, J. L. SWI/SNF complex-deficient soft tissue neoplasms: an update. Semin. Diagn. Pathol. 38, 222–231 (2021).

    Article  PubMed  Google Scholar 

  92. Smith, M. J. et al. Frequency of SMARCB1 mutations in familial and sporadic schwannomatosis. Neurogenetics 13, 141–145 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Kenworthy, C. A. et al. Bromodomains regulate dynamic targeting of the PBAF chromatin-remodeling complex to chromatin hubs. Biophys. J. 121, 1738–1752 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Varela, I. et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469, 539–542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cancer Genome Atlas Research, N. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

    Article  Google Scholar 

  96. Yao, X. et al. PBRM1-deficient PBAF complexes target aberrant genomic loci to activate the NF-κB pathway in clear cell renal cell carcinoma. Nat. Cell Biol. 25, 765–777 (2023).

    Article  CAS  PubMed  Google Scholar 

  97. Sima, X. et al. The genetic alteration spectrum of the SWI/SNF complex: the oncogenic roles of BRD9 and ACTL6A. PLoS ONE 14, e0222305 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chang, C.-Y. et al. Increased ACTL6A occupancy within mSWI/SNF chromatin remodelers drives human squamous cell carcinoma. Mol. Cell 81, 4964–4978.e4968 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kadoch, C. & Crabtree, G. R. Reversible disruption of mSWI/SNF (BAF) complexes by the SS18–SSX oncogenic fusion in synovial sarcoma. Cell 153, 71–85 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Li, J. et al. A role for SMARCB1 in synovial sarcomagenesis reveals that SS18–SSX induces canonical BAF destruction. Cancer Discov. 11, 2620–2637 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Reisman, D. N., Sciarrotta, J., Wang, W., Funkhouser, W. K. & Weissman, B. E. Loss of BRG1/BRM in human lung cancer cell lines and primary lung cancers: correlation with poor prognosis. Cancer Res. 63, 560–566 (2003).

    CAS  PubMed  Google Scholar 

  102. Bai, J. et al. BRG1 is a prognostic marker and potential therapeutic target in human breast cancer. PLoS ONE 8, e59772 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Pyo, J. S., Son, B. K., Oh, D. & Kim, E. K. BRG1 is correlated with poor prognosis in colorectal cancer. Hum. Pathol. 73, 66–73 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Le Loarer, F. et al. SMARCA4 inactivation defines a group of undifferentiated thoracic malignancies transcriptionally related to BAF-deficient sarcomas. Nat. Genet. 47, 1200–1205 (2015).

    Article  PubMed  Google Scholar 

  105. Witkowski, L. et al. Germline and somatic SMARCA4 mutations characterize small cell carcinoma of the ovary, hypercalcemic type. Nat. Genet. 46, 438–443 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Jelinic, P. et al. Recurrent SMARCA4 mutations in small cell carcinoma of the ovary. Nat. Genet. 46, 424–426 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ramos, P. et al. Small cell carcinoma of the ovary, hypercalcemic type, displays frequent inactivating germline and somatic mutations in SMARCA4. Nat. Genet. 46, 427–429 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mullen, J., Kato, S., Sicklick, J. K. & Kurzrock, R. Targeting ARID1A mutations in cancer. Cancer Treat. Rev. 100, 102287 (2021).

    Article  CAS  PubMed  Google Scholar 

  109. Jones, S. et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 330, 228–231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wiegand, K. C. et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N. Engl. J. Med. 363, 1532–1543 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang, K. et al. Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat. Genet. 43, 1219–1223 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Jones, S. et al. Somatic mutations in the chromatin remodeling gene ARID1A occur in several tumor types. Hum. Mutat. 33, 100–103 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Guichard, C. et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat. Genet. 44, 694–698 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wu, J. N. & Roberts, C. W. ARID1A mutations in cancer: another epigenetic tumor suppressor? Cancer Discov. 3, 35–43 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. D’Ambrosio, A. et al. Increased genomic instability and reshaping of tissue microenvironment underlie oncogenic properties of Arid1a mutations. Sci. Adv. 10, eadh4435 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Sun, X. et al. Arid1a has context-dependent oncogenic and tumor suppressor functions in liver cancer. Cancer Cell 32, 574–589.e576 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kelso, T. W. R. et al. Chromatin accessibility underlies synthetic lethality of SWI/SNF subunits in ARID1A-mutant cancers. eLife 6, e30506 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Li, M. et al. Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma. Nat. Genet. 43, 828–829 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Manceau, G. et al. Recurrent inactivating mutations of ARID2 in non-small cell lung carcinoma. Int. J. Cancer 132, 2217–2221 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Carcamo, S. et al. Altered BAF occupancy and transcription factor dynamics in PBAF-deficient melanoma. Cell Rep. 39, 110637 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sokpor, G., Xie, Y., Rosenbusch, J. & Tuoc, T. Chromatin remodeling BAF (SWI/SNF) complexes in neural development and disorders. Front. Mol. Neurosci. 10, 243 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Tsurusaki, Y. et al. Mutations affecting components of the SWI/SNF complex cause Coffin–Siris syndrome. Nat. Genet. 44, 376–378 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Wieczorek, D. et al. A comprehensive molecular study on Coffin–Siris and Nicolaides–Baraitser syndromes identifies a broad molecular and clinical spectrum converging on altered chromatin remodeling. Hum. Mol. Genet. 22, 5121–5135 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Santen, G. W. et al. Mutations in SWI/SNF chromatin remodeling complex gene ARID1B cause Coffin–Siris syndrome. Nat. Genet. 44, 379–380 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Celen, C. et al. Arid1b haploinsufficient mice reveal neuropsychiatric phenotypes and reversible causes of growth impairment. eLife 6, e25730 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Cárcamo, B., Masotto, B., Baquero-Vaquer, A., Ceballos-Saenz, D. & Zapata-Aldana, E. Cancer in ARID1A–Coffin–Siris syndrome: review and report of a child with hepatoblastoma. Eur. J. Med. Genet. 65, 104600 (2022).

    Article  PubMed  Google Scholar 

  127. Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576 e516 (2017). Therapeutic vulnerabilities identified through these unbiased, genome-wide CRISPR perturbation screens have informed strategies to target SWI/SNF-mutant cancers and identified new diseases in which targeting SWI/SNF complexes may have anti-tumour potential.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Corsello, S. M. et al. Discovering the anti-cancer potential of non-oncology drugs by systematic viability profiling. Nat. Cancer 1, 235–248 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Vangamudi, B. et al. The SMARCA2/4 ATPase domain surpasses the bromodomain as a drug target in SWI/SNF-mutant cancers: insights from cDNA rescue and PFI-3 inhibitor studies. Cancer Res. 75, 3865–3878 (2015). Identification of bromodomain ligands for SMARCA2/4 that were subsequently repurposed into effective PROTACs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Papillon, J. P. N. et al. Discovery of orally active inhibitors of brahma homolog (BRM)/SMARCA2 ATPase activity for the treatment of brahma related gene 1 (BRG1)/SMARCA4-mutant cancers. J. Med. Chem. 61, 10155–10172 (2018). Identification of ATPase inhibitors of SMARCA2/4.

    Article  CAS  PubMed  Google Scholar 

  131. Richard, C. C. et al. Pharmacologic inhibition of BAF chromatin remodeling complexes as a therapeutic approach to transcription factor-dependent cancers. eLife 13, e93478 (2023).

    Google Scholar 

  132. Bondeson, D. P. et al. Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem. Biol. 25, 78–87.e75 (2018).

    Article  CAS  PubMed  Google Scholar 

  133. Smith, B. E. et al. Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Nat. Commun. 10, 131 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Békés, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Teng, M. & Gray, N. S. The rise of degrader drugs. Cell Chem. Biol. 30, 864–878 (2023).

    Article  CAS  PubMed  Google Scholar 

  136. Farnaby, W. et al. BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design. Nat. Chem. Biol. 15, 672–680 (2019). Proof of concept that ATPase subunits of SWI/SNF complexes can be degraded using PROTACs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Panditharatna, E. et al. BAF complex maintains glioma stem cells in pediatric H3K27M glioma. Cancer Discov. 12, 2880–2905 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Kofink, C. et al. A selective and orally bioavailable VHL-recruiting PROTAC achieves SMARCA2 degradation in vivo. Nat. Commun. 13, 5969 (2022). Report of SWI/SNF ATPase PROTAC with specificity towards SMARCA2 over SMARCA4.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Cantley, J. et al. Selective PROTAC-mediated degradation of SMARCA2 is efficacious in SMARCA4 mutant cancers. Nat. Commun. 13, 6814 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Yang, L. et al. Discovery of SMD-3040 as a potent and selective SMARCA2 PROTAC degrader with strong in vivo antitumor activity. J. Med. Chem. 66, 10761–10781 (2023).

    Article  CAS  PubMed  Google Scholar 

  141. Ito, K. et al. Discovery of PRT3789, a First-In-Class Potent and Selective SMARCA2 Degrader Inclinical Trials for the Treatment of Patients with SMARCA4 Mutated Cancers. https://preludetx.com/wp-content/uploads/2023/10/Ito_SMARCA_preclinical-AACR_NCI-EORTC_poster_Oct2023.pdf (AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics, Boston, 2023).

  142. Marian, C. A. et al. Small molecule targeting of specific BAF (mSWI/SNF) complexes for HIV latency reversal. Cell Chem. Biol. 25, 1443–1455.e1414 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wang, Z. et al. Dual ARID1A/ARID1B loss leads to rapid carcinogenesis and disruptive redistribution of BAF complexes. Nat. Cancer 1, 909–922 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. St Pierre, R. et al. SMARCE1 deficiency generates a targetable mSWI/SNF dependency in clear cell meningioma. Nat. Genet. 54, 861–873 (2022).

    Article  Google Scholar 

  145. McBride, M. J. et al. The SS18–SSX fusion oncoprotein hijacks BAF complex targeting and function to drive synovial sarcoma. Cancer Cell 33, 1128–1141 e1127 (2018). Initial development of bromodomain inhibitors that specifically target BRD9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Clark, P. G. et al. LP99: discovery and synthesis of the first selective BRD7/9 bromodomain inhibitor. Angew. Chem. Int. Ed. Engl. 54, 6217–6221 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hohmann, A. F. et al. Sensitivity and engineered resistance of myeloid leukemia cells to BRD9 inhibition. Nat. Chem. Biol. 12, 672–679 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Krämer, K. F., Moreno, N., Frühwald, M. C. & Kerl, K. BRD9 inhibition, alone or in combination with cytostatic compounds as a therapeutic approach in rhabdoid tumors. Int. J. Mol. Sci. 18, 1537 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Theodoulou, N. H. et al. Discovery of I-BRD9, a selective cell active chemical probe for bromodomain containing protein 9 inhibition. J. Med. Chem. 59, 1425–1439 (2016).

    Article  CAS  PubMed  Google Scholar 

  150. Remillard, D. et al. Degradation of the BAF complex factor BRD9 by heterobifunctional ligands. Angew. Chem. Int. Ed. Engl. 56, 5738–5743 (2017). Report of degraders of BRD9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Weisberg, E. et al. BRD9 degraders as chemosensitizers in acute leukemia and multiple myeloma. Blood Cancer J. 12, 110 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Ordonez-Rubiano, S. C. et al. Rational design and development of selective BRD7 bromodomain inhibitors and their activity in prostate cancer. J. Med. Chem. 66, 11250–11270 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Shishodia, S. et al. Selective and cell-active PBRM1 bromodomain inhibitors discovered through NMR fragment screening. J. Med. Chem. 65, 13714–13735 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Cochran, A. G. & Flynn, M. GNE-235: a lead compound selective for the second bromodomain of PBRM1. J. Med. Chem. 66, 13116–13134 (2023).

    Article  CAS  PubMed  Google Scholar 

  155. Knutson, S. K. et al. Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2. Proc. Natl Acad. Sci. USA 110, 7922–7927 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Muscat, A. et al. Low-dose histone deacetylase inhibitor treatment leads to tumor growth arrest and multi-lineage differentiation of malignant rhabdoid tumors. Clin. Cancer Res. 22, 3560–3570 (2016).

    Article  CAS  PubMed  Google Scholar 

  157. Kennison, J. A. The Polycomb and trithorax group proteins of Drosophila: trans-regulators of homeotic gene function. Annu. Rev. Genet. 29, 289–303 (1995).

    Article  CAS  PubMed  Google Scholar 

  158. Shao, Z. et al. Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell 98, 37–46 (1999).

    Article  CAS  PubMed  Google Scholar 

  159. Tamkun, J. W. et al. brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell 68, 561–572 (1992).

    Article  CAS  PubMed  Google Scholar 

  160. Kim, K. H. & Roberts, C. W. M. Targeting EZH2 in cancer. Nat. Med. 22, 128–134 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kadoch, C. et al. Dynamics of BAF–Polycomb complex opposition on heterochromatin in normal and oncogenic states. Nat. Genet. 49, 213–222 (2017).

    Article  CAS  PubMed  Google Scholar 

  162. McCabe, M. T. et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492, 108–112 (2012).

    Article  CAS  PubMed  Google Scholar 

  163. Campbell, J. E. et al. EPZ011989, a potent, orally-available EZH2 inhibitor with robust in vivo activity. ACS Med. Chem. Lett. 6, 491–495 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Knutson, S. K. et al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat. Chem. Biol. 8, 890–896 (2012).

    Article  CAS  PubMed  Google Scholar 

  165. Qi, W. et al. Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. Proc. Natl Acad. Sci. USA 109, 21360–21365 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Italiano, A. et al. Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: a first-in-human, open-label, phase 1 study. Lancet Oncol. 19, 649–659 (2018).

    Article  CAS  PubMed  Google Scholar 

  167. Gounder, M. et al. Tazemetostat in advanced epithelioid sarcoma with loss of INI1/SMARCB1: an international, open-label, phase 2 basket study. Lancet Oncol. 21, 1423–1432 (2020).

    Article  CAS  PubMed  Google Scholar 

  168. Chi, S. N. et al. Phase I study of tazemetostat, an enhancer of zeste homolog-2 inhibitor, in pediatric pts with relapsed/refractory integrase interactor 1-negative tumors. J. Clin. Oncol. 38, 10525 (2020).

    Article  Google Scholar 

  169. Chi, S. N. et al. Tazemetostat for tumors harboring SMARCB1/SMARCA4 or EZH2 alterations: results from NCI-COG pediatric MATCH APEC1621C. J. Natl Cancer Inst. 115, 1355–1363 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Rosen, E. Y., Shukla, N. N. & Glade Bender, J. L. EZH2 inhibition: it’s all about the context. J. Natl Cancer Inst. 115, 1246–1248 (2023).

    Article  PubMed  Google Scholar 

  171. Drosos, Y. et al. NSD1 mediates antagonism between SWI/SNF and polycomb complexes and is required for transcriptional activation upon EZH2 inhibition. Mol. Cell 82, 2472–2489.e2478 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kazansky, Y. et al. Overcoming clinical resistance to EZH2 inhibition using rational epigenetic combination therapy. Cancer Discov., https://doi.org/10.1158/2159-8290-23-0110 (2024).

    Article  PubMed  Google Scholar 

  173. Torchia, J. et al. Integrated (epi)-genomic analyses identify subgroup-specific therapeutic targets in CNS rhabdoid tumors. Cancer Cell 30, 891–908 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Shinohara, H. et al. Dual targeting of EZH1 and EZH2 for the treatment of malignant rhabdoid tumors. Mol. Ther. Oncolytics 27, 14–25 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Xu, B. et al. Selective inhibition of EZH2 and EZH1 enzymatic activity by a small molecule suppresses MLL-rearranged leukemia. Blood 125, 346–357 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Honma, D. et al. Novel orally bioavailable EZH1/2 dual inhibitors with greater antitumor efficacy than an EZH2 selective inhibitor. Cancer Sci. 108, 2069–2078 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Xu, K. et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science 338, 1465–1469 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Zhao, Y. et al. EZH2 cooperates with gain-of-function p53 mutants to promote cancer growth and metastasis. EMBO J. 38, e99599 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Kim, J. et al. Polycomb- and methylation-independent roles of EZH2 as a transcription activator. Cell Rep. 25, 2808–2820.e2804 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Ma, A. et al. Discovery of a first-in-class EZH2 selective degrader. Nat. Chem. Biol. 16, 214–222 (2020).

    Article  CAS  PubMed  Google Scholar 

  181. Hsu, J. H.-R. et al. EED-targeted PROTACs degrade EED, EZH2, and SUZ12 in the PRC2 complex. Cell Chem. Biol. 27, 41–46.e17 (2020).

    Article  CAS  PubMed  Google Scholar 

  182. Liu, Z. et al. Design and synthesis of EZH2-based PROTACs to degrade the PRC2 complex for targeting the noncatalytic activity of EZH2. J. Med. Chem. 64, 2829–2848 (2021).

    Article  CAS  PubMed  Google Scholar 

  183. Velez, J., Kaniskan, H. Ü. & Jin, J. Recent advances in developing degraders & inhibitors of lysine methyltransferases. Curr. Opin. Chem. Biol. 76, 102356 (2023).

    Article  CAS  PubMed  Google Scholar 

  184. Jeong, Y. et al. Overcoming the therapeutic limitations of EZH2 inhibitors in Burkitt’s lymphoma: a comprehensive study on the combined effects of MS1943 and Ibrutinib. Front. Oncol. 13, 1252658 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Tu, Y. et al. Design, synthesis, and evaluation of VHL-based EZH2 degraders to enhance therapeutic activity against lymphoma. J. Med. Chem. 64, 10167–10184 (2021).

    Article  CAS  PubMed  Google Scholar 

  186. Zhang, C. & Li, H. Molecular targeted therapies for pediatric atypical teratoid/rhabdoid tumors. Pediatr. Investig. 6, 111–122 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Wanior, M., Kramer, A., Knapp, S. & Joerger, A. C. Exploiting vulnerabilities of SWI/SNF chromatin remodelling complexes for cancer therapy. Oncogene 40, 3637–3654 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Centore, R. C., Sandoval, G. J., Soares, L. M. M., Kadoch, C. & Chan, H. M. Mammalian SWI/SNF chromatin remodeling complexes: emerging mechanisms and therapeutic strategies. Trends Genet. 36, 936–950 (2020).

    Article  CAS  PubMed  Google Scholar 

  189. Xue, Y. et al. CDK4/6 inhibitors target SMARCA4-determined cyclin D1 deficiency in hypercalcemic small cell carcinoma of the ovary. Nat. Commun. 10, 558 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Xue, Y. et al. SMARCA4 loss is synthetic lethal with CDK4/6 inhibition in non-small cell lung cancer. Nat. Commun. 10, 557 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Schubert, N. A. et al. Target actionability review to evaluate CDK4/6 as a therapeutic target in paediatric solid and brain tumours. Eur. J. Cancer 170, 196–208 (2022).

    Article  CAS  PubMed  Google Scholar 

  192. Geoerger, B. et al. A phase I study of the CDK4/6 inhibitor ribociclib (LEE011) in pediatric patients with malignant rhabdoid tumors, neuroblastoma, and other solid tumors. Clin. Cancer Res. 23, 2433–2441 (2017).

    Article  CAS  PubMed  Google Scholar 

  193. Wu, C. et al. Targeting AURKA-CDC25C axis to induce synthetic lethality in ARID1A-deficient colorectal cancer cells. Nat. Commun. 9, 3212 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Lee, S., Cimica, V., Ramachandra, N., Zagzag, D. & Kalpana, G. V. Aurora A is a repressed effector target of the chromatin remodeling protein INI1/hSNF5 required for rhabdoid tumor cell survival. Cancer Res. 71, 3225–3235 (2011).

    Article  CAS  PubMed  Google Scholar 

  195. Tagal, V. et al. SMARCA4-inactivating mutations increase sensitivity to Aurora kinase A inhibitor VX-680 in non-small cell lung cancers. Nat. Commun. 8, 14098 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Mou, P. K. et al. Aurora kinase A, a synthetic lethal target for precision cancer medicine. Exp. Mol. Med. 53, 835–847 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Rodriguez Freixinos, V. et al. Antitumor activity, safety and predictive biomarker results of ENMD-2076 administered to patients (pts) with recurrent ovarian clear cell carcinoma (OCCC): a trial of the Princess Margaret Phase II Consortium. J. Clin. Oncol. 34, 5564–5564 (2016).

    Article  Google Scholar 

  198. Upadhyaya, S. et al. Phase II study of alisertib as a single agent in recurrent or progressive atypical teratoid rhabdoid tumors. J. Clin. Oncol. 38, 10542 (2020).

    Article  Google Scholar 

  199. Adhikari, B. et al. PROTAC-mediated degradation reveals a non-catalytic function of AURORA-A kinase. Nat. Chem. Biol. 16, 1179–1188 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Oberlick, E. M. et al. Small-molecule and CRISPR screening converge to reveal receptor tyrosine kinase dependencies in pediatric rhabdoid tumors. Cell Rep. 28, 2331–2344 e2338 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Miller, R. E. et al. Synthetic lethal targeting of ARID1A-mutant ovarian clear cell tumors with dasatinib. Mol. Cancer Ther. 15, 1472–1484 (2016).

    Article  CAS  PubMed  Google Scholar 

  202. Lang, J. D. et al. Ponatinib shows potent antitumor activity in small cell carcinoma of the ovary hypercalcemic type (SCCOHT) through multikinase inhibition. Clin. Cancer Res. 24, 1932–1943 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. de Miguel, F. J. et al. Mammalian SWI/SNF chromatin remodeling complexes promote tyrosine kinase inhibitor resistance in EGFR-mutant lung cancer. Cancer Cell 41, 1516–1534 e1519 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Sadek, M., Sheth, A., Zimmerman, G., Hays, E. & Vélez-Cruz, R. The role of SWI/SNF chromatin remodelers in the repair of DNA double strand breaks and cancer therapy. Front. Cell Dev. Biol. 10, 1071786 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Shen, J. et al. ARID1A deficiency impairs the DNA damage checkpoint and sensitizes cells to PARP inhibitors. Cancer Discov. 5, 752–767 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Chen, Y. et al. A PARP1–BRG1–SIRT1 axis promotes HR repair by reducing nucleosome density at DNA damage sites. Nucleic Acids Res. 47, 8563–8580 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Kakarougkas, A. et al. Requirement for PBAF in transcriptional repression and repair at DNA breaks in actively transcribed regions of chromatin. Mol. Cell 55, 723–732 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Park, Y. et al. Loss of ARID1A in tumor cells renders selective vulnerability to combined ionizing radiation and PARP inhibitor therapy. Clin. Cancer Res. 25, 5584–5594 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Williamson, C. T. et al. ATR inhibitors as a synthetic lethal therapy for tumours deficient in ARID1A. Nat. Commun. 7, 13837 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Curtin, N. J. & Szabo, C. Poly(ADP-ribose) polymerase inhibition: past, present and future. Nat. Rev. Drug Discov. 19, 711–736 (2020).

    Article  CAS  PubMed  Google Scholar 

  211. Szczepanski, A. et al. A SWI/SNF-dependent transcriptional regulation mediated by POU2AF2/C11orf53 at enhancer. Nat. Commun. 15, 2067 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. He, T. et al. Targeting the mSWI/SNF complex in POU2F–POU2AF transcription factor-driven malignancies. Preprint at bioRxiv https://doi.org/10.1101/2024.01.22.576669 (2024).

  213. Rago, F. et al. The discovery of SWI/SNF chromatin remodeling activity as a novel and targetable dependency in uveal melanoma. Mol. Cancer Ther. 19, 2186–2195 (2020).

    Article  CAS  PubMed  Google Scholar 

  214. Rago, F. et al. Exquisite sensitivity to dual BRG1/BRM ATPase inhibitors reveals broad SWI/SNF dependencies in acute myeloid leukemia. Mol. Cancer Res. 20, 361–372 (2022).

    Article  CAS  PubMed  Google Scholar 

  215. Mo, Y. et al. Epigenome programming by H3.3K27M mutation creates a dependence of pediatric glioma on SMARCA4. Cancer Discov. 12, 2906–2929 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Bradner, J. E., Hnisz, D. & Young, R. A. Transcriptional addiction in cancer. Cell 168, 629–643 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Henley, M. J. & Koehler, A. N. Advances in targeting ‘undruggable’ transcription factors with small molecules. Nat. Rev. Drug Discov. 20, 669–688 (2021).

    Article  CAS  PubMed  Google Scholar 

  218. Chambers, C. et al. SWI/SNF blockade disrupts PU.1-directed enhancer programs in normal hematopoietic cells and acute myeloid leukemia. Cancer Res. 83, 983–996 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Warren, F. et al. BRG1/BRM inhibitor targets AML stem cells and exerts superior preclinical efficacy combined with BET or Menin inhibitor. Blood 143, 2059–2072 (2024).

    Article  Google Scholar 

  220. Barisic, D., Stadler, M. B., Iurlaro, M. & Schübeler, D. Mammalian ISWI and SWI/SNF selectively mediate binding of distinct transcription factors. Nature 569, 136–140 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Martin, B. J. E. et al. Global identification of SWI/SNF targets reveals compensation by EP400. Cell 186, 5290–5307.e5226 (2023). Defines a compensatory mechanism of chromatin regulation upon inhibition of SWI/SNF complexes.

    Article  CAS  PubMed  Google Scholar 

  222. Taherbhoy, A. Targeting Transcription Factor – BAF Interactions in Cancer. https://foghorntx.com/wp-content/uploads/2023/04/Taherbhoy_DDC_2023_slides.pdf (Drug Discovery Chemistry, San Diego, CA, 2023).

  223. Sharma, S. V. et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Leonetti, A. et al. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br. J. Cancer 121, 725–737 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Vinogradova, M. et al. An inhibitor of KDM5 demethylases reduces survival of drug-tolerant cancer cells. Nat. Chem. Biol. 12, 531–538 (2016).

    Article  CAS  PubMed  Google Scholar 

  226. Wang, N., Ma, T. & Yu, B. Targeting epigenetic regulators to overcome drug resistance in cancers. Signal Transduct. Target. Ther. 8, 69 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Zebley, C. C. & Youngblood, B. Mechanisms of T cell exhaustion guiding next-generation immunotherapy. Trends Cancer 8, 726–734 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Sen, D. R. et al. The epigenetic landscape of T cell exhaustion. Science 354, 1165–1169 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Philip, M. et al. Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature 545, 452–456 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Gennert, D. G. et al. Dynamic chromatin regulatory landscape of human CAR T cell exhaustion. Proc. Natl Acad. Sci. USA 118, e2104758118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Prinzing, B. et al. Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor activity. Sci. Transl. Med. 13, eabh0272 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Fraietta, J. A. et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 558, 307–312 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Jain, N. et al. TET2 guards against unchecked BATF3-induced CAR T cell expansion. Nature 615, 315–322 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Guo, A. et al. cBAF complex components and MYC cooperate early in CD8+ T cell fate. Nature 607, 135–141 (2022). Identification of SWI/SNF as a crucial regulator of T cell fate that rationalizes exploration of the use of SWI/SNF inhibitors to enhance response to immunotherapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Battistello, E. et al. Stepwise activities of mSWI/SNF family chromatin remodeling complexes direct T cell activation and exhaustion. Mol. Cell 83, 1216–1236 e1212 (2023).

    Article  CAS  PubMed  Google Scholar 

  236. Baxter, A. E. et al. The SWI/SNF chromatin remodeling complexes BAF and PBAF differentially regulate epigenetic transitions in exhausted CD8+ T cells. Immunity 56, 1320–1340 e1310 (2023).

    Article  CAS  PubMed  Google Scholar 

  237. Belk, J. A. et al. Genome-wide CRISPR screens of T cell exhaustion identify chromatin remodeling factors that limit T cell persistence. Cancer Cell 40, 768–786 e767 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Rebendenne, A. et al. Bidirectional genome-wide CRISPR screens reveal host factors regulating SARS-CoV-2, MERS-CoV and seasonal HCoVs. Nat. Genet. 54, 1090–1102 (2022).

    Article  CAS  PubMed  Google Scholar 

  239. Wei, J. et al. Pharmacological disruption of mSWI/SNF complex activity restricts SARS-CoV-2 infection. Nat. Genet. 55, 471–483 (2023). Demonstrates that SWI/SNF complexes are essential host factors during SARS-CoV-2 infection, raising the question of whether SWI/SNF inhibitors could be useful in treating infectious diseases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Hong, K. B. & An, H. Degrader–antibody conjugates: emerging new modality. J. Med. Chem. 66, 140–148 (2023).

    Article  CAS  PubMed  Google Scholar 

  241. Shen, F. et al. A cell-permeant nanobody-based degrader that induces fetal hemoglobin. ACS Cent. Sci. 8, 1695–1703 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Yin, M. et al. Evolution of nanobodies specific for BCL11A. Proc. Natl Acad. Sci. USA 120, e2218959120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Gourisankar, S. et al. Rewiring cancer drivers to activate apoptosis. Nature 620, 417–425 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Lionel, C., David, M., Brenna, S., David, L. L. & Asad, M. T. Hijacking the transcriptional activation potential of the BAF complex via induced proximity. Preprint at bioRxiv https://doi.org/10.1101/2023.12.18.572217 (2023).

  245. Sen, P. et al. The SnAC domain of SWI/SNF is a histone anchor required for remodeling. Mol. Cell Biol. 33, 360–370 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Allen, M. D., Freund, S. M., Zinzalla, G. & Bycroft, M. The SWI/SNF subunit INI1 contains an N-terminal winged helix DNA binding domain that is a target for mutations in schwannomatosis. Structure 23, 1344–1349 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Howard, T. P. et al. MDM2 and MDM4 are therapeutic vulnerabilities in malignant rhabdoid tumors. Cancer Res. 79, 2404–2414 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Hong, A. L. et al. Renal medullary carcinomas depend upon SMARCB1 loss and are sensitive to proteasome inhibition. eLife 8, e44161 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Howard, T. P. et al. Rhabdoid tumors are sensitive to the protein-translation inhibitor homoharringtonine. Clin. Cancer Res. 26, 4995–5006 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Soldi, R. et al. The novel reversible LSD1 inhibitor SP-2577 promotes anti-tumor immunity in SWItch/Sucrose-NonFermentable (SWI/SNF) complex mutated ovarian cancer. PLoS ONE 15, e0235705 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Lissanu Deribe, Y. et al. Mutations in the SWI/SNF complex induce a targetable dependence on oxidative phosphorylation in lung cancer. Nat. Med. 24, 1047–1057 (2018).

    Article  CAS  PubMed  Google Scholar 

  252. Shorstova, T. et al. SWI/SNF-compromised cancers are susceptible to bromodomain inhibitors. Cancer Res. 79, 2761–2774 (2019).

    Article  CAS  PubMed  Google Scholar 

  253. Ehrenhöfer-Wölfer, K. et al. SMARCA2-deficiency confers sensitivity to targeted inhibition of SMARCA4 in esophageal squamous cell carcinoma cell lines. Sci. Rep. 9, 11661 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Rehman, H. et al. ARID1A-deficient bladder cancer is dependent on PI3K signaling and sensitive to EZH2 and PI3K inhibitors. JCI Insight 7, e155899 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Bitler, B. G. et al. ARID1A-mutated ovarian cancers depend on HDAC6 activity. Nat. Cell Biol. 19, 962–973 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Ogiwara, H. et al. Targeting the vulnerability of glutathione metabolism in ARID1A-deficient cancers. Cancer Cell 35, 177–190.e178 (2019).

    Article  CAS  PubMed  Google Scholar 

  257. Jones, S. E. et al. ATR is a therapeutic target in synovial sarcoma. Cancer Res. 77, 7014–7026 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Banito, A. et al. The SS18–SSX oncoprotein hijacks KDM2B-PRC1.1 to drive synovial sarcoma. Cancer Cell 33, 527–541.e528 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Li, Y. et al. The emerging role of ISWI chromatin remodeling complexes in cancer. J. Exp. Clin. Cancer Res. 40, 346 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Whitehouse, I., Rando, O. J., Delrow, J. & Tsukiyama, T. Chromatin remodelling at promoters suppresses antisense transcription. Nature 450, 1031–1035 (2007).

    Article  CAS  PubMed  Google Scholar 

  261. Kishtagari, A. et al. A first-in-class inhibitor of ISWI-mediated (ATP-dependent) transcription repression releases terminal-differentiation in AML cells while sparing normal hematopoiesis. Blood 132, 216 (2018).

    Article  Google Scholar 

  262. Park, S. G., Lee, D., Seo, H. R., Lee, S. A. & Kwon, J. Cytotoxic activity of bromodomain inhibitor NVS-CECR2-1 on human cancer cells. Sci. Rep. 10, 16330 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Bevill, S. M. et al. GSK2801, a BAZ2/BRD9 bromodomain inhibitor, synergizes with BET inhibitors to induce apoptosis in triple-negative breast cancer. Mol. Cancer Res. 17, 1503–1518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Kirberger, S. E. et al. Selectivity, ligand deconstruction, and cellular activity analysis of a BPTF bromodomain inhibitor. Org. Biomol. Chem. 17, 2020–2027 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Zahid, H. et al. New design rules for developing potent cell-active inhibitors of the nucleosome remodeling factor (NURF) via BPTF bromodomain inhibition. J. Med. Chem. 64, 13902–13917 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Manning, B. J. & Yusufzai, T. The ATP-dependent chromatin remodeling enzymes CHD6, CHD7, and CHD8 exhibit distinct nucleosome binding and remodeling activities. J. Biol. Chem. 292, 11927–11936 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Quan, J. & Yusufzai, T. The tumor suppressor chromodomain helicase DNA-binding protein 5 (CHD5) remodels nucleosomes by unwrapping. J. Biol. Chem. 289, 20717–20726 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Bagchi, A. et al. CHD5 is a tumor suppressor at human 1p36. Cell 128, 459–475 (2007).

    Article  CAS  PubMed  Google Scholar 

  269. Burkhardt, L. et al. CHD1 is a 5q21 tumor suppressor required for ERG rearrangement in prostate cancer. Cancer Res. 73, 2795–2805 (2013).

    Article  CAS  PubMed  Google Scholar 

  270. Zhao, D. et al. Synthetic essentiality of chromatin remodelling factor CHD1 in PTEN-deficient cancer. Nature 542, 484–488 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Heshmati, Y. et al. Identification of CHD4 as a potential therapeutic target of acute myeloid leukemia. Blood 128, 1648 (2016).

    Article  Google Scholar 

  272. Sperlazza, J. et al. Depletion of the chromatin remodeler CHD4 sensitizes AML blasts to genotoxic agents and reduces tumor formation. Blood 126, 1462–1472 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Xia, L. et al. CHD4 has oncogenic functions in initiating and maintaining epigenetic suppression of multiple tumor suppressor genes. Cancer Cell 31, 653–668.e657 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Cheng, W., Su, Y. & Xu, F. CHD1L: a novel oncogene. Mol. Cancer 12, 170 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  275. Abbott, J. M. et al. First-in-class inhibitors of oncogenic CHD1L with preclinical activity against colorectal cancer. Mol. Cancer Ther. 19, 1598–1612 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Prigaro, B. J. et al. Design, synthesis, and biological evaluation of the first inhibitors of oncogenic CHD1L. J. Med. Chem. 65, 3943–3961 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Farnung, L., Vos, S. M., Wigge, C. & Cramer, P. Nucleosome–Chd1 structure and implications for chromatin remodelling. Nature 550, 539–542 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Eustermann, S. et al. Structural basis for ATP-dependent chromatin remodelling by the INO80 complex. Nature 556, 386–390 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Ayala, R. et al. Structure and regulation of the human INO80–nucleosome complex. Nature 556, 391–395 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Pradhan, S. K. et al. EP400 deposits H3.3 into promoters and enhancers during gene activation. Mol. Cell 61, 27–38 (2016).

    Article  CAS  PubMed  Google Scholar 

  281. Mizuguchi, G. et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303, 343–348 (2004).

    Article  CAS  PubMed  Google Scholar 

  282. Zhang, S. et al. INO80 is required for oncogenic transcription and tumor growth in non-small cell lung cancer. Oncogene 36, 1430–1439 (2017).

    Article  CAS  PubMed  Google Scholar 

  283. Zhou, B. et al. INO80 governs superenhancer-mediated oncogenic transcription and tumor growth in melanoma. Genes Dev. 30, 1440–1453 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Prendergast, L. et al. Resolution of R-loops by INO80 promotes DNA replication and maintains cancer cell proliferation and viability. Nat. Commun. 11, 4534 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Lee, S. A. et al. INO80 haploinsufficiency inhibits colon cancer tumorigenesis via replication stress-induced apoptosis. Oncotarget 8, 115041–115053 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  286. Remillard, D. et al. Chemoproteomics enabled discovery of selective probes for NuA4 factor BRD8. ACS Chem. Biol. 16, 2185–2192 (2021).

    Article  CAS  PubMed  Google Scholar 

  287. Londregan, A. T. et al. Discovery of high-affinity small-molecule binders of the epigenetic reader YEATS4. J. Med. Chem. 66, 460–472 (2023).

    Article  CAS  PubMed  Google Scholar 

  288. Coffey, K. et al. Characterisation of a Tip60 specific inhibitor, NU9056, in prostate cancer. PLoS ONE 7, e45539 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the National Cancer Institute (NCI) for their funding support (R01 CA113794, R01 CA172152 and R01 CA273455 to C.W.M.R.). The work of C.W.M.R. is also supported by the American Lebanese Syrian Associated Charities (ALSAC) of St. Jude Children’s Research Hospital (SJCRH), including funding from the SJCRH Collaborative Research Consortium on Chromatin Regulation in Paediatric Cancer, and grants from Cure AT/RT Now, the Avalanna Fund and the Garrett B. Smith Foundation. H.A.M. is supported by the St. Jude Graduate School of Biomedical Sciences and the Ruth L. Kirschstein National Research Service Award (F31 CA278355). The authors thank members of the Roberts lab, A. Durbin (SJCRH) and E. Wickman (SJCRH) for insightful discussions and V. Shanker (SJCRH) for scientific editing of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Charles W. M. Roberts.

Ethics declarations

Competing interests

C.W.M.R. is a scientific advisory board member of Exo Therapeutics, unrelated to this manuscript.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks the anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrials.gov: https://clinicaltrials.gov

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malone, H.A., Roberts, C.W.M. Chromatin remodellers as therapeutic targets. Nat Rev Drug Discov 23, 661–681 (2024). https://doi.org/10.1038/s41573-024-00978-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-024-00978-5

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer