Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The state of the art in secondary pharmacology and its impact on the safety of new medicines

An Author Correction to this article was published on 17 June 2024

This article has been updated

Abstract

Secondary pharmacology screening of investigational small-molecule drugs for potentially adverse off-target activities has become standard practice in pharmaceutical research and development, and regulatory agencies are increasingly requesting data on activity against targets with recognized adverse effect relationships. However, the screening strategies and target panels used by pharmaceutical companies may vary substantially. To help identify commonalities and differences, as well as to highlight opportunities for further optimization of secondary pharmacology assessment, we conducted a broad-ranging survey across 18 companies under the auspices of the DruSafe leadership group of the International Consortium for Innovation and Quality in Pharmaceutical Development. Based on our analysis of this survey and discussions and additional research within the group, we present here an overview of the current state of the art in secondary pharmacology screening. We discuss best practices, including additional safety-associated targets not covered by most current screening panels, and present approaches for interpreting and reporting off-target activities. We also provide an assessment of the safety impact of secondary pharmacology screening, and a perspective on opportunities and challenges in this rapidly developing field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Current industry practice for secondary pharmacology screening.
Fig. 2: Selectivity of kinase-targeted and non-kinase-targeted compounds against kinases.
Fig. 3: Composition of the small-molecule portfolio of phase I–III drug candidates with respect to primary target class for the top ten large pharmaceutical companies in 2023.

Similar content being viewed by others

Change history

References

  1. Jalencas, X. & Mestres, J. On the origins of drug polypharmacology. MedChemComm 4, 80–87 (2013).

    Article  CAS  Google Scholar 

  2. Finan, C. et al. The druggable genome and support for target identification and validation in drug development. Sci. Transl Med. 9, eaag1166 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dai, S. X., Li, W. X., Li, G. H. & Huang, J. F. Proteome-wide prediction of targets for aspirin: new insight into the molecular mechanism of aspirin. PeerJ 4, e1791 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shapiro, P. A promiscuous kinase inhibitor reveals secrets to cancer cell survival. J. Biol. Chem. 294, 8674–8675 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bowes, J. et al. Reducing safety-related drug attrition: the use of in vitro pharmacological profiling. Nat. Rev. Drug Discov. 11, 909–922 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Lynch, J. J. III, Van Vleet, T. R., Mittelstadt, S. W. & Blomme, E. A. G. Potential functional and pathological side effects related to off-target pharmacological activity. J. Pharmacol. Toxicol. Methods 87, 108–126 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Bendels, S. et al. Safety screening in early drug discovery: an optimized assay panel. J. Pharmacol. Toxicol. Methods 99, 106609 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Cook, D. et al. Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nat. Rev. Drug Discov. 13, 419–431 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Guengerich, F. P. Mechanisms of drug toxicity and relevance to pharmaceutical development. Drug Metab. Pharmacokinet. 26, 3–14 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Weaver, R. J. & Valentin, J. P. Today’s challenges to de-risk and predict drug safety in human “Mind-the-Gap. Toxicol. Sci. 167, 307–321 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Hishigaki, H. & Kuhara, S. hERGAPDbase: a database documenting hERG channel inhibitory potentials and APD-prolongation activities of chemical compounds. Database 2011, bar017 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gintant, G., Sager, P. T. & Stockbridge, N. Evolution of strategies to improve preclinical cardiac safety testing. Nat. Rev. Drug Discov. 15, 457–471 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Cavero, I. & Guillon, J. M. Safety pharmacology assessment of drugs with biased 5-HT(2B) receptor agonism mediating cardiac valvulopathy. J. Pharmacol. Toxicol. Methods 69, 150–161 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Keller, D. A., Brennan, R. J. & Leach, K. L. in Antitargets and Drug Safety (eds Urbán, L., Patel, V. F. & Vaz, R. J.) 365–400 (Wiley, 2015).

  15. Hasinoff, B. B. & Patel, D. The lack of target specificity of small molecule anticancer kinase inhibitors is correlated with their ability to damage myocytes in vitro. Toxicol. Appl. Pharmacol. 249, 132–139 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Hasinoff, B. B. The cardiotoxicity and myocyte damage caused by small molecule anticancer tyrosine kinase inhibitors is correlated with lack of target specificity. Toxicol. Appl. Pharmacol. 244, 190–195 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Force, T. & Kolaja, K. L. Cardiotoxicity of kinase inhibitors: the prediction and translation of preclinical models to clinical outcomes. Nat. Rev. Drug Discov. 10, 111–126 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Urbán, L., Patel, V. F. & Vaz, R. J. (eds) Antitargets and Drug Safety (Wiley, 2015).

  19. Deaton, A. M. et al. Rationalizing secondary pharmacology screening using human genetic and pharmacological evidence. Toxicol. Sci. 167, 593–603 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Dodson, A. et al. Aggregation and analysis of secondary pharmacology data from investigational new drug submissions at the US Food and Drug Administration. J. Pharmacol. Toxicol. Methods 111, 107098 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Papoian, T. et al. Secondary pharmacology data to assess potential off-target activity of new drugs: a regulatory perspective. Nat. Rev. Drug Discov. 14, 294 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Papoian, T. et al. Regulatory forum review*: utility of in vitro secondary pharmacology data to assess risk of drug-induced valvular heart disease in humans: regulatory considerations. Toxicol. Pathol. 45, 381–388 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Safety Testing of Drug Metabolites: Guidance for Industry. (FDA, 2020).

  24. Valentin, J. P. et al. In vitro secondary pharmacological profiling: an IQ-DruSafe industry survey on current practices. J. Pharmacol. Toxicol. Methods 93, 7–14 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Strauss, D. G., Wu, W. W., Li, Z., Koerner, J. & Garnett, C. Translational models and tools to reduce clinical trials and improve regulatory decision making for QTc and proarrhythmia risk (ICH E14/S7B Updates). Clin. Pharmacol. Ther. 109, 319–333 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Vargas, H. M. et al. Time for a fully integrated nonclinical-clinical risk assessment to streamline QT prolongation liability determinations: a pharma industry perspective. Clin. Pharmacol. Ther. 109, 310–318 (2021).

    Article  PubMed  Google Scholar 

  28. Harvey, R. D. in Muscarinic Receptors. Handbook of Experimental Pharmacology, Vol. 208 (eds Fryer, A., Christopoulos, A. & Nathanson, N.) 299–316 (Springer, 2012).

  29. Nguyen, T., Thomas, B. F. & Zhang, Y. Overcoming the psychiatric side effects of the cannabinoid CB1 receptor antagonists: current approaches for therapeutics development. Curr. Top. Med. Chem. 19, 1418–1435 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. De Vries, T. J. & Shippenberg, T. S. Neural systems underlying opiate addiction. J. Neurosci. 22, 3321–3325 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lucas, J. A., Miller, A. T., Atherly, L. O. & Berg, L. J. The role of Tec family kinases in T cell development and function. Immunol. Rev. 191, 119–138 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Popa-Nita, O., Marois, L., Paré, G. & Naccache, P. H. Crystal-induced neutrophil activation: X. proinflammatory role of the tyrosine kinase Tec. Arthritis Rheum. 58, 1866–1876 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Greenwell, I. B., Ip, A. & Cohen, J. B. PI3K inhibitors: understanding toxicity mechanisms and management. Oncology 31, 821–828 (2017).

    PubMed  Google Scholar 

  34. James, M. O. et al. Therapeutic applications of dichloroacetate and the role of glutathione transferase zeta-1. Pharmacol. Ther. 170, 166–180 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Freeman-Cook, K. et al. Expanding control of the tumor cell cycle with a CDK2/4/6 inhibitor. Cancer Cell 39, 1404–1421.e11 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Howell, K. R., Floyd, K. & Law, A. J. PKBγ/AKT3 loss-of-function causes learning and memory deficits and deregulation of AKT/mTORC2 signaling: relevance for schizophrenia. PLoS ONE 12, e0175993 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bavetsias, V. & Linardopoulos, S. Aurora kinase inhibitors: current status and outlook. Front. Oncol. 5, 278 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Brianso, F., Carrascosa, M. C., Oprea, T. I. & Mestres, J. Cross-pharmacology analysis of G protein-coupled receptors. Curr. Top. Med. Chem. 11, 1956–1963 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Olney, J. W. et al. NMDA antagonist neurotoxicity: mechanism and prevention. Science 254, 1515–1518 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Kenna, J. G. et al. Can bile salt export pump inhibition testing in drug discovery and development reduce liver injury risk? An international transporter consortium perspective. Clin. Pharmacol. Ther. 104, 916–932 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fabian, M. A. et al. A small molecule–kinase interaction map for clinical kinase inhibitors. Nat. Biotechnol. 23, 329–336 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Hanson, S. M. et al. What makes a kinase promiscuous for inhibitors? Cell Chem. Biol. 26, 390–399 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dy, G. K. & Adjei, A. A. Understanding, recognizing, and managing toxicities of targeted anticancer therapies. CA Cancer J. Clin. 63, 249–279 (2013).

    Article  PubMed  Google Scholar 

  44. Hartmann, J. T., Haap, M., Kopp, H. G. & Lipp, H. P. Tyrosine kinase inhibitors - a review on pharmacology, metabolism and side effects. Curr. Drug Metab. 10, 470–481 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Grossman, M. & Adler, E. in Protein Kinases — Promising Targets for Anticancer Drug Research (ed. Singh R. K.) Ch. 2 (IntechOpen, 2021).

  46. Shah, D. R., Shah, R. R. & Morganroth, J. Tyrosine kinase inhibitors: their on-target toxicities as potential indicators of efficacy. Drug Saf. 36, 413–426 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Chen, J. et al. Expression and function of the epidermal growth factor receptor in physiology and disease. Physiol. Rev. 96, 1025–1069 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Gurule, N. J. & Heasley, L. E. Linking tyrosine kinase inhibitor-mediated inflammation with normal epithelial cell homeostasis and tumor therapeutic responses. Cancer Drug Resist. 1, 118–125 (2018).

    PubMed  Google Scholar 

  49. Solassol, I., Pinguet, F. & Quantin, X. FDA- and EMA-approved tyrosine kinase inhibitors in advanced EGFR-mutated non-small cell lung cancer: safety, tolerability, plasma concentration monitoring, and management. Biomolecules 9, 668 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Galanis, A. & Levis, M. Inhibition of c-Kit by tyrosine kinase inhibitors. Haematologica 100, e77–e79 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Livingstone, E., Zimmer, L., Vaubel, J. & Schadendorf, D. BRAF, MEK and KIT inhibitors for melanoma: adverse events and their management. Chin. Clin. Oncol. 3, 29 (2014).

    PubMed  Google Scholar 

  52. Schmidinger, M. Understanding and managing toxicities of vascular endothelial growth factor (VEGF) inhibitors. EJC Suppl. 11, 172–191 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jonker, D. J. et al. A phase I study to determine the safety, pharmacokinetics and pharmacodynamics of a dual VEGFR and FGFR inhibitor, brivanib, in patients with advanced or metastatic solid tumors. Ann. Oncol. 22, 1413–1419 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Park, S. et al. Biomarker-driven phase 2 umbrella trial study for patients with recurrent small cell lung cancer failing platinum-based chemotherapy. Cancer 126, 4002–4012 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Tirronen, A. et al. The ablation of VEGFR-1 signaling promotes pressure overload-induced cardiac dysfunction and sudden death. Biomolecules 11, 452 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lamore, S. D. et al. Deconvoluting kinase inhibitor induced cardiotoxicity. Toxicol. Sci. 158, 213–226 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jagasia, M. et al. ROCK2 inhibition with belumosudil (KD025) for the treatment of chronic graft-versus-host disease. J. Clin. Oncol. 39, 1888–1898 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hartmann, S., Ridley, A. J. & Lutz, S. The function of Rho-associated kinases ROCK1 and ROCK2 in the pathogenesis of cardiovascular disease. Front. Pharmacol. 6, 276 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zuhl, A. M. et al. Chemoproteomic profiling reveals that cathepsin D off-target activity drives ocular toxicity of β-secretase inhibitors. Nat. Commun. 7, 13042 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Martin, K. et al. Pharmacological inhibition of MALT1 protease leads to a progressive IPEX-like pathology. Front. Immunol. 11, 745 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Artero, A., Tarín, J. J. & Cano, A. The adverse effects of estrogen and selective estrogen receptor modulators on hemostasis and thrombosis. Semin. Thromb. Hemost. 38, 797–807 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Delgado, B. J. & Lopez-Ojeda, W. Estrogen (StatPearls, 2024).

  63. Jia, M., Dahlman-Wright, K. & Gustafsson, J. A. Estrogen receptor alpha and beta in health and disease. Best Pract. Res. Clin. Endocrinol. Metab. 29, 557–568 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. DIRECTIVE 2010/63/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 22 September 2010 on the protection of animals used for scientific purposes. OJEU https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:en:PDF (2010).

  65. FDA Modernization Act of 2021. https://www.congress.gov/bill/117th-congress/house-bill/2565?s=3&r=1 (2021).

  66. Jenkinson, S., Schmidt, F., Rosenbrier Ribeiro, L., Delaunois, A. & Valentin, J. P. A practical guide to secondary pharmacology in drug discovery. J. Pharmacol. Toxicol. Methods 105, 106869 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Armstrong, D. et al. in Pharmaceutical Sciences Encyclopedia (eds Gad S. C. et al.) 1–29 (Wiley, 2010).

  68. Redfern, W. et al. Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc. Res. 58, 32–45 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Rosenbrier Ribeiro, L. & Ian Storer, R. A semi-quantitative translational pharmacology analysis to understand the relationship between in vitro ENT1 inhibition and the clinical incidence of dyspnoea and bronchospasm. Toxicol. Appl. Pharmacol. 317, 41–50 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Redfern, W. S. et al. Safety pharmacology–a progressive approach. Fundam. Clin. Pharmacol. 16, 161–173 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. European Medicines Agency. ICH Topic S 7 A: Safety pharmacology studies for human pharmaceuticals. European Medicines Agency ema.europa.eu/en/documents/scientific-guideline/ich-s-7-safety-pharmacology-studies-human-pharmaceuticals-step-5_en.pdf (2001).

  72. ICH Expert Working Group. ICH harmonised tripartite guideline: The non-clinical evaluation of the potential for delayed ventricular repolarization (QT interval prolongation) by human pharmaceuticals. ICH S7B guideline https://database.ich.org/sites/default/files/S7B_Guideline.pdf (2005).

  73. Committee for Medicinal Products for Human Use. ICH guideline M4 (R4) on common technical document (CTD) for the registration of pharmaceuticals for human use - organisation of CTD. European Medicines Agency https://www.ema.europa.eu/documents/scientific-guideline/ich-guideline-m4-r4-common-technical-document-ctd-registration-pharmaceuticals-human-use_en.pdf (2021).

  74. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. ICH E14/S7B Implementation Working Group: Clinical and nonclinical evaluation of QT/QTc interval prolongation and proarrhythmic potential — Questions and Answers. ICH https://database.ich.org/sites/default/files/E14-S7B_QAs_Step4_2022_0221.pdf (2022).

  75. U.S. Department of Health and Human Services, Food and Drug Administration & Center for Drug Evaluation and Research. Assessment of Abuse Potential of Drugs: Guidance for Industry. FDA https://www.fda.gov/media/116739/download (2017).

  76. Harding, S. D. et al. The IUPHAR/BPS guide to PHARMACOLOGY in 2022: curating pharmacology for COVID-19, malaria and antibacterials. Nucleic Acids Res. 50, D1282–D1294 (2022).

    Article  CAS  PubMed  Google Scholar 

  77. Harmer, A. R., Valentin, J. P. & Pollard, C. E. On the relationship between block of the cardiac Na+ channel and drug-induced prolongation of the QRS complex. Br. J. Pharmacol. 164, 260–273 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mellor, H. R., Bell, A. R., Valentin, J. P. & Roberts, R. R. Cardiotoxicity associated with targeting kinase pathways in cancer. Toxicol. Sci. 120, 14–32 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Sameshima, T. et al. Small-scale panel comprising diverse gene family targets to evaluate compound promiscuity. Chem. Res. Toxicol. 33, 154–161 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Simon, I. A. et al. Ligand selectivity hotspots in serotonin GPCRs. Trends Pharmacol. Sci. 44, 978–990 (2023).

    Article  CAS  PubMed  Google Scholar 

  81. Center for Drug Evaluation and Research. Guidance for Industry: Suicidal Ideation and Behavior: prospective assessment of occurrence in clinical trials. FDA fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-suicidal-ideation-and-behavior-prospective-assessment-occurrence-clinical-trials (2012).

  82. Urban, L. et al. Translation of off-target effects: prediction of ADRs by integrated experimental and computational approach. Toxicol. Res. 3, 433–444 (2014).

    Article  CAS  Google Scholar 

  83. Center for Drug Evaluation and Research. Assessment of Pressor Effects of Drugs Guidance for Industry. FDA fda.gov/regulatory-information/search-fda-guidance-documents/assessment-pressor-effects-drugs-guidance-industry (2022).

  84. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. Testing for Carcinogenicity of Pharmaceuticals S1B(R1). ICH Database database.ich.org/sites/default/files/ICHS1B%28R1%29_Step4_Presentation_2022_0809.pdf (2022).

  85. Carss, K. J. et al. Using human genetics to improve safety assessment of therapeutics. Nat. Rev. Drug Discov. 22, 145–162 (2023).

    Article  CAS  PubMed  Google Scholar 

  86. Whitebread, S. et al. Secondary pharmacology: screening and interpretation of off-target activities – focus on translation. Drug Discov. Today 21, 1232–1242 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Paolini, G. V., Shapland, R. H., van Hoorn, W. P., Mason, J. S. & Hopkins, A. L. Global mapping of pharmacological space. Nat. Biotechnol. 24, 805–815 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Hresko, R. C. & Hruz, P. W. HIV protease inhibitors act as competitive inhibitors of the cytoplasmic glucose binding site of GLUTs with differing affinities for GLUT1 and GLUT4. PLoS ONE 6, e25237 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Conn, P. J., Christopoulos, A. & Lindsley, C. W. Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat. Rev. Drug Discov. 8, 41–54 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Fischer, G., Rossmann, M. & Hyvönen, M. Alternative modulation of protein-protein interactions by small molecules. Curr. Opin Biotechnol. 35, 78–85 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jones, L. H. et al. Targeted protein degraders: a call for collective action to advance safety assessment. Nat. Rev. Drug Discov. 21, 401–402 (2022).

    Article  CAS  PubMed  Google Scholar 

  92. Valeur, E. et al. New modalities for challenging targets in drug discovery. Angew. Chem. Int. Ed. 56, 10294–10323 (2017).

    Article  CAS  Google Scholar 

  93. Prachayasittikul, V. et al. Exploring the epigenetic drug discovery landscape. Expert Opin Drug Discov. 12, 345–362 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Blanco, M. J. & Gardinier, K. M. New chemical modalities and strategic thinking in early drug discovery. ACS Med. Chem. Lett. 11, 228–231 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sutton, C. W. The role of targeted chemical proteomics in pharmacology. Br. J. Pharmacol. 166, 457–475 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. van Esbroeck, A. C. M. et al. Activity-based protein profiling reveals off-target proteins of the FAAH inhibitor BIA 10-2474. Science 356, 1084–1087 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Freeth, J. & Soden, J. New advances in cell microarray technology to expand applications in target deconvolution and off-target screening. SLAS Discov. 25, 223–230 (2020).

    Article  PubMed  Google Scholar 

  98. Hasselgren, C. et al. in Chemoinformatics for Drug Discovery (ed. Bajorath, J.) 267–290 (Wiley, 2013).

  99. Raies, A. B. & Bajic, V. B. In silico toxicology: computational methods for the prediction of chemical toxicity. Wiley Interdiscip. Rev. Comput. Mol. Sci. 6, 147–172 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ietswaart, R. et al. Machine learning guided association of adverse drug reactions with in vitro target-based pharmacology. EBioMedicine 57, 102837 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Vamathevan, J. et al. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 18, 463–477 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Scott, C., Dodson, A., Saulnier, M., Snyder, K. & Racz, R. Analysis of secondary pharmacology assays received by the US Food and Drug Administration. J. Pharmacol. Toxicol. Methods 117, 107205 (2022).

    Article  CAS  PubMed  Google Scholar 

  103. Valentin, J. P. & Leishman, D. 2000–2023 over two decades of ICH S7A: has the time come for a revamp? Regul. Toxicol. Pharmacol. 139, 105368 (2023).

    Article  CAS  PubMed  Google Scholar 

  104. Valentin, J. P., Sibony, A., Rosseels, M. L. & Delaunois, A. “Appraisal of state-of-the-art” the 2021 distinguished service award of the safety pharmacology society: reflecting on the past to tackle challenges ahead. J. Pharmacol. Toxicol. Methods 123, 107269 (2023).

    Article  CAS  PubMed  Google Scholar 

  105. Pottel, J. et al. The activities of drug inactive ingredients on biological targets. Science 369, 403–413 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sipes, N. S. et al. Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem. Res. Toxicol. 26, 878–895 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bolden, J. E. et al. Inducible in vivo silencing of Brd4 identifies potential toxicities of sustained BET protein inhibition. Cell Rep. 8, 1919–1929 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wagoner, M. et al. Bromodomain and extraterminal (BET) domain inhibitors induce a loss of intestinal stem cells and villous atrophy. Toxicol. Lett. 229, S75–S76 (2014).

    Article  Google Scholar 

  109. Abbruzzese, G. et al. A European observational study to evaluate the safety and the effectiveness of safinamide in routine clinical practice: the SYNAPSES trial. J. Parkinsons Dis. 11, 187–198 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Blackwell, B. & Mabbitt, L. A. Tyramine in cheese related to hypertensive crises after monoamine-oxidase inhibition. Lancet 1, 938–940 (1965).

    Article  CAS  PubMed  Google Scholar 

  111. Finberg, J. P. & Rabey, J. M. Inhibitors of MAO-A and MAO-B in psychiatry and neurology. Front. Pharmacol. 7, 340 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gross, M. E. et al. Phase 2 trial of monoamine oxidase inhibitor phenelzine in biochemical recurrent prostate cancer. Prostate Cancer Prostatic Dis. 24, 61–68 (2021).

    Article  CAS  PubMed  Google Scholar 

  113. Woolley, M. L., Marsden, C. A. & Fone, K. C. 5-HT6 receptors. Curr. Drug. Targets CNS Neurol. Disord. 3, 59–79 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Boyce, M. et al. Effect of netazepide, a gastrin/CCK2 receptor antagonist, on gastric acid secretion and rabeprazole-induced hypergastrinaemia in healthy subjects. Br. J. Clin. Pharmacol. 79, 744–755 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Boyce, M., Warrington, S. & Black, J. Netazepide, a gastrin/CCK2 receptor antagonist, causes dose-dependent, persistent inhibition of the responses to pentagastrin in healthy subjects. Br. J. Clin. Pharmacol. 76, 689–698 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dufresne, M., Seva, C. & Fourmy, D. Cholecystokinin and gastrin receptors. Physiol. Rev. 86, 805–847 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Horinouchi, Y. et al. Reduced anxious behavior in mice lacking the CCK2 receptor gene. Eur. Neuropsychopharmacol. 14, 157–161 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Moore, A. R. et al. Netazepide, a gastrin receptor antagonist, normalises tumour biomarkers and causes regression of type 1 gastric neuroendocrine tumours in a nonrandomised trial of patients with chronic atrophic gastritis. PLoS ONE 8, e76462 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang, H., Wong, P. T., Spiess, J. & Zhu, Y. Z. Cholecystokinin-2 (CCK2) receptor-mediated anxiety-like behaviors in rats. Neurosci. Biobehav. Rev. 29, 1361–1373 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Zanoveli, J. M., Netto, C. F., Guimarães, F. S. & Zangrossi, H. Jr Systemic and intra-dorsal periaqueductal gray injections of cholecystokinin sulfated octapeptide (CCK-8s) induce a panic-like response in rats submitted to the elevated T-maze. Peptides 25, 1935–1941 (2004).

    Article  PubMed  Google Scholar 

  121. Falkai, P. et al. The efficacy and safety of cariprazine in the early and late stage of schizophrenia: a post hoc analysis of three randomized, placebo-controlled trials. CNS Spectr. 28, 104–111 (2021).

    Article  PubMed  Google Scholar 

  122. Guma, E. et al. Role of D3 dopamine receptors in modulating neuroanatomical changes in response to antipsychotic administration. Sci. Rep. 9, 7850 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Guo, K. et al. Safety profile of antipsychotic drugs: analysis based on a provincial spontaneous reporting systems database. Front. Pharmacol. 13, 848472 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Heidbreder, C. A. et al. The role of central dopamine D3 receptors in drug addiction: a review of pharmacological evidence. Brain Res. Rev. 49, 77–105 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Periclou, A. et al. Relationship between plasma concentrations and clinical effects of cariprazine in patients with schizophrenia or bipolar mania. Clin. Transl Sci. 13, 362–371 (2020).

    Article  CAS  PubMed  Google Scholar 

  126. Hodge, R. J. & Nunez, D. J. Therapeutic potential of Takeda-G-protein-receptor-5 (TGR5) agonists. Hope or hype? Diabetes Obes. Metab. 18, 439–443 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. McNeil, B. D. et al. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature 519, 237–241 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Grimes, J. et al. MrgX2 is a promiscuous receptor for basic peptides causing mast cell pseudo-allergic and anaphylactoid reactions. Pharmacol. Res. Perspect. 7, e00547 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Barrett, J. et al. Tachykinin receptors (version 2019.4). in IUPHAR/BPS Guide to Pharmacology CITE. https://doi.org/10.2218/gtopdb/F62/2019.4 (2019).

  130. Smits, G. J. & Lefebvre, R. A. Tachykinin receptors involved in the contractile effect of the natural tachykinins in the rat gastric fundus. J. Auton. Pharmacol. 14, 383–392 (1994).

    Article  CAS  PubMed  Google Scholar 

  131. Valero, M. S. et al. Contractile effect of tachykinins on rabbit small intestine. Acta Pharmacol. Sin. 32, 487–494 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Vilain, P., Emonds-Alt, X., Le Fur, G. & Brelière, J. C. Tachykinin-induced contractions of the guinea pig ileum longitudinal smooth muscle: tonic and phasic muscular activities. Can. J. Physiol. Pharmacol. 75, 587–590 (1997).

    Article  CAS  PubMed  Google Scholar 

  133. Amenyogbe, E. et al. A review on sex steroid hormone estrogen receptors in mammals and fish. Int. J. Endocrinol. 2020, 5386193 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Scarpin, K. M., Graham, J. D., Mote, P. A. & Clarke, C. L. Progesterone action in human tissues: regulation by progesterone receptor (PR) isoform expression, nuclear positioning and coregulator expression. Nucl. Recept. Signal. 7, e009 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Spitz, I. M. Progesterone receptor antagonists. Curr. Opin Investig. Drugs 7, 882–890 (2006).

    CAS  PubMed  Google Scholar 

  136. Chen, J. Y. et al. Two distinct actions of retinoid-receptor ligands. Nature 382, 819–822 (1996).

    Article  CAS  PubMed  Google Scholar 

  137. Chung, S. S. et al. Pharmacological activity of retinoic acid receptor alpha-selective antagonists in vitro and in vivo. ACS Med. Chem. Lett. 4, 446–450 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Scimemi, A. Structure, function, and plasticity of GABA transporters. Front. Cell Neurosci. 8, 161 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Zafar, S. & Jabeen, I. Structure, function, and modulation of γ-aminobutyric acid transporter 1 (GAT1) in neurological disorders: a pharmacoinformatic prospective. Front. Chem. 6, 397 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Frosina, G., Marubbi, D., Marcello, D., Vecchio, D. & Daga, A. The efficacy and toxicity of ATM inhibition in glioblastoma initiating cells-driven tumor models. Crit. Rev. Oncol. Hematol. 138, 214–222 (2019).

    Article  PubMed  Google Scholar 

  141. Majd, N. K. et al. The promise of DNA damage response inhibitors for the treatment of glioblastoma. Neuro-Oncol. Adv. 3, vdab015 (2021).

    Article  Google Scholar 

  142. Pizzamiglio, L. et al. New role of ATM in controlling GABAergic tone during development. Cereb. Cortex 26, 3879–3888 (2016).

    Article  PubMed  Google Scholar 

  143. Tassinari, V. et al. Atrophy, oxidative switching and ultrastructural defects in skeletal muscle of the ataxia telangiectasia mouse model. J. Cell Sci. 132, jcs223008 (2019).

    Article  CAS  PubMed  Google Scholar 

  144. Bhushan, B. et al. Dual role of epidermal growth factor receptor in liver injury and regeneration after acetaminophen overdose in mice. Toxicol. Sci. 155, 363–378 (2017).

    Article  CAS  PubMed  Google Scholar 

  145. Kirchner, S. in Polypharmacology in Drug Discovery (ed. Peters, J.-U.) Ch. 4 (Wiley, 2012).

  146. Horta, E., Bongiorno, C., Ezzeddine, M. & Neil, E. C. Neurotoxicity of antibodies in cancer therapy: a review. Clin. Neurol. Neurosurg. 188, 105566 (2020).

    Article  PubMed  Google Scholar 

  147. Huang, J. et al. Safety profile of epidermal growth factor receptor tyrosine kinase inhibitors: a disproportionality analysis of FDA adverse event reporting system. Sci. Rep. 10, 4803 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Miroddi, M. et al. Systematic review and meta-analysis of the risk of severe and life-threatening thromboembolism in cancer patients receiving anti-EGFR monoclonal antibodies (cetuximab or panitumumab). Int. J. Cancer 139, 2370–2380 (2016).

    Article  CAS  PubMed  Google Scholar 

  149. Ohmori, T. et al. Molecular and clinical features of EGFR-TKI-associated lung injury. Int. J. Mol. Sci. 22, 792 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Rizzo, A. et al. Anti-EGFR monoclonal antibodies in advanced biliary tract cancer: a systematic review and meta-analysis. In Vivo 34, 479–488 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Shah, R. R. & Shah, D. R. Safety and tolerability of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in oncology. Drug Saf. 42, 181–198 (2019).

    Article  CAS  PubMed  Google Scholar 

  152. Tischer, B., Huber, R., Kraemer, M. & Lacouture, M. E. Dermatologic events from EGFR inhibitors: the issue of the missing patient voice. Support. Care Cancer 25, 651–660 (2017).

    Article  PubMed  Google Scholar 

  153. Baruch, A. et al. Antibody-mediated activation of the FGFR1/Klothoβ complex corrects metabolic dysfunction and alters food preference in obese humans. Proc. Natl Acad. Sci. USA 117, 28992–29000 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chae, Y. K. et al. Inhibition of the fibroblast growth factor receptor (FGFR) pathway: the current landscape and barriers to clinical application. Oncotarget 8, 16052–16074 (2017).

    Article  PubMed  Google Scholar 

  155. Gile, J. J. et al. FGFR inhibitor toxicity and efficacy in cholangiocarcinoma: multicenter single-institution cohort experience. JCO Precis. Oncol. https://doi.org/10.1200/PO.21.00064 (2021).

  156. Kommalapati, A., Tella, S. H., Borad, M., Javle, M. & Mahipal, A. FGFR inhibitors in oncology: insight on the management of toxicities in clinical practice. Cancers 13, 2968 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Mahipal, A., Tella, S. H., Kommalapati, A., Yu, J. & Kim, R. Prevention and treatment of FGFR inhibitor-associated toxicities. Crit. Rev. Oncol. Hematol. 155, 103091 (2020).

    Article  PubMed  Google Scholar 

  158. Sonoda, J., Chen, M. Z. & Baruch, A. FGF21-receptor agonists: an emerging therapeutic class for obesity-related diseases. Horm. Mol. Biol. Clin. Investig. 30, 20170002 (2017).

    Article  CAS  Google Scholar 

  159. Tassi, E. et al. Blood pressure control by a secreted FGFBP1 (fibroblast growth factor-binding protein). Hypertension 71, 160–167 (2018).

    Article  CAS  PubMed  Google Scholar 

  160. Wu, A.-L. et al. Antibody-mediated activation of FGFR1 induces FGF23 production and hypophosphatemia. PLoS ONE 8, e57322 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Xie, Y. et al. FGF/FGFR signaling in health and disease. Signal Transduct. Target. Ther. 5, 181 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Gómez-Sintes, R. et al. Neuronal apoptosis and reversible motor deficit in dominant-negative GSK-3 conditional transgenic mice. EMBO J. 26, 2743–2754 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Hurcombe, J. A. et al. Podocyte GSK3 is an evolutionarily conserved critical regulator of kidney function. Nat. Commun. 10, 403 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Boucher, J. et al. Differential roles of insulin and IGF-1 receptors in adipose tissue development and function. Diabetes 65, 2201–2213 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Cai, W. et al. Insulin regulates astrocyte gliotransmission and modulates behavior. J. Clin. Investig. 128, 2914–2926 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Srivastava, S. P. & Goodwin, J. E. Cancer biology and prevention in diabetes. Cells 9, 1380 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Bharate, J. B. et al. Rational design, synthesis and biological evaluation of pyrimidine-4,6-diamine derivatives as type-II inhibitors of FLT3 selective against c-KIT. Sci. Rep. 8, 3722 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Omdal, R., Skoie, I. M. & Grimstad, T. Fatigue is common and severe in patients with mastocytosis. Int. J. Immunopathol. Pharmacol. 32, 2058738418803252 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Openshaw, R. L. et al. Map2k7 haploinsufficiency induces brain imaging endophenotypes and behavioral phenotypes relevant to schizophrenia. Schizophr. Bull. 46, 211–223 (2020).

    Article  PubMed  Google Scholar 

  170. Cocco, E., Scaltriti, M. & Drilon, A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol. 15, 731–747 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Drilon, A. TRK inhibitors in TRK fusion-positive cancers. Ann. Oncol. 30, viii23–viii30 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Gambella, A. et al. NTRK fusions in central nervous system tumors: a rare, but worthy target. Int. J. Mol. Sci. 21, 753 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Han, S.-Y. TRK inhibitors: tissue-agnostic anti-cancer drugs. Pharmaceuticals 14, 632 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Rohrberg, K. S. & Lassen, U. Detecting and targeting NTRK fusions in cancer in the era of tumor agnostic oncology. Drugs 81, 445–452 (2021).

    Article  CAS  PubMed  Google Scholar 

  175. Sanchez-Ortiz, E. et al. TrkA gene ablation in basal forebrain results in dysfunction of the cholinergic circuitry. J. Neurosci. 32, 4065–4079 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Chong, C. R., Ong, G. J. & Horowitz, J. D. Emerging drugs for the treatment of angina pectoris. Expert Opin Emerg. Drugs 21, 365–376 (2016).

    Article  CAS  PubMed  Google Scholar 

  177. Heinemann-Yerushalmi, L. et al. BCKDK regulates the TCA cycle through PDC in the absence of PDK family during embryonic development. Dev. Cell 56, 1182–1194 (2021).

    Article  CAS  PubMed  Google Scholar 

  178. Stakišaitis, D. et al. The importance of gender-related anticancer research on mitochondrial regulator sodium dichloroacetate in preclinical studies in vivo. Cancers 11, 1210 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Wang, H. et al. Deletion of PDK1 in oligodendrocyte lineage cells causes white matter abnormality and myelination defect in the central nervous system. Neurobiol. Dis. 148, 105212 (2021).

    Article  CAS  PubMed  Google Scholar 

  180. Drullinsky, P. R. & Hurvitz, S. A. Mechanistic basis for PI3K inhibitor antitumor activity and adverse reactions in advanced breast cancer. Breast Cancer Res. Treat. 181, 233–248 (2020).

    Article  CAS  PubMed  Google Scholar 

  181. Gustafson, D., Fish, J. E., Lipton, J. H. & Aghel, N. Mechanisms of cardiovascular toxicity of BCR-ABL1 tyrosine kinase inhibitors in chronic myelogenous leukemia. Curr. Hematol. Malig. Rep. 15, 20–30 (2020).

    Article  PubMed  Google Scholar 

  182. Nunnery, S. E. & Mayer, I. A. Management of toxicity to isoform α-specific PI3K inhibitors. Ann. Oncol. 30, x21–x26 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Yap, T. A., Bjerke, L., Clarke, P. A. & Workman, P. Drugging PI3K in cancer: refining targets and therapeutic strategies. Curr. Opin Pharmacol. 23, 98–107 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Chen, Y. et al. Focal adhesion kinase promotes hepatic stellate cell activation by regulating plasma membrane localization of TGFβ receptor 2. Hepatol. Commun. 4, 268–283 (2020).

    Article  CAS  PubMed  Google Scholar 

  185. Dawson, J. C., Serrels, A., Stupack, D. G., Schlaepfer, D. D. & Frame, M. C. Targeting FAK in anticancer combination therapies. Nat. Rev. Cancer 21, 313–324 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Guidetti, G. F., Torti, M. & Canobbio, I. Focal adhesion kinases in platelet function and thrombosis. Arterioscler. Thromb. Vasc. Biol. 39, 857–868 (2019).

    Article  CAS  PubMed  Google Scholar 

  187. Lassiter, D. G. et al. FAK tyrosine phosphorylation is regulated by AMPK and controls metabolism in human skeletal muscle. Diabetologia 61, 424–432 (2018).

    Article  CAS  PubMed  Google Scholar 

  188. Peng, X. et al. Cardiac developmental defects and eccentric right ventricular hypertrophy in cardiomyocyte focal adhesion kinase (FAK) conditional knockout mice. Proc. Natl Acad. Sci. USA 105, 6638–6643 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Sorkin, M. et al. Novel strategies to attenuate skin fibrosis: targeted inhibition of focal adhesion kinase in dermal fibroblasts. J. Am. Coll. Surg. 211, S127 (2010).

    Article  Google Scholar 

  190. Weng, Y. et al. Liver epithelial focal adhesion kinase modulates fibrogenesis and hedgehog signaling. JCI Insight 5, e141217 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Zhang, J. & Hochwald, S. N. The role of FAK in tumor metabolism and therapy. Pharmacol. Ther. 142, 154–163 (2014).

    Article  CAS  PubMed  Google Scholar 

  192. Zhao, X.-K. et al. Focal adhesion kinase regulates hepatic stellate cell activation and liver fibrosis. Sci. Rep. 7, 4032 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Greathouse, K. M., Henderson, B. W., Gentry, E. G. & Herskowitz, J. H. Fasudil or genetic depletion of ROCK1 or ROCK2 induces anxiety-like behaviors. Behav. Brain Res. 373, 112083 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Kusuhara, S. & Nakamura, M. Ripasudil hydrochloride hydrate in the treatment of glaucoma: safety, efficacy, and patient selection. Clin. Ophthalmol. 14, 1229–1236 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Li, J. et al. Renal protective effects of empagliflozin via inhibition of EMT and aberrant glycolysis in proximal tubules. JCI Insight 5, e129034 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  196. McLeod, R. et al. First-in-human study of AT13148, a dual ROCK-AKT inhibitor in patients with solid tumors. Clin. Cancer Res. 26, 4777–4784 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Sunamura, S. et al. Different roles of myocardial ROCK1 and ROCK2 in cardiac dysfunction and postcapillary pulmonary hypertension in mice. Proc. Natl Acad. Sci. USA 115, E7129–E7138 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Pappu, R. Essential tole for the RHO-KINASES in intestinal stem cell viability and maintenance of organ homeostasis [abstract T.126]. Federation of Clinical Immunology Societies Meeting 2019 (2019).

  199. Zheng, K. et al. miR-135a-5p mediates memory and synaptic impairments via the Rock2/Adducin1 signaling pathway in a mouse model of Alzheimer’s disease. Nat. Commun. 12, 1903 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  200. De Kock, L. et al. De novo variant in tyrosine kinase SRC causes thrombocytopenia: case report of a second family. Platelets 30, 931–934 (2019).

    Article  PubMed  Google Scholar 

  201. Li, J. et al. Heat-induced epithelial barrier dysfunction occurs via C-Src kinase and P120ctn expression regulation in the lungs. Cell. Physiol. Biochem. 48, 237–250 (2018).

    Article  CAS  PubMed  Google Scholar 

  202. Revilla, N. et al. Clinical and biological assessment of the largest family with SRC‐RT due to p. E527K gain‐of‐function variant [abstract]. Res. Pract. Thromb. Haemost. 5 (suppl. 2), 145–146 (2021).

    Google Scholar 

  203. Yo, S., Thenganatt, J., Lipton, J. & Granton, J. Incident pulmonary arterial hypertension associated with Bosutinib. Pulm. Circ. 10, 1–4 (2020).

    Article  Google Scholar 

  204. Yurttas, N. O. & Eskazan, A. E. Tyrosine kinase inhibitor-associated platelet dysfunction: does this need to have a significant clinical impact? Clin. Appl. Thromb. Hemost. 25, https://doi.org/10.1177/1076029619866925 (2019).

    PubMed  Google Scholar 

  205. Garcia-Serna, R., Vidal, D., Remez, N. & Mestres, J. Large-scale predictive drug safety: from structural alerts to biological mechanisms. Chem. Res. Toxicol. 28, 1875–1887 (2015).

    Article  CAS  PubMed  Google Scholar 

  206. Compilation of CDER NME and new biologic approvals 1985–2022. FDA fda.gov/media/135307/download (2022).

Download references

Acknowledgements

The authors thank the following individuals for their valuable contributions: K. A. Henderson from Amgen, C. J. B. Larner from AstraZeneca, A. Fekete from Novartis, E. Pawluk from UCB Biopharma and the entire membership of the IQ-DruSafe In vitro Secondary Pharmacology Working Group. J.-P.V., R.J.B. and S.J. are the Chair and Co-Chairs of the IQ-DruSafe In vitro Secondary Pharmacology Working Group, respectively.

Author information

Authors and Affiliations

Authors

Contributions

R.J.B., S.J., A.B., A.D., B.D., M.P., M.R., L.R.R., F.S., A.S., Y.T., V.T.S., D.A., A.L., S.W.M., R.N., R.P., S.R., J.M.V. and J.-P.V. researched data for the article. R.J.B., S.J., A.B., A.D., B.D., M.P., M.R., L.R.R., F.S., A.S., Y.T., V.T.S., A.L., S.W.M., R.P., S.R., J.M.V. and J.-P.V. reviewed and/or edited the manuscript before submission. R.J.B., S.J., A.B., A.D., B.D., M.P., M.R., L.R.R., F.S., A.S., Y.T., V.T.S., D.A., A.L., S.W.M., R.P., S.R. and J.-P.V. made a substantial contribution to discussion of content. R.J.B., S.J., A.B., A.D., B.D, M.P., L.R.R., F.S., A.S., Y.T., V.T.S., S.W.M., S.R. and J.-P.V. wrote the article.

Corresponding author

Correspondence to Richard J. Brennan.

Ethics declarations

Competing interests

A.B., A.D., B.D., M.P., M.R., L.R.R., F.S., A.S., Y.T., V.T.S., A.L., S.W.M., R.N., R.P., S.R. and J.-P.V. are employees of pharmaceutical companies. R.J.B. is a Director/Trustee and Scientific Advisory Board member of Lhasa Ltd., which manages the Effiris consortium. S.J. is an employee of a CRO providing screening services to pharmaceutical companies. D.A., R.J.B., S.J., A.B., A.D., M.P., M.R., L.R.R., F.S., A.S., Y.T., V.T.S., A.L., S.W.M., R.N., R.P., S.R. and J.-P.V. hold shares, share rights and/or stock options in pharmaceutical companies. J.M.V. declares no competing interests.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Wolfgang Jarolimek and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

CiPA Initiative: https://cipaproject.org/

CredibleMeds QTDrugs Lists: https://www.crediblemeds.org/druglist

Effiris Consortium: https://www.lhasalimited.org/effiris-a-secondary-pharmacology-model-suite-powered-by-privacy-preserving-data-sharing/

Elsevier PharmaPendium: https://www.pharmapendium.com

International Consortium for Innovation and Quality in Pharmaceutical Development (IQ): https://iqconsortium.org

International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH): https://www.ich.org

NC3Rs: https://www.nc3rs.org.uk/who-we-are/3rs

Pistoia Alliance: https://www.pistoiaalliance.org/

The International Union of Basic and Clinical Pharmacology (IUPHAR): https://www.guidetopharmacology.org/

Who are the top 10 pharmaceutical companies in the world? (2023): https://www.proclinical.com/blogs/2023-7/the-top-10-pharmaceutical-companies-in-the-world-2023

Supplementary information

Glossary

Adverse drug reactions

Harmful, unintended results caused by the act of taking a medication. An adverse drug reaction is a special type of adverse event in which a causative relationship can be demonstrated.

Adverse event

(AE). Any untoward medical occurrence in a patient or clinical investigation subject administered a pharmaceutical product, which does not necessarily have a causal relationship with this treatment.

Assay hit rate

The number of compounds showing activity in a specific assay as a proportion of the total number of compounds evaluated in the assay.

Compound promiscuity rate

Promiscuity is defined as the specific interaction of a small molecule with multiple biological targets (as opposed to nonspecific binding events) and represents the molecular basis of polypharmacology. The promiscuity rate of a compound refers to the number of off-target hits as a proportion of the total number of targets assayed.

DruSafe

A leadership group of the International Consortium for Innovation and Quality in Pharmaceutical Development with the mission to advance nonclinical safety sciences and impact the global regulatory environment.

International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use

(ICH). An initiative that brings together regulatory authorities and the pharmaceutical industry to discuss scientific and technical aspects of pharmaceutical product development and registration. The mission of the ICH is to promote public health by achieving greater harmonization through the development of technical guidelines and requirements for pharmaceutical product registration.

New drug application

A document through which drug sponsors formally propose that the US Food and Drug Administration (FDA) approve a new pharmaceutical for sale and marketing in the USA.

New molecular entities

New drugs containing active ingredients not previously approved by the FDA or marketed as drugs in the USA.

Off-target activity

 Pharmacological activity of a drug against a target other than its intended therapeutic target.

Primary pharmacology studies

These studies aim to investigate the mode of action and/or effects of a substance in relation to its desired therapeutic target.

Safety pharmacology studies

These studies aim to investigate the potential undesirable pharmacodynamic effects of a substance on physiological functions in relation to exposure in the therapeutic range and above. Safety pharmacodynamic effects may result from activity at the primary molecular target, secondary targets or nonspecific interactions.

Secondary pharmacology studies

These studies aim to investigate the mode of action and/or effects of a substance not related to its desired therapeutic target.

Side effects

Unintended pharmacological effects of a drug, frequently used to describe adverse effects, but this term may also apply to additional beneficial consequences.

The International Consortium for Innovation and Quality in Pharmaceutical Development

(IQ). A not-for-profit organization of pharmaceutical and biotechnology companies with a mission of advancing science and technology to augment the capability of member companies to develop transformational solutions that benefit patients, regulators and the broader research and development community.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brennan, R.J., Jenkinson, S., Brown, A. et al. The state of the art in secondary pharmacology and its impact on the safety of new medicines. Nat Rev Drug Discov (2024). https://doi.org/10.1038/s41573-024-00942-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41573-024-00942-3

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research