Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antibody–drug conjugates come of age in oncology

Abstract

Antibody–drug conjugates (ADCs) combine the specificity of monoclonal antibodies with the potency of highly cytotoxic agents, potentially reducing the severity of side effects by preferentially targeting their payload to the tumour site. ADCs are being increasingly used in combination with other agents, including as first-line cancer therapies. As the technology to produce these complex therapeutics has matured, many more ADCs have been approved or are in late-phase clinical trials. The diversification of antigenic targets as well as bioactive payloads is rapidly broadening the scope of tumour indications for ADCs. Moreover, novel vector protein formats as well as warheads targeting the tumour microenvironment are expected to improve the intratumour distribution or activation of ADCs, and consequently their anticancer activity for difficult-to-treat tumour types. However, toxicity remains a key issue in the development of these agents, and better understanding and management of ADC-related toxicities will be essential for further optimization. This Review provides a broad overview of the recent advances and challenges in ADC development for cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure and mechanism of action of conventional ADCs.
Fig. 2: Main characteristics of approved ADCs.
Fig. 3: Payload diversity in ADC pipeline.
Fig. 4: Number of new ADCs reaching clinical trials between 2012 and 2022.

Similar content being viewed by others

References

  1. Joubert, N., Beck, A., Dumontet, C. & Denevault-Sabourin, C. Antibody–drug conjugates: the last decade. Pharmaceuticals 13, 245 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Colombo, R. & Rich, J. R. The therapeutic window of antibody drug conjugates: a dogma in need of revision. Cancer Cell 40, 1255–1263 (2022). This article ponders the fact that ADCs have an enlarged therapeutic window in comparison to uncoupled cytotoxins.

    CAS  PubMed  Google Scholar 

  3. Kaplon, H., Crescioli, S., Chenoweth, A., Visweswaraiah, J. & Reichert, J. M. Antibodies to watch in 2023. mAbs 15, 2153410 (2023).

    PubMed  Google Scholar 

  4. Junutula, J. R. et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol. 26, 925–932 (2008).

    CAS  PubMed  Google Scholar 

  5. Beck, A. et al. Cutting-edge multi-level analytical and structural characterization of antibody–drug conjugates: present and future. Expert. Rev. Proteom. 16, 337–362 (2019).

    CAS  Google Scholar 

  6. Nabhan, C. et al. Gemtuzumab ozogamicin (MylotargTM) is infrequently associated with sinusoidal obstructive syndrome/veno-occlusive disease. Ann. Oncol. 15, 1231–1236 (2004).

    CAS  PubMed  Google Scholar 

  7. Castaigne, S. et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet 379, 1508–1516 (2012). This clinical trial showed that fractionation of an ADC dose reduced toxicity without compromising antileukaemic activity.

    CAS  PubMed  Google Scholar 

  8. Lambert, J. et al. Gemtuzumab ozogamicin for de novo acute myeloid leukemia: final efficacy and safety updates from the open-label, phase III ALFA-0701 trial. Haematologica 104, 113–119 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Prince, H. M. et al. Brentuximab vedotin or physician’s choice in CD30-positive cutaneous T-cell lymphoma (ALCANZA): an international, open-label, randomised, phase 3, multicentre trial. Lancet 390, 555–566 (2017).

    CAS  PubMed  Google Scholar 

  10. Kumar, A. et al. Brentuximab vedotin combined with chemotherapy in patients with newly diagnosed early-stage, unfavorable-risk Hodgkin lymphoma. J. Clin. Oncol. 39, 2257–2265 (2021).

    CAS  PubMed  Google Scholar 

  11. Connors, J. M. et al. Brentuximab vedotin with chemotherapy for stage III or IV Hodgkin’s lymphoma. N. Engl. J. Med. 378, 331–344 (2018).

    CAS  PubMed  Google Scholar 

  12. Punnett, A., Tsang, R. W. & Hodgson, D. C. Hodgkin lymphoma across the age spectrum: epidemiology, therapy, and late effects. Semin. Radiat. Oncol. 20, 30–44 (2010).

    PubMed  Google Scholar 

  13. Moskowitz, C. H. et al. Five-year PFS from the AETHERA trial of brentuximab vedotin for Hodgkin lymphoma at high risk of progression or relapse. Blood 132, 2639–2642 (2018).

    CAS  PubMed  Google Scholar 

  14. Fornecker, L. M. et al. Brentuximab vedotin plus AVD for first-line treatment of early-stage unfavorable Hodgkin lymphoma (BREACH): a multicenter, open-label, randomized, phase II trial. J. Clin. Oncol. 41, 327–335 (2022).

    PubMed  Google Scholar 

  15. Horwitz, S. et al. Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2): a global, double-blind, randomised, phase 3 trial. Lancet 393, 229–240 (2019).

    CAS  PubMed  Google Scholar 

  16. Eichenauer, D. A. et al. Hodgkin lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 29, iv19–iv29 (2018).

    CAS  PubMed  Google Scholar 

  17. Kanate, A. S. et al. Maintenance therapies for Hodgkin and non-Hodgkin lymphomas after autologous transplantation: a consensus project of ASBMT, CIBMTR, and the lymphoma working party of EBMT. JAMA Oncol. 5, 715–722 (2019).

    PubMed  PubMed Central  Google Scholar 

  18. Brentuximab vedotin for treating CD30-positive cutaneous T-cell lymphoma. NICE https://www.nice.org.uk/guidance/ta577 (2019). This assessment describes how cost-effectiveness is likely to become a key issue in the prescription of ADCs.

  19. Stainthorpe, A. et al. Brentuximab vedotin for treating relapsed or refractory CD30-positive cutaneous T-cell lymphoma: an evidence review group perspective of a NICE single technology appraisal. Pharmacoecon. Open 4, 563–574 (2020).

    PubMed  PubMed Central  Google Scholar 

  20. Global sales of ADCs in 2020 — Up to 7 Billion. Biopharma PEG https://www.biochempeg.com/article/329.html (2023).

  21. Broccoli, A. et al. Italian real-life experience with brentuximab vedotin: results of a large observational study of 40 cases of relapsed/refractory systemic anaplastic large cell lymphoma. Haematologica 102, 1931–1935 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Pellegrini, C. et al. Italian real life experience with brentuximab vedotin: results of a large observational study on 234 relapsed/refractory Hodgkin’s lymphoma. Oncotarget 8, 91703–91710 (2017).

    PubMed  PubMed Central  Google Scholar 

  23. Kantarjian, H. M. et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N. Engl. J. Med. 375, 740–753 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sehn, L. H. et al. Polatuzumab vedotin in relapsed or refractory diffuse large B-cell lymphoma. J. Clin. Oncol. 38, 155–165 (2020).

    CAS  PubMed  Google Scholar 

  25. Caimi, P. F. et al. Loncastuximab tesirine in relapsed or refractory diffuse large B-cell lymphoma (LOTIS-2): a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. 22, 790–800 (2021).

    CAS  PubMed  Google Scholar 

  26. Lonial, S. et al. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): a two-arm, randomised, open-label, phase 2 study. Lancet Oncol. 21, 207–221 (2020).

    CAS  PubMed  Google Scholar 

  27. Verma, S. et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med. 367, 1783–1791 (2012). This trial showed the superiority of a single-agent ADC in comparison to standard-of-care combination in patients with advanced breast cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kmietowicz, Z. NICE approves trastuzumab emtansine after deal with drug company. BMJ 357, j2930 (2017).

    PubMed  Google Scholar 

  29. Caparica, R., Brandao, M. & Piccart, M. Systemic treatment of patients with early breast cancer: recent updates and state of the art. Breast 48, S7–S20 (2019).

    PubMed  Google Scholar 

  30. Bahceci, A. et al. Efficacy and safety of trastuzumab emtansine in Her2 positive metastatic breast cancer: real-world experience. Cancer Invest. 39, 473–481 (2021).

    CAS  PubMed  Google Scholar 

  31. Cortes, J. et al. Trastuzumab deruxtecan versus trastuzumab emtansine for breast cancer. N. Engl. J. Med. 386, 1143–1154 (2022).

    CAS  PubMed  Google Scholar 

  32. Modi, S. et al. Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer. N. Engl. J. Med. 387, 9–20 (2022). This trial showed that a HER-2 targeting ADC was highly effective in patients with a low expression of target.

    CAS  PubMed  Google Scholar 

  33. Giordano, S. H. et al. Systemic therapy for advanced human epidermal growth factor receptor 2-positive breast cancer: ASCO guideline update. J. Clin. Oncol. 40, 2612–2635 (2022).

    CAS  PubMed  Google Scholar 

  34. Shitara, K. et al. Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer. N. Engl. J. Med. 382, 2419–2430 (2020). This trial confirmed the strong antitumour activity of an ADC targeting HER2 in a non-breast tumour type.

    CAS  PubMed  Google Scholar 

  35. Banerji, U. et al. Trastuzumab duocarmazine in locally advanced and metastatic solid tumours and HER2-expressing breast cancer: a phase 1 dose-escalation and dose-expansion study. Lancet Oncol. 20, 1124–1135 (2019).

    CAS  PubMed  Google Scholar 

  36. Rosenberg, J. E. et al. Pivotal trial of enfortumab vedotin in urothelial carcinoma after platinum and anti-programmed death 1/programmed death ligand 1 therapy. J. Clin. Oncol. 37, 2592–2600 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cheung, A., Opzoomer, J. & Ilieva, K. M. et al. Anti-folate receptor alpha-directed antibody therapies restrict the growth of triple-negative breast cancer. Clin. Cancer Res. 24, 5098–5111 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Moore, K. N. et al. Phase III, randomized trial of mirvetuximab soravtansine versus chemotherapy in patients with platinum-resistant ovarian cancer: primary analysis of FORWARD I. Ann. Oncol. 32, 757–765 (2021).

    CAS  PubMed  Google Scholar 

  39. Thompson, J. A. et al. Phase I trials of anti-ENPP3 antibody-drug conjugates in advanced refractory renal cell carcinomas. Clin. Cancer Res. 24, 4399–4406 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Schoffski, P., Concin, N. & Suarez, C. et al. A phase 1 study of a CDH6-targeting antibody-drug conjugate in patients with advanced solid tumors with evaluation of inflammatory and neurological adverse events. Oncol. Res. Treat. 44, 547–556 (2021).

    PubMed  Google Scholar 

  41. L’Italien, L. et al. Mechanistic insights of an immunological adverse event induced by an anti-KIT antibody drug conjugate and mitigation strategies. Clin. Cancer Res. 24, 3465–3474 (2018).

    PubMed  Google Scholar 

  42. Annunziata, C. M. et al. Phase 1, open-label study of MEDI-547 in patients with relapsed or refractory solid tumors. Invest. N. Drugs 31, 77–84 (2013).

    CAS  Google Scholar 

  43. Kim, S. B. et al. First-in-human phase I study of aprutumab ixadotin, a fibroblast growth factor receptor 2 antibody-drug conjugate (BAY 1187982) in patients with advanced cancer. Target. Oncol. 14, 591–601 (2019).

    PubMed  PubMed Central  Google Scholar 

  44. Rowinsky, E. K. & Donehower, R. C. Taxol: twenty years later, the story unfolds. J. Natl Cancer Inst. 83, 1778–1781 (1991).

    CAS  PubMed  Google Scholar 

  45. Johnson, M. L. et al. Rovalpituzumab tesirine as a maintenance therapy after first-line platinum-based chemotherapy in patients with extensive-stage-SCLC: results from the phase 3 MERU study. J. Thorac. Oncol. 16, 1570–1581 (2021).

    CAS  PubMed  Google Scholar 

  46. van Berkel, S. S. & van Delft, F. L. Enzymatic strategies for (near) clinical development of antibody-drug conjugates. Drug Discov. Today Technol. 30, 3–10 (2018).

    PubMed  Google Scholar 

  47. Beck, A., Goetsch, L., Dumontet, C. & Corvaia, N. Strategies and challenges for the next generation of antibody–drug conjugates. Nat. Rev. Drug Discov. 16, 315–337 (2017).

    CAS  PubMed  Google Scholar 

  48. Lyon, R. Drawing lessons from the clinical development of antibody–drug conjugates. Drug Discov. Today Technol. 30, 105–109 (2018).

    PubMed  Google Scholar 

  49. Herrera, A. F. et al. Anti-CD79B antibody-drug conjugate DCDS0780A in patients with B-cell non-Hodgkin lymphoma: phase 1 dose-escalation study. Clin. Cancer Res. 28, 1294–1301 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Conilh, L., Sadilkova, L., Viricel, W. & Dumontet, C. Payload diversification: a key step in the development of antibody–drug conjugates. J. Hematol. Oncol. 16, 3 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Dumontet, C. & Jordan, M. A. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat. Rev. Drug Discov. 9, 790–803 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Serrano-Del Valle, A., Anel, A., Naval, J. & Marzo, I. Immunogenic cell death and immunotherapy of multiple myeloma. Front. Cell Dev. Biol. 7, 50 (2019).

    PubMed  PubMed Central  Google Scholar 

  53. Hamblett, K. J. et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin. Cancer Res. 10, 7063–7070 (2004). This article suggested that a high drug-to-antibody ratio was associated with altered pharmacokinetic characteristics compared with those of the corresponding naked antibody, a paradigm which persisted until the development of trastuzumab deruxtecan.

    CAS  PubMed  Google Scholar 

  54. Liu, J. et al. An open-label phase I dose-escalation study of the safety and pharmacokinetics of DMUC4064A in patients with platinum-resistant ovarian cancer. Gynecol. Oncol. 163, 473–480 (2021).

    CAS  PubMed  Google Scholar 

  55. Liu, J. F. et al. Phase I study of safety and pharmacokinetics of the anti-MUC16 antibody-drug conjugate DMUC5754A in patients with platinum-resistant ovarian cancer or unresectable pancreatic cancer. Ann. Oncol. 27, 2124–2130 (2016).

    CAS  PubMed  Google Scholar 

  56. Pomeroy, A. E., Schmidt, E. V., Sorger, P. K. & Palmer, A. C. Drug independence and the curability of cancer by combination chemotherapy. Trends Cancer 8, 915–929 (2022).

    CAS  PubMed  Google Scholar 

  57. Elias, D. J. et al. Phase I clinical comparative study of monoclonal antibody KS1/4 and KS1/4-methotrexate immunconjugate in patients with non-small cell lung carcinoma. Cancer Res. 50, 4154–4159 (1990).

    CAS  PubMed  Google Scholar 

  58. Figueroa-Vazquez, V. et al. HDP-101, an anti-BCMA antibody-drug conjugate, safely delivers amanitin to induce cell death in proliferating and resting multiple myeloma cells. Mol. Cancer Ther. 20, 367–378 (2021).

    CAS  PubMed  Google Scholar 

  59. Horwitz, S. et al. The ECHELON-2 trial: 5-year results of a randomized, phase III study of brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma. Ann. Oncol. 33, 288–298 (2022).

    CAS  PubMed  Google Scholar 

  60. Amadori, S. et al. Gemtuzumab ozogamicin versus best supportive care in older patients with newly diagnosed acute myeloid leukemia unsuitable for intensive chemotherapy: results of the randomized phase III EORTC-GIMEMA AML-19 trial. J. Clin. Oncol. 34, 972–979 (2016).

    PubMed  Google Scholar 

  61. Kantarjian, H. M. et al. Inotuzumab ozogamicin versus standard of care in relapsed or refractory acute lymphoblastic leukemia: final report and long-term survival follow-up from the randomized, phase 3 INO-VATE study. Cancer 125, 2474–2487 (2019).

    CAS  PubMed  Google Scholar 

  62. Morgensztern, D. et al. Efficacy and safety of rovalpituzumab tesirine in third-line and beyond patients with DLL3-expressing, relapsed/refractory small-cell lung cancer: results from the phase II TRINITY study. Clin. Cancer Res. 25, 6958–6966 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Janjigian, Y. Y. et al. A phase I trial of SJG-136 (NSC#694501) in advanced solid tumors. Cancer Chemother. Pharm. 65, 833–838 (2010).

    CAS  Google Scholar 

  64. Puzanov, I. et al. Phase I pharmacokinetic and pharmacodynamic study of SJG-136, a novel DNA sequence selective minor groove cross-linking agent, in advanced solid tumors. Clin. Cancer Res. 17, 3794–3802 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Stein, E. M. et al. A phase 1 trial of vadastuximab talirine as monotherapy in patients with CD33-positive acute myeloid leukemia. Blood 131, 387–396 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Giles, F. J. et al. Mylotarg (gemtuzumab ozogamicin) therapy is associated with hepatic venoocclusive disease in patients who have not received stem cell transplantation. Cancer 92, 406–413 (2001).

    CAS  PubMed  Google Scholar 

  67. McDonald, G. B., Freston, J. W., Boyer, J. L. & DeLeve, L. D. Liver complications following treatment of hematologic malignancy with anti-CD22-calicheamicin (inotuzumab ozogamicin). Hepatology 69, 831–844 (2019).

    CAS  PubMed  Google Scholar 

  68. Wahab, A., Rafae, A. & Mushtaq, K. et al. Ocular toxicity of belantamab mafodotin, an oncological perspective of management in relapsed and refractory multiple myeloma. Front. Oncol. 11, 678634 (2021). This article discusses how ocular toxicity has been observed with certain ADCs and may be a limiting factor for widespread use.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Farooq, A. V. et al. Corneal epithelial findings in patients with multiple myeloma treated with antibody–drug conjugate belantamab mafodotin in the pivotal, randomized, DREAMM-2 study. Ophthalmol. Ther. 9, 889–911 (2020).

    PubMed  PubMed Central  Google Scholar 

  70. Eaton, J. S., Miller, P. E., Mannis, M. J. & Murphy, C. J. Ocular adverse events associated with antibody–drug conjugates in human clinical trials. J. Ocul. Pharmacol. Ther. 31, 589–604 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Abuhelwa, Z., Alloghbi, A., Alqahtani, A. & Nagasaka, M. Trastuzumab deruxtecan-induced interstitial lung disease/pneumonitis in ERBB2-positive advanced solid malignancies: a systematic review. Drugs 82, 979–987 (2022). This review discusses pulmonary toxicity observed with certain ADCs and requiring early diagnosis and treatment.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Younes, A. et al. Brentuximab vedotin combined with ABVD or AVD for patients with newly diagnosed Hodgkin’s lymphoma: a phase 1, open-label, dose-escalation study. Lancet Oncol. 14, 1348–1356 (2013).

    CAS  PubMed  Google Scholar 

  73. Ansell, S. M. et al. Overall survival with brentuximab vedotin in stage III or IV Hodgkin’s lymphoma. N. Engl. J. Med. 387, 310–320 (2022).

    CAS  PubMed  Google Scholar 

  74. Zhao, H. et al. A potential mechanism for ADC-induced neutropenia: role of neutrophils in their own demise. Mol. Cancer Ther. 16, 1866–1876 (2017).

    CAS  PubMed  Google Scholar 

  75. Zhang, J. et al. Assessment of racial differences in the incidence of thrombocytopenia induced by trastuzumab emtansine: a systematic review and meta-analysis. Ann. Transl. Med. 9, 1139 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lee, A., Larck, C. & Moore, D. C. Impact of obesity on safety outcomes and treatment modifications with ado-trastuzumab emtansine in breast cancer patients. J. Oncol. Pharm. Pract. 28, 49–54 (2022).

    CAS  PubMed  Google Scholar 

  77. Mahalingaiah, P. K. et al. Potential mechanisms of target-independent uptake and toxicity of antibody-drug conjugates. Pharmacol. Ther. 200, 110–125 (2019).

    CAS  PubMed  Google Scholar 

  78. Wei, C. et al. Where did the linker-payload go? A quantitative investigation on the destination of the released linker-payload from an antibody-drug conjugate with a maleimide linker in plasma. Anal. Chem. 88, 4979–4986 (2016).

    CAS  PubMed  Google Scholar 

  79. Gorovits, B. & Krinos-Fiorotti, C. Proposed mechanism of off-target toxicity for antibody-drug conjugates driven by mannose receptor uptake. Cancer Immunol. Immunother. 62, 217–223 (2013).

    CAS  PubMed  Google Scholar 

  80. Aoyama, M., Tada, M., Yokoo, H., Demizu, Y. & Ishii-Watabe, A. Fcγ receptor-dependent internalization and off-target cytotoxicity of antibody–drug conjugate aggregates. Pharm. Res 39, 89–103 (2022).

    CAS  PubMed  Google Scholar 

  81. Velasco, R., Domingo-Domenech, E. & Sureda, A. Brentuximab-induced peripheral neurotoxicity: a multidisciplinary approach to manage an emerging challenge in Hodgkin lymphoma therapy. Cancers 13, 6125 (2021). This article discusses peripheral neutotoxicity as a common adverse event of ADCs containing tubulin binding agent.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Perez, E. A. et al. Trastuzumab emtansine with or without pertuzumab versus trastuzumab with taxane for human epidermal growth factor receptor 2-positive advanced breast cancer: final results from MARIANNE. Cancer 125, 3974–3984 (2019).

    CAS  PubMed  Google Scholar 

  83. Krop, I. E. et al. Trastuzumab emtansine versus treatment of physician’s choice in patients with previously treated HER2-positive metastatic breast cancer (TH3RESA): final overall survival results from a randomised open-label phase 3 trial. Lancet Oncol. 18, 743–754 (2017).

    CAS  PubMed  Google Scholar 

  84. Coates, J. T. et al. Parallel genomic alterations of antigen and payload targets mediate polyclonal acquired clinical resistance to sacituzumab govitecan in triple-negative breast cancer. Cancer Discov. 11, 2436–2445 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Loganzo, F. et al. Tumor cells chronically treated with a trastuzumab-maytansinoid antibody–drug conjugate develop varied resistance mechanisms but respond to alternate treatments. Mol. Cancer Ther. 14, 952–963 (2015).

    CAS  PubMed  Google Scholar 

  86. Yamashita-Kashima, Y. et al. Combination efficacy of pertuzumab and trastuzumab for trastuzumab emtansine-resistant cells exhibiting attenuated lysosomal trafficking or efflux pumps upregulation. Cancer Chemother. Pharm. 86, 641–654 (2020).

    CAS  Google Scholar 

  87. Endo, Y. & Wu, W. J. Tumor extrinsic factors mediate primary T-DM1 resistance in HER2-positive breast cancer cells. Cancers 13, 2331 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Skeie, M., Nikolaysen, F., Chitano, Y. & Stang, E. Hsp90 inhibition and co-incubation with pertuzumab induce internalization and degradation of trastuzumab: implications for use of T-DM1. J. Cell Mol. Med. 24, 10258–10262 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Zheng, S. et al. Modulation of CD22 protein expression in childhood leukemia by pervasive splicing aberrations: implications for CD22-directed immunotherapies. Blood Cancer Discov. 3, 103–115 (2022).

    PubMed  PubMed Central  Google Scholar 

  90. Mercogliano, M. F. et al. TNFα-induced mucin 4 expression elicits trastuzumab resistance in HER2-positive breast cancer. Clin. Cancer Res. 23, 636–648 (2017).

    CAS  PubMed  Google Scholar 

  91. Jiang, D. et al. Pyruvate dehydrogenase kinase 4-mediated metabolic reprogramming is involved in rituximab resistance in diffuse large B-cell lymphoma by affecting the expression of MS4A1/CD20. Cancer Sci. 112, 3585–3597 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Paul, M. R., Wong, V., Aristizabal, P. & Kuo, D. J. Treatment of recurrent refractory pediatric pre-B acute lymphoblastic leukemia using inotuzumab ozogamicin monotherapy resulting in CD22 antigen expression loss as a mechanism of therapy resistance. J. Pediatr. Hematol. Oncol. 41, e546–e549 (2019).

    PubMed  PubMed Central  Google Scholar 

  93. Goyal, A., Patel, S., Goyal, K., Morgan, E. A. & Foreman, R. K. Variable loss of CD30 expression by immunohistochemistry in recurrent cutaneous CD30+ lymphoid neoplasms treated with brentuximab vedotin. J. Cutan. Pathol. 46, 823–829 (2019). This article describes how loss of target antigen constitutes a possible mechanism of resistance to ADCs.

    PubMed  Google Scholar 

  94. Chevallier, P. et al. Persistence of CD33 expression at relapse in CD33+ acute myeloid leukaemia patients after receiving gemtuzumab in the course of the disease. Br. J. Haematol. 143, 744–746 (2008).

    PubMed  Google Scholar 

  95. Rasheed, A. A., Samad, A., Raheem, A., Hirani, S. I. & Shabbir-Moosajee, M. Cd20 expression and effects on outcome of relapsed/ refractory diffuse large B cell lymphoma after treatment with rituximab. Asian Pacif. J. Cancer Prev. 19, 331–335 (2018).

    CAS  Google Scholar 

  96. Hiraga, J. et al. Down-regulation of CD20 expression in B-cell lymphoma cells after treatment with rituximab-containing combination chemotherapies: its prevalence and clinical significance. Blood 113, 4885–4893 (2009).

    CAS  PubMed  Google Scholar 

  97. Kim, S. B. et al. Relationship between tumor biomarkers and efficacy in TH3RESA, a phase III study of trastuzumab emtansine (T-DM1) vs. treatment of physician’s choice in previously treated HER2-positive advanced breast cancer. Int. J. Cancer 139, 2336–2342 (2016).

    CAS  PubMed  Google Scholar 

  98. Jacobsen, E. D. et al. Brentuximab vedotin demonstrates objective responses in a phase 2 study of relapsed/refractory DLBCL with variable CD30 expression. Blood 125, 1394–1402 (2015).

    CAS  PubMed  Google Scholar 

  99. Yurkovetskiy, A. V. et al. Dolaflexin: a novel antibody-drug conjugate platform featuring high drug loading and a controlled bystander effect. Mol. Cancer Ther. 20, 885–895 (2021).

    CAS  PubMed  Google Scholar 

  100. Rahme, R. et al. Treatment with 5-azacytidin upregulates the expression of CD20 in CD20-negative B cell acute lymphoblastic leukemia: a case report. Exp. Hematol. 41, 505–507 (2013).

    PubMed  Google Scholar 

  101. Durbin, K. R., Phipps, C. & Liao, X. Mechanistic modeling of antibody-drug conjugate internalization at the cellular level reveals inefficient processing steps. Mol. Cancer Ther. 17, 1341–1351 (2018).

    CAS  PubMed  Google Scholar 

  102. Wang, H. et al. Aberrant intracellular metabolism of T-DM1 confers T-DM1 resistance in human epidermal growth factor receptor 2-positive gastric cancer cells. Cancer Sci. 108, 1458–1468 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. DeVay, R. M. et al. Improved lysosomal trafficking can modulate the potency of antibody drug conjugates. Bioconjug. Chem. 28, 1102–1114 (2017).

    CAS  PubMed  Google Scholar 

  104. Hamblett, K. J. et al. SLC46A3 is required to transport catabolites of noncleavable antibody maytansine conjugates from the lysosome to the cytoplasm. Cancer Res. 75, 5329–5340 (2015). This article emphasized for the first time the importance of lysosomal transporters in the cytotoxicity of ADCs.

    CAS  PubMed  Google Scholar 

  105. Sauveur, J. et al. Characterization of T-DM1-resistant breast cancer cells. Pharmacol. Res. Perspect. 8, e00617 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Tsui, C. K. et al. CRISPR–Cas9 screens identify regulators of antibody–drug conjugate toxicity. Nat. Chem. Biol. 15, 949–958 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Tang, R. et al. P-gp activity is a critical resistance factor against AVE9633 and DM4 cytotoxicity in leukaemia cell lines, but not a major mechanism of chemoresistance in cells from acute myeloid leukaemia patients. BMC Cancer 9, 199 (2009).

    PubMed  PubMed Central  Google Scholar 

  108. Matsui, H. et al. Reduced effect of gemtuzumab ozogamicin (CMA-676) on P-glycoprotein and/or CD34-positive leukemia cells and its restoration by multidrug resistance modifiers. Leukemia 16, 813–819 (2002).

    CAS  PubMed  Google Scholar 

  109. Linenberger, M. L. et al. Multidrug-resistance phenotype and clinical responses to gemtuzumab ozogamicin. Blood 98, 988–994 (2001).

    CAS  PubMed  Google Scholar 

  110. Takegawa, N. et al. DS-8201a, a new HER2-targeting antibody-drug conjugate incorporating a novel DNA topoisomerase I inhibitor, overcomes HER2-positive gastric cancer T-DM1 resistance. Int. J. Cancer 141, 1682–1689 (2017).

    CAS  PubMed  Google Scholar 

  111. Godwin, C. D. et al. Anti-apoptotic BCL-2 family proteins confer resistance to calicheamicin-based antibody–drug conjugate therapy of acute leukemia. Leuk. Lymphoma 61, 2990–2994 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Darwich, A. et al. Paralysis of the cytotoxic granule machinery is a new cancer immune evasion mechanism mediated by chitinase 3-like-1. J. Immunother. Cancer 9, e003224 (2021).

    PubMed  PubMed Central  Google Scholar 

  113. Makanga, D. R. et al. Low number of KIR ligands in lymphoma patients favors a good rituximab-dependent NK cell response. Oncoimmunology 10, 1936392 (2021).

    PubMed  PubMed Central  Google Scholar 

  114. Kamber, R. A. et al. Inter-cellular CRISPR screens reveal regulators of cancer cell phagocytosis. Nature 597, 549–554 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Bouwstra, R. et al. CD47 expression defines efficacy of rituximab with CHOP in non-germinal center B-cell (non-GCB) diffuse large B-cell lymphoma patients (DLBCL), but not in GCB DLBCL. Cancer Immunol. Res. 7, 1663–1671 (2019).

    CAS  PubMed  Google Scholar 

  116. Mustafa, N. et al. Determinants of response to daratumumab in Epstein–Barr virus-positive natural killer and T-cell lymphoma. J. Immunother. Cancer 9, e002123 (2021).

    PubMed  PubMed Central  Google Scholar 

  117. Allegretti, M. et al. Liquid biopsy identifies actionable dynamic predictors of resistance to trastuzumab emtansine (T-DM1) in advanced HER2-positive breast cancer. Mol. Cancer 20, 151 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Diaz-Gil, L. et al. Modelling hypersensitivity to trastuzumab defines biomarkers of response in HER2 positive breast cancer. J. Exp. Clin. Cancer Res. 40, 313 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Liang, K., Mei, S., Gao, X., Peng, S. & Zhan, J. Dynamics of endocytosis and degradation of antibody–drug conjugate T-DM1 in HER2 positive cancer cells. Drug Des. Dev. Ther. 15, 5135–5150 (2021).

    CAS  Google Scholar 

  120. Skidmore, L. et al. ARX788, a site-specific anti-HER2 antibody–drug conjugate, demonstrates potent and selective activity in HER2-low and T-DM1-resistant breast and gastric cancers. Mol. Cancer Ther. 19, 1833–1843 (2020).

    CAS  PubMed  Google Scholar 

  121. Yamazaki, C. M. et al. Antibody–drug conjugates with dual payloads for combating breast tumor heterogeneity and drug resistance. Nat. Commun. 12, 3528 (2021). This article describes how ADCs containing two different payloads may reduce resistance to therapy.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Suzuki, M. et al. Visualization of intratumor pharmacokinetics of [fam-]trastuzumab deruxtecan (DS-8201a) in HER2 heterogeneous model using phosphor-integrated dots imaging analysis. Clin. Cancer Res. 27, 3970–3979 (2021).

    CAS  PubMed  Google Scholar 

  123. Burke, P. J. et al. Glucuronide-linked antibody-tubulysin conjugates display activity in MDR+ and heterogeneous tumor models. Mol. Cancer Ther. 17, 1752–1760 (2018).

    CAS  PubMed  Google Scholar 

  124. Conilh, L. et al. Exatecan antibody drug conjugates based on a hydrophilic polysarcosine drug-linker platform. Pharmaceuticals 14, 247 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Andreev-Drakhlin, A. Y., Egoryan, G., Shah, A. Y., Msaouel, P., Alhalabi, O. & Gao, J. The evolving treatment landscape of advanced urothelial carcinoma. Curr. Opin. Oncol. 33, 221–230 (2021).

    CAS  PubMed  Google Scholar 

  126. Mihalyova, J., Hradska, K., Jelinek, T., Motais, B., Celichowski, P. & Hajek, R. Promising immunotherapeutic modalities for B-cell lymphoproliferative disorders. Int. J. Mol. Sci. 22, 11470 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Bon, G. et al. Loss of HER2 and decreased T-DM1 efficacy in HER2 positive advanced breast cancer treated with dual HER2 blockade: the SePHER study. J. Exp. Clin. Cancer Res. 39, 279 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Damaschin, C. et al. Brentuximab vedotin-containing escalated BEACOPP variants for newly diagnosed advanced-stage classical Hodgkin lymphoma: follow-up analysis of a randomized phase II study from the German Hodgkin Study Group. Leukemia 36, 580–582 (2022). This trial demonstrated than an ADC could safely be incorporated in a standard-of-care combination cytotoxic regimen.

    CAS  PubMed  Google Scholar 

  129. LaCasce, A. S. et al. Brentuximab vedotin plus bendamustine: a highly active first salvage regimen for relapsed or refractory Hodgkin lymphoma. Blood 132, 40–48 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Vinti, L. et al. Brentuximab vedotin in combination with bendamustine in pediatric patients or young adults with relapsed or refractory Hodgkin lymphoma. Pediatr. Blood Cancer 69, e29557 (2022).

    CAS  PubMed  Google Scholar 

  131. Van de Wyngaert, Z. et al. Combination of brentuximab-vedotin and ifosfamide, carboplatin, etoposide in relapsed/refractory peripheral T-cell lymphoma. Eur. J. Haematol. 106, 467–472 (2021).

    PubMed  Google Scholar 

  132. Radhakrishnan, V. S. et al. Relapsed refractory Hodgkin lymphoma and brentuximab vedotin-bendamustine combination therapy as a bridge to transplantation: real-world evidence from a middle-income setting and literature review. Front. Oncol. 11, 796270 (2021).

    CAS  PubMed  Google Scholar 

  133. Chen, R. et al. Pembrolizumab in relapsed or refractory Hodgkin lymphoma: 2-year follow-up of KEYNOTE-087. Blood 134, 1144–1153 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Kuruvilla, J. et al. Pembrolizumab versus brentuximab vedotin in relapsed or refractory classical Hodgkin lymphoma (KEYNOTE-204): an interim analysis of a multicentre, randomised, open-label, phase 3 study. Lancet Oncol. 22, 512–524 (2021).

    CAS  PubMed  Google Scholar 

  135. Herrera, A. F. et al. Interim results of brentuximab vedotin in combination with nivolumab in patients with relapsed or refractory Hodgkin lymphoma. Blood 131, 1183–1194 (2018). The data in this interim analysis show how combination of an ADC with an immune checkpoint inhibitor induced a high response rate in patients with relapsed Hodgkin lymphoma.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Cheson, B. D. et al. Brentuximab vedotin plus nivolumab as first-line therapy in older or chemotherapy-ineligible patients with Hodgkin lymphoma (ACCRU): a multicentre, single-arm, phase 2 trial. Lancet Haematol. 7, e808–e815 (2020).

    PubMed  Google Scholar 

  137. Massaro, F., Meuleman, N., Bron, D., Vercruyssen, M. & Maerevoet, M. Brentuximab vedotin and pembrolizumab combination in patients with relapsed/refractory Hodgkin lymphoma: a single-centre retrospective analysis. Cancers 14, 982 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Diefenbach, C. S. et al. Ipilimumab, nivolumab, and brentuximab vedotin combination therapies in patients with relapsed or refractory Hodgkin lymphoma: phase 1 results of an open-label, multicentre, phase 1/2 trial. Lancet Haematol. 7, e660–e670 (2020).

    PubMed  PubMed Central  Google Scholar 

  139. Zinzani, P. L. et al. Nivolumab combined with brentuximab vedotin for relapsed/refractory primary mediastinal large B-cell lymphoma: efficacy and safety from the phase II CheckMate 436 study. J. Clin. Oncol. 37, 3081–3089 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Lopez-Miranda, E. et al. Trastuzumab emtansine plus non-pegylated liposomal doxorubicin in HER2-positive metastatic breast cancer (Thelma): a single-arm, multicenter, phase Ib trial. Cancers 12, 3509 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Cortes, J. et al. Efficacy and safety of trastuzumab emtansine plus capecitabine vs trastuzumab emtansine alone in patients with previously treated ERBB2 (HER2)-positive metastatic breast cancer: a phase 1 and randomized phase 2 trial. JAMA Oncol. 6, 1203–1209 (2020).

    PubMed  Google Scholar 

  142. Krop, I. E. et al. Phase 1b/2a study of trastuzumab emtansine (T-DM1), paclitaxel, and pertuzumab in HER2-positive metastatic breast cancer. Breast Cancer Res. 18, 34 (2016).

    PubMed  PubMed Central  Google Scholar 

  143. Martin, M. et al. Trastuzumab emtansine (T-DM1) plus docetaxel with or without pertuzumab in patients with HER2-positive locally advanced or metastatic breast cancer: results from a phase Ib/IIa study. Ann. Oncol. 27, 1249–1256 (2016).

    CAS  PubMed  Google Scholar 

  144. Kan, S. et al. Up-regulation of HER2 by gemcitabine enhances the antitumor effect of combined gemcitabine and trastuzumab emtansine treatment on pancreatic ductal adenocarcinoma cells. BMC Cancer 15, 726 (2015).

    PubMed  PubMed Central  Google Scholar 

  145. Hurvitz, S. A. et al. Neoadjuvant trastuzumab emtansine and pertuzumab in human epidermal growth factor receptor 2-positive breast cancer: three-year outcomes from the phase III KRISTINE study. J. Clin. Oncol. 37, 2206–2216 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Masuda, N. et al. A randomized, 3-arm, neoadjuvant, phase 2 study comparing docetaxel + carboplatin + trastuzumab + pertuzumab (TCbHP), TCbHP followed by trastuzumab emtansine and pertuzumab (T-DM1 + P), and T-DM1 + P in HER2-positive primary breast cancer. Breast Cancer Res. Treat. 180, 135–146 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Hurvitz, S. A. et al. Neoadjuvant trastuzumab, pertuzumab, and chemotherapy versus trastuzumab emtansine plus pertuzumab in patients with HER2-positive breast cancer (KRISTINE): a randomised, open-label, multicentre, phase 3 trial. Lancet Oncol. 19, 115–126 (2018). This article described how ADC-containing combinations can be highly active in the neo-adjuvant setting.

    CAS  PubMed  Google Scholar 

  148. Patel, T. A. et al. A randomized, controlled phase II trial of neoadjuvant ado-trastuzumab emtansine, lapatinib, and nab-paclitaxel versus trastuzumab, pertuzumab, and paclitaxel in HER2-positive breast cancer (TEAL study). Breast Cancer Res. 21, 100 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Jain, S. et al. Phase I study of alpelisib (BYL-719) and trastuzumab emtansine (T-DM1) in HER2-positive metastatic breast cancer (MBC) after trastuzumab and taxane therapy. Breast Cancer Res. Treat. 171, 371–381 (2018).

    CAS  PubMed  Google Scholar 

  150. Muller, P. et al. Trastuzumab emtansine (T-DM1) renders HER2+ breast cancer highly susceptible to CTLA-4/PD-1 blockade. Sci. Transl. Med. 7, 315ra188 (2015).

    PubMed  Google Scholar 

  151. Emens, L. A. et al. Trastuzumab emtansine plus atezolizumab versus trastuzumab emtansine plus placebo in previously treated, HER2-positive advanced breast cancer (KATE2): a phase 2, multicentre, randomised, double-blind trial. Lancet Oncol. 21, 1283–1295 (2020).

    CAS  PubMed  Google Scholar 

  152. Criscitiello, C., Morganti, S. & Curigliano, G. Antibody–drug conjugates in solid tumors: a look into novel targets. J. Hematol. Oncol. 14, 20 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Sommer, A. et al. Antibody–drug conjugates harboring a kinesin spindle protein inhibitor with immunostimulatory properties. Oncoimmunology 11, 2037216 (2022).

    PubMed  PubMed Central  Google Scholar 

  154. Bauzon, M. et al. Maytansine-bearing antibody–drug conjugates induce in vitro hallmarks of immunogenic cell death selectively in antigen-positive target cells. Oncoimmunology 8, e1565859 (2019). This article describes how immunogenic cell death is induced by certain ADCs and may contribute to tumour response.

    PubMed  PubMed Central  Google Scholar 

  155. Kroemer, G., Galassi, C., Zitvogel, L. & Galluzzi, L. Immunogenic cell stress and death. Nat. Immunol. 23, 487–500 (2022).

    CAS  PubMed  Google Scholar 

  156. Garg, A. D. et al. Trial watch: immunogenic cell death induction by anticancer chemotherapeutics. Oncoimmunology 6, e1386829 (2017).

    PubMed  PubMed Central  Google Scholar 

  157. Montes de Oca, R. et al. Belantamab mafodotin (GSK2857916) drives immunogenic cell death and immune-mediated antitumor responses in vivo. Mol. Cancer Ther. 20, 1941–1955 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. D’Amico, L. et al. A novel anti-HER2 anthracycline-based antibody–drug conjugate induces adaptive anti-tumor immunity and potentiates PD-1 blockade in breast cancer. J. Immunother. Cancer 7, 16 (2019).

    PubMed  PubMed Central  Google Scholar 

  159. Khera, E. et al. Cellular-resolution imaging of bystander payload tissue penetration from antibody–drug conjugates. Mol. Cancer Ther. 21, 310–321 (2022).

    CAS  PubMed  Google Scholar 

  160. Ashman, N., Bargh, J. D. & Spring, D. R. Non-internalising antibody–drug conjugates. Chem. Soc. Rev. 51, 9182–9202 (2022). This article describes how ADCs binding to non-internalizable targets may induce tumour response.

    CAS  PubMed  Google Scholar 

  161. Dal Corso, A., Gebleux, R., Murer, P., Soltermann, A. & Neri, D. A non-internalizing antibody–drug conjugate based on an anthracycline payload displays potent therapeutic activity in vivo. J. Control Release 264, 211–218 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Giansanti, F. et al. Secreted Gal-3BP is a novel promising target for non-internalizing antibody–drug conjugates. J. Control. Release 294, 176–184 (2019).

    CAS  PubMed  Google Scholar 

  163. Fauteux, F. et al. Computational selection of antibody–drug conjugate targets for breast cancer. Oncotarget 7, 2555–2571 (2016).

    PubMed  Google Scholar 

  164. Staudacher, A. H. & Brown, M. P. Antibody drug conjugates and bystander killing: is antigen-dependent internalisation required? Br. J. Cancer 117, 1736–1742 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Saha, A., Hyzy, S. & Lamothe, T. et al. A CD45-targeted antibody–drug conjugate successfully conditions for allogeneic hematopoietic stem cell transplantation in mice. Blood 139, 1743–1759 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Westervelt, P. et al. Mgta-117, an anti-CD117 antibody-drug conjugated with amanitin, in participants with relapsed/refractory adult acute myeloid leukemia (AML) and myelodysplasia with excess blasts (MDS-EB): safety, pharmacokinetics and pharmacodynamics initial findings from a phase 1/2 study. Blood 140, 2117–2119 (2022). This report descibes how alternative payloads, such as amanitin, have mechanisms of cytotoxicity that are different from those of conventional payloads.

    Google Scholar 

  167. Poreba, M. Protease-activated prodrugs: strategies, challenges, and future directions. FEBS J. 287, 1936–1969 (2020).

    CAS  PubMed  Google Scholar 

  168. Esfandiari, A., Cassidy, S. & Webster, R. M. Bispecific antibodies in oncology. Nat. Rev. Drug Discov. 21, 411–412 (2022).

    CAS  PubMed  Google Scholar 

  169. Pegram, M. D. et al. First-in-human, phase 1 dose-escalation study of biparatopic anti-HER2 antibody–drug conjugate MEDI4276 in patients with HER2-positive advanced breast or gastric cancer. Mol. Cancer Ther. 20, 1442–1453 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Zou, D. et al. Cost-effectiveness of brentuximab vedotin plus chemotherapy for previously untreated CD30-positive peripheral T-cell lymphoma in Canada. J. Med. Econ. 25, 324–333 (2022).

    PubMed  Google Scholar 

  171. Podkonjak, T. et al. Cost-effectiveness of brentuximab vedotin for the treatment of cutaneous T-cell lymphoma. J. Comp. Eff. Res. 11, 193–202 (2022).

    CAS  PubMed  Google Scholar 

  172. Sussell, J. et al. Cost-effectiveness analysis of ado-trastuzumab emtansine (T-DM1) for the adjuvant treatment of patients with residual invasive HER2+ early breast cancer in the United States. Am. J. Clin. Oncol. 44, 340–349 (2021).

    PubMed  Google Scholar 

  173. Mareque, M. et al. Cost-effectiveness analysis of gemtuzumab ozogamicin for first-line treatment of patients with Cd-33 positive acute myeloid leukaemia in Spain. Clinicoecon. Outcomes Res. 13, 263–277 (2021).

    PubMed  PubMed Central  Google Scholar 

  174. Yang, J., Han, J., Zhang, Y., Muhetaer, M., Chen, N. & Yan, X. Cost-effectiveness analysis of trastuzumab deruxtecan versus trastuzumab emtansine for HER2-positive breast cancer. Front. Pharm. 13, 924126 (2022).

    CAS  Google Scholar 

  175. Moreau, P. et al. Teclistamab in relapsed or refractory multiple myeloma. N. Engl. J. Med. 387, 495–505 (2022).

    CAS  PubMed  Google Scholar 

  176. Wang, D. et al. A phase 1 study of a novel fully human BCMA-targeting CAR (CT103A) in patients with relapsed/refractory multiple myeloma. Blood 137, 2890–2901 (2021).

    CAS  PubMed  Google Scholar 

  177. Perego, G., Ghidini, A., Luciani, A. & Petrelli, F. Antibody–drug conjugates in treating older patients suffering from cancer: what is the real value? Hum. Vaccin. Immunother. 17, 5575–5578 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Brockelmann, P. J. et al. Brentuximab vedotin in patients with relapsed or refractory Hodgkin lymphoma who are ineligible for autologous stem cell transplant: a Germany and United Kingdom retrospective study. Eur. J. Haematol. 99, 553–558 (2017).

    PubMed  Google Scholar 

  179. Silver, A. B., Leonard, E. K., Gould, J. R. & Spangler, J. B. Engineered antibody fusion proteins for targeted disease therapy. Trends Pharmacol. Sci. 42, 1064–1081 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Moolten, F., Zajdel, S. & Cooperband, S. Immunotherapy of experimental animal tumors with antitumor antibodies conjugated to diphtheria toxin or ricin. Ann. NY Acad. Sci. 277, 690–699 (1976).

    CAS  PubMed  Google Scholar 

  181. Gilliland, D. G., Steplewski, Z., Collier, R. J., Mitchell, K. F., Chang, T. H. & Koprowski, H. Antibody-directed cytotoxic agents: use of monoclonal antibody to direct the action of toxin A chains to colorectal carcinoma cells. Proc. Natl Acad. Sci. USA 77, 4539–4543 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Akbari, B. et al. Immunotoxins in cancer therapy: review and update. Int. Rev. Immunol. 36, 207–219 (2017).

    CAS  PubMed  Google Scholar 

  183. Dinndorf, P., Krailo, M., Liu-Mares, W., Frierdich, S., Sondel, P. & Reaman, G. Phase I trial of anti-B4-blocked ricin in pediatric patients with leukemia and lymphoma. J. Immunother. 24, 511–516 (2001).

    CAS  PubMed  Google Scholar 

  184. Wu, T. & Zhu, J. Recent development and optimization of pseudomonas aeruginosa exotoxin immunotoxins in cancer therapeutic applications. Int. Immunopharmacol. 96, 107759 (2021).

    CAS  PubMed  Google Scholar 

  185. Kreitman, R. J. et al. Moxetumomab pasudotox in relapsed/refractory hairy cell leukemia. Leukemia 32, 1768–1777 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Groth, C. et al. Phase I/II trial of a combination of anti-CD3/CD7 immunotoxins for steroid-refractory acute graft-versus-host disease. Biol. Blood Marrow Transpl. 25, 712–719 (2019). This article shows how ADCs are being explored in non-oncological indications, such as stem cell transplantation.

    CAS  Google Scholar 

  187. Baur, A. S. et al. Denileukin diftitox (ONTAK) induces a tolerogenic phenotype in dendritic cells and stimulates survival of resting Treg. Blood 122, 2185–2194 (2013).

    CAS  PubMed  Google Scholar 

  188. Lutz, M. B., Baur, A. S., Schuler-Thurner, B. & Schuler, G. Immunogenic and tolerogenic effects of the chimeric IL-2-diphtheria toxin cytocidal agent Ontak(R) on CD25+ cells. Oncoimmunology 3, e28223 (2014).

    PubMed  PubMed Central  Google Scholar 

  189. Murer, P. & Neri, D. Antibody–cytokine fusion proteins: a novel class of biopharmaceuticals for the therapy of cancer and of chronic inflammation. N. Biotechnol. 52, 42–53 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Ding, H. et al. Polymalic acid nanobioconjugate for simultaneous immunostimulation and inhibition of tumor growth in HER2/neu-positive breast cancer. J. Control. Release 171, 322–329 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Dakhel, S. et al. An attenuated targeted-TNF localizes to tumors in vivo and regains activity at the site of disease. Int. J. Mol. Sci. 22, 10020 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Puca, E. et al. The targeted delivery of interleukin-12 to the carcinoembryonic antigen increases the intratumoral density of NK and CD8+ T cell in an immunocompetent mouse model of colorectal cancer. J. Gastrointest. Oncol. 11, 803–811 (2020).

    PubMed  PubMed Central  Google Scholar 

  193. List, T., Casi, G. & Neri, D. A chemically defined trifunctional antibody–cytokine–drug conjugate with potent antitumor activity. Mol. Cancer Ther. 13, 2641–2652 (2014).

    CAS  PubMed  Google Scholar 

  194. Kim, S. H. & Jeong, H. J. Soluble expression of a Neo2/15-conjugated single chain Fv against PD-L1 in Escherichia coli. Curr. Issues Mol. Biol. 44, 301–308 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Weiss, T. et al. Immunocytokines are a promising immunotherapeutic approach against glioblastoma. Sci. Transl. Med. 12, eabb2311 (2020). This article shows how immunocytokines aim to elicit local activation of the immune system in tumours.

    CAS  PubMed  Google Scholar 

  196. Catania, C. et al. The tumor-targeting immunocytokine F16-IL2 in combination with doxorubicin: dose escalation in patients with advanced solid tumors and expansion into patients with metastatic breast cancer. Cell Adh. Migr. 9, 14–21 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Schliemann, C. et al. Phase I study of F16IL2 antibody–cytokine fusion with very low-dose araC in acute myeloid leukaemia relapse after allogeneic stem cell transplantation. Br. J. Haematol. 192, e148–e151 (2021).

    CAS  PubMed  Google Scholar 

  198. Rudman, S. M. et al. A phase 1 study of AS1409, a novel antibody–cytokine fusion protein, in patients with malignant melanoma or renal cell carcinoma. Clin. Cancer Res. 17, 1998–2005 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Carnemolla, B. et al. A tumor-associated fibronectin isoform generated by alternative splicing of messenger RNA precursors. J. Cell Biol. 108, 1139–1148 (1989).

    CAS  PubMed  Google Scholar 

  200. Kosmehl, H., Berndt, A. & Katenkamp, D. Molecular variants of fibronectin and laminin: structure, physiological occurrence and histopathological aspects. Virchows Arch. 429, 311–322 (1996).

    CAS  PubMed  Google Scholar 

  201. Peck, M. et al. A phase 1, randomized, single-ascending-dose study to investigate the safety, tolerability, and pharmacokinetics of DSTA4637S, an anti-Staphylococcus aureus thiomab antibody-antibiotic conjugate, in healthy volunteers. Antimicrob. Agents Chemother. 63, e02588–18 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Dugal-Tessier, J., Thirumalairajan, S. & Jain, N. Antibody–oligonucleotide conjugates: a twist to antibody–drug conjugates. J. Clin. Med. 10, 838 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Mullard, A. FDA approves fifth RNAi drug — Alnylam’s next-gen hATTR treatment. Nat. Rev. Drug Discov. 21, 548–549 (2022).

    PubMed  Google Scholar 

  204. Lu, H. et al. VTX-2337 is a novel TLR8 agonist that activates NK cells and augments ADCC. Clin. Cancer Res. 18, 499–509 (2012).

    CAS  PubMed  Google Scholar 

  205. Turaj, A. H., Dahal, L. N., Beers, S. A., Cragg, M. S. & Lim, S. H. TLR-3/9 agonists synergize with anti-ErbB2 mAb-letter. Cancer Res. 77, 3376–3378 (2017).

    CAS  PubMed  Google Scholar 

  206. Ackerman, S. E. et al. Immune-stimulating antibody conjugates elicit robust myeloid activation and durable antitumor immunity. Nat. Cancer 2, 18–33 (2021).

    CAS  PubMed  Google Scholar 

  207. Mullard, A. Targeted protein degraders crowd into the clinic. Nat. Rev. Drug Discov. 20, 247–250 (2021).

    CAS  PubMed  Google Scholar 

  208. Schwach, J., Abdellatif, M. & Stengl, A. More than toxins — current prospects in designing the next generation of antibody drug conjugates. Front. Biosci. 27, 240 (2022).

    CAS  Google Scholar 

  209. Maneiro, M. A. et al. Antibody–PROTAC conjugates enable HER2-dependent targeted protein degradation of BRD4. ACS Chem. Biol. 15, 1306–1312 (2020). In this article, the authors show how PROTAC technology provides a novel mechanism of action for ADCs.

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Dragovich, P. S. et al. Antibody-mediated delivery of chimeric BRD4 degraders. Part 1: Exploration of antibody linker, payload loading, and payload molecular properties. J. Med. Chem. 64, 2534–2575 (2021).

    CAS  PubMed  Google Scholar 

  211. Dragovich, P. S. Degrader–antibody conjugates. Chem. Soc. Rev. 51, 3886–3897 (2022).

    CAS  PubMed  Google Scholar 

  212. Deonarain, M. P. Miniaturised ‘antibody’–drug conjugates for solid tumours? Drug Discov. Today Technol. 30, 47–53 (2018).

    PubMed  Google Scholar 

  213. Richards, D. A. Exploring alternative antibody scaffolds: antibody fragments and antibody mimics for targeted drug delivery. Drug Discov. Today Technol. 30, 35–46 (2018).

    PubMed  Google Scholar 

  214. Zhuang, C., Guan, X., Ma, H., Cong, H., Zhang, W. & Miao, Z. Small molecule–drug conjugates: a novel strategy for cancer-targeted treatment. Eur. J. Med. Chem. 163, 883–895 (2019).

    CAS  PubMed  Google Scholar 

  215. Patel, T. K., Adhikari, N., Amin, S. K., Biswas, S., Jah, T. & Ghosh, B. Small molecule drug conjugates (SMDCs): an emerging strategy for anticancer drug design and discovery. N. J. Chem. 45, 5291–5321 (2021).

    CAS  Google Scholar 

  216. Kim, D. H., Seo, J. M., Shin, K. J. & Yang, S. G. Design and clinical developments of aptamer–drug conjugates for targeted cancer therapy. Biomater. Res. 25, 42 (2021).

    PubMed  PubMed Central  Google Scholar 

  217. Liu, P., Ga, L., Aodeng, G., Wang, Y. & Ai, J. Aptamer–drug conjugates: new probes for imaging and targeting therapy. Biosens. Bioelectron. 10, 100126 (2022).

    CAS  Google Scholar 

  218. Adams, G. P. et al. Stability and safety evaluation of ELU001, a targeted C’Dot drug conjugate for the potential treatment of folate receptor α-overexpressing cancers. Cancer Res. 82, 1077–1077 (2022).

    Google Scholar 

  219. Leahy, M. F. & Turner, J. H. Radioimmunotherapy of relapsed indolent non-Hodgkin lymphoma with 131I-rituximab in routine clinical practice: 10-year single-institution experience of 142 consecutive patients. Blood 117, 45–52 (2011).

    CAS  PubMed  Google Scholar 

  220. Lopez-Guillermo, A. et al. A randomized phase II study comparing consolidation with a single dose of (90)Y ibritumomab tiuxetan vs. maintenance with rituximab for two years in patients with newly diagnosed follicular lymphoma responding to R-CHOP. Long-term follow-up results. Leuk. Lymphoma 63, 93–100 (2022).

    CAS  PubMed  Google Scholar 

  221. Kolstad, A. et al. Phase 1/2a study of 177Lu-lilotomab satetraxetan in relapsed/refractory indolent non-Hodgkin lymphoma. Blood Adv. 4, 4091–4101 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Strosberg, J. et al. Phase 3 trial of 177Lu-dotatate for midgut neuroendocrine tumors. N. Engl. J. Med. 376, 125–135 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Sartor, O. et al. Lutetium-177-PSMA-617 for metastatic castration-resistant prostate cancer. N. Engl. J. Med. 385, 1091–1103 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Darwish, W. M., Bayoumi, N. A., El-Shershaby, H. M. & Moustafa, K. A. A novel gold-polymer–antibody conjugate for targeted (radio-photothermal) treatment of HepG2 cells. J. Biomater. Sci. Polym. Ed. 34, 53–71 (2022).

    PubMed  Google Scholar 

  225. Tafreshi, N. K. et al. Development of targeted alpha particle therapy for solid tumors. Molecules 24, 4314 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Zheng, Y. Z. et al. ROR1 is a novel prognostic biomarker in patients with lung adenocarcinoma. Sci. Rep. 6, 36447 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Chien, H. P. et al. Expression of ROR1 has prognostic significance in triple negative breast cancer. Virchows Arch. 468, 589–595 (2016).

    CAS  PubMed  Google Scholar 

  228. Falay, M. et al. Which markers should the used for diagnostic chronic lymphocytic leukemia immunophenotyping scoring system by flow cytometry? Clin. Lab. 65 https://doi.org/10.7754/Clin.Lab.2019.190316 (2019).

  229. Sharkey, R. M. et al. Selective and concentrated accretion of SN-38 with a CEACAM5-targeting antibody-drug conjugate (ADC), labetuzumab govitecan (IMMU-130). Mol. Cancer Ther. 17, 196–203 (2018).

    CAS  PubMed  Google Scholar 

  230. Dotan, E. et al. Phase I/II trial of labetuzumab govitecan (anti-CEACAM5/SN-38 antibody–drug conjugate) in patients with refractory or relapsing metastatic colorectal cancer. J. Clin. Oncol. 35, 3338–3346 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Waqar, S. N. et al. A phase II study of telisotuzumab vedotin in patients with c-MET-positive stage IV or recurrent squamous cell lung cancer (LUNG-MAP Sub-study S1400K, NCT03574753). Clin. Lung Cancer 22, 170–177 (2021).

    CAS  PubMed  Google Scholar 

  232. Levan, K. et al. Immunohistochemical evaluation of epithelial ovarian carcinomas identifies three different expression patterns of the MX35 antigen, NaPi2b. BMC Cancer 17, 303 (2017).

    PubMed  PubMed Central  Google Scholar 

  233. Banerjee, S. et al. Anti-NaPi2b antibody-drug conjugate lifastuzumab vedotin (DNIB0600A) compared with pegylated liposomal doxorubicin in patients with platinum-resistant ovarian cancer in a randomized, open-label, phase II study. Ann. Oncol. 29, 917–923 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the French National Cancer Institute (INCA) for its support.

Author information

Authors and Affiliations

Authors

Contributions

C.D., J.M.R. and A.B. researched data for the article and wrote the article. All authors contributed substantially to discussion of the content and/or edited the manuscript before submission.

Corresponding author

Correspondence to Charles Dumontet.

Ethics declarations

Competing interests

C.D. has received research funding from Pierre Fabre and Sanofi, and has worked as a consultant for Sanofi and Bristol-Myers Squibb. He is shareholder and co-founder of Mablink Pharma. J.M.R. is employed by The Antibody Society, a non-profit trade association funded by corporate sponsors that develop antibody therapeutics or provide services to companies that develop antibody therapeutics, and she is Editor-in-Chief of mAbs, a biomedical journal focused on topics relevant to antibody therapeutics development. P.D.S. is an employee of Seattle Genetics. J.M.L. was an employee of ImmunoGen, Inc. from 1987 to 2017, Waltham, MA, USA. ImmunoGen developed the maytansinoid linker-payload technology utilized in the ADCs trastuzumab emtansine and mirvetuximab soravtansine discussed in this paper. Since 2018, J.M.L. has consulted for ImmunoGen and several other biotechnology companies developing ADCs. A.B. is an employee of the Pierre Fabre Research Institute, Saint-Julien en Genevois, France, which has licensed telisotuzumab (ABT-700) anti-cMet antibody to AbbVie and developed the ADC telisotuzumab vedotin.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Paul Carter and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

National Comprehensive Cancer Network: www.nccn.org

Supplementary information

Glossary

Bystander effect

A biological effect in which a payload released from a dying tumour cell that has internalized an antibody–drug conjugate will destroy neighbouring cells independently of their target antigen expression.

C’Dot–drug conjugates

Nanoparticle–drug conjugates of very small size in comparison to antibodies.

Drug-to-antibody ratios (DARs)

The average number of drug molecules that are conjugated to an antibody in an antibody–drug conjugate.

Linker

The chemical connector between the antibody and payload; it may be non-cleavable, cleavable or self-immolative; cleavage can take place with proteases, hydrolysis or reduction mechanisms.

Payload

A small-molecule cytotoxic chemotherapeutic (also known as a warhead).

Probodies

Proteolytically activated antibodies engineered to remain inert until activated locally in target tissue.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumontet, C., Reichert, J.M., Senter, P.D. et al. Antibody–drug conjugates come of age in oncology. Nat Rev Drug Discov 22, 641–661 (2023). https://doi.org/10.1038/s41573-023-00709-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-023-00709-2

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer