Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting replication stress in cancer therapy

Abstract

Replication stress is a major cause of genomic instability and a crucial vulnerability of cancer cells. This vulnerability can be therapeutically targeted by inhibiting kinases that coordinate the DNA damage response with cell cycle control, including ATR, CHK1, WEE1 and MYT1 checkpoint kinases. In addition, inhibiting the DNA damage response releases DNA fragments into the cytoplasm, eliciting an innate immune response. Therefore, several ATR, CHK1, WEE1 and MYT1 inhibitors are undergoing clinical evaluation as monotherapies or in combination with chemotherapy, poly[ADP-ribose]polymerase (PARP) inhibitors, or immune checkpoint inhibitors to capitalize on high replication stress, overcome therapeutic resistance and promote effective antitumour immunity. Here, we review current and emerging approaches for targeting replication stress in cancer, from preclinical and biomarker development to clinical trial evaluation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of causes of replication stress.
Fig. 2: Schematics of the ATR pathway.
Fig. 3: Fork dynamics regulation by the ATR pathway.
Fig. 4: Drug combinations with ATR–CHK1–WEE1 inhibitors.
Fig. 5: Mechanisms of ATR–CHK1–WEE1 inhibitors to overcome PARP inhibitor resistance.
Fig. 6: Mechanism of immune response sensitization.

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  Google Scholar 

  2. Zeman, M. K. & Cimprich, K. A. Causes and consequences of replication stress. Nat. Cell Biol. 16, 2–9 (2014).

    Article  CAS  Google Scholar 

  3. Gaillard, H., García-Muse, T. & Aguilera, A. Replication stress and cancer. Nat. Rev. Cancer 15, 276–280 (2015).

    Article  CAS  Google Scholar 

  4. Halazonetis, T. D., Gorgoulis, V. G. & Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 319, 1352–1355 (2008).

    Article  CAS  Google Scholar 

  5. Wilhelm, T., Said, M. & Naim, V. DNA replication stress and chromosomal instability: dangerous liaisons. Genes 11, 1–35 (2020).

    Article  Google Scholar 

  6. O’Connor, M. J. Targeting the DNA damage response in cancer. Mol. Cell 60, 547–560 (2015).

    Article  Google Scholar 

  7. Cimprich, K. A., Shin, T. B., Keith, C. T. & Schreiber, S. L. cDNA cloning and gene mapping of a candidate human cell cycle checkpoint protein. Proc. Natl Acad. Sci. USA 93, 2850–2855 (1996). This paper is the first to describe the protein encoded by the ATR gene, then called FRAP-related protein, and considered the human counterpart of known essential proteins for S and G2/M checkpoints in other species.

    Article  CAS  Google Scholar 

  8. Bentley, N. J. et al. The Schizosaccharomyces pombe rad3 checkpoint gene. EMBOJ 15, 6641–6651 (1996).

    Article  CAS  Google Scholar 

  9. Dobbelstein, M. & Sørensen, C. S. Exploiting replicative stress to treat cancer. Nat. Rev. Drug. Discov. 14, 405–423 (2015).

    Article  CAS  Google Scholar 

  10. Bell, D. et al. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011).

    Article  CAS  Google Scholar 

  11. Lecona, E. & Fernandez-Capetillo, O. Targeting ATR in cancer. Nat. Rev. Cancer 18, 586–595 (2018).

    Article  CAS  Google Scholar 

  12. Karnitz, L. M. & Zou, L. Molecular pathways: targeting ATR in cancer therapy. Clin. Cancer Res. 21, 4780–4785 (2015).

    Article  CAS  Google Scholar 

  13. Saldivar, J. C., Cortez, D. & Cimprich, K. A. The essential kinase ATR: ensuring faithful duplication of a challenging genome. Nat. Rev. Mol. Cell Biol. 18, 622–636 (2017).

    Article  CAS  Google Scholar 

  14. Quinet, A., Tirman, S., Cybulla, E., Meroni, A. & Vindigni, A. To skip or not to skip: choosing repriming to tolerate DNA damage. Mol. Cell 81, 649–658 (2021).

    Article  CAS  Google Scholar 

  15. Pfister, S. X. et al. Inhibiting WEE1 selectively kills histone H3K36me3-deficient cancers by dNTP starvation. Cancer Cell 28, 557–568 (2015).

    Article  CAS  Google Scholar 

  16. Domínguez-Kelly, R. et al. Wee1 controls genomic stability during replication by regulating the Mus81-Eme1 endonuclease. J. Cell Biol. 194, 567–579 (2011).

    Article  Google Scholar 

  17. Martin, J. C. et al. Exploiting replication stress as a novel therapeutic intervention. Mol. Cancer Res. 19, 192–206 (2020).

    Article  Google Scholar 

  18. Coschi, C. H. et al. Haploinsufficiency of an RB-E2F1-condensin II complex leads to aberrant replication and aneuploidy. Cancer Discov. 4, 840–853 (2014).

    Article  CAS  Google Scholar 

  19. Schoonen, P. M., Guerrero Llobet, S. & van Vugt, M. A. T. M. Replication stress: driver and therapeutic target in genomically instable cancers. Adv. Protein Chem. Struct. Biol. 115, 157–201 (2019).

    Article  CAS  Google Scholar 

  20. Macheret, M. & Halazonetis, T. D. Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress. Nature 555, 112–116 (2018).

    Article  CAS  Google Scholar 

  21. Bartkova, J. et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444, 633–637 (2006).

    Article  CAS  Google Scholar 

  22. Nazareth, D., Jones, M. J. K. & Gabrielli, B. Everything in moderation: lessons learned by exploiting moderate replication stress in cancer. Cancers 11, 1320 (2019).

    Article  CAS  Google Scholar 

  23. Medda, A., Duca, D. & Chiocca, S. Human papillomavirus and cellular pathways: hits and targets. Pathogens 10, 262 (2021).

    Article  CAS  Google Scholar 

  24. Rottenberg, S., Disler, C. & Perego, P. The rediscovery of platinum-based cancer therapy. Nat. Rev. Cancer 21, 37–50 (2021).

    Article  CAS  Google Scholar 

  25. Zhu, H., Swami, U., Preet, R. & Zhang, J. Harnessing DNA replication stress for novel cancer therapy. Genes 11, 990 (2020).

    Article  CAS  Google Scholar 

  26. Gralewska, P. et al. PARP inhibition increases the reliance on ATR/CHK1 checkpoint signaling leading to synthetic lethality — an alternative treatment strategy for epithelial ovarian cancer cells independent from HR effectiveness. Int. J. Mol. Sci. 21, 9715 (2020).

    Article  CAS  Google Scholar 

  27. Liao, H., Ji, F., Helleday, T. & Ying, S. Mechanisms for stalled replication fork stabilization: new targets for synthetic lethality strategies in cancer treatments. EMBO Rep. 19, e46263 (2018).

    Article  Google Scholar 

  28. Huang, T. T. et al. Targeting the PI3K/mTOR pathway augments CHK1 inhibitor-induced replication stress and antitumor activity in high-grade serous ovarian cancer. Cancer Res. 80, 5380–5392 (2020).

    Article  CAS  Google Scholar 

  29. Flem-Karlsen, K. et al. Targeting AXL and the DNA damage response pathway as a novel therapeutic strategy in melanoma. Mol. Cancer Ther. 19, 895–905 (2020).

    Article  CAS  Google Scholar 

  30. Ramkumar, K. et al. AXL inhibition induces DNA damage and replication stress in non-small cell lung cancer cells and promotes sensitivity to ATR inhibitors. Mol. Cancer Res. 19, 485–497 (2021).

    Article  CAS  Google Scholar 

  31. Yan, D., Shelton Earp, H., DeRyckere, D. & Graham, D. K. Targeting MERTK and AXL in EGFR mutant non-small cell lung cancer. Cancers 13, 5639 (2021).

    Article  CAS  Google Scholar 

  32. McDaniel, N. K. et al. AXL mediates cetuximab and radiation resistance through tyrosine 821 and the c-abl kinase pathway in head and neck cancer. Clin. Cancer Res. 26, 4349–4359 (2020).

    Article  CAS  Google Scholar 

  33. Bowry, A. & Kelly, R. D. W. Hypertranscription and replication stress in cancer. Trends Cancer 7, 863-877 (2021).

    Article  CAS  Google Scholar 

  34. Zhang, J. et al. BRD4 facilitates replication stress-induced DNA damage response. Oncogene 37, 3763–3777 (2018).

    Article  CAS  Google Scholar 

  35. Zhang, P. et al. BRD4 inhibitor AZD5153 suppresses the proliferation of colorectal cancer cells and sensitizes the anticancer effect of PARP inhibitor. Int. J. Biol. Sci. 15, 1942–1954 (2019).

    Article  CAS  Google Scholar 

  36. Takashima, Y. et al. Bromodomain and extraterminal domain inhibition synergizes with WEE1-inhibitor AZD1775 effect by impairing nonhomologous end joining and enhancing DNA damage in nonsmall cell lung cancer. Int. J. Cancer 146, 1114–1124 (2020).

    Article  CAS  Google Scholar 

  37. Muralidharan, S. V. et al. BET bromodomain inhibitors synergize with ATR inhibitors to induce DNA damage, apoptosis, senescence-associated secretory pathway and ER stress in Myc-induced lymphoma cells. Oncogene 35, 4689–4697 (2016).

    Article  CAS  Google Scholar 

  38. Nayak, S. et al. Inhibition of the translesion synthesis polymerase REV1 exploits replication gaps as a cancer vulnerability. Sci. Adv. 6, eaaz7808 (2020).

    Article  CAS  Google Scholar 

  39. Kim, W. et al. USP13 regulates the replication stress response by deubiquitinating TopBP1. DNA Repair 100, 103063 (2021).

    Article  CAS  Google Scholar 

  40. Yu, X. et al. Ubiquitination of the DNA-damage checkpoint kinase CHK1 by TRAF4 is required for CHK1 activation. J. Hematol. Oncol. 13, 1–19 (2020).

    Article  Google Scholar 

  41. D’Andrea, A. D. Mechanisms of PARP inhibitor sensitivity and resistance. DNA Repair 71, 172–176 (2018).

    Article  Google Scholar 

  42. Lee, E. K. & Matulonis, U. A. Parp inhibitor resistance mechanisms and implications for post-progression combination therapies. Cancers 12, 1–25 (2020).

    Google Scholar 

  43. Peng, Y. et al. The deubiquitylating enzyme USP15 regulates homologous recombination repair and cancer cell response to PARP inhibitors. Nat. Commun. 10, 1224 (2019).

    Article  Google Scholar 

  44. Gogola, E. et al. Selective loss of PARG restores PARylation and counteracts PARP inhibitor-mediated synthetic lethality. Cancer Cell 33, 1078–1093.e12 (2018).

    Article  CAS  Google Scholar 

  45. Hill, S. J. et al. Prediction of DNA repair inhibitor response in short-term patient-derived ovarian cancer organoids. Cancer Discov. 8, 1404–1421 (2018). This seminal paper on ovarian cancer organoids shows the utility of these preclinical models to assess drug sensitivity and perform functional assays such as the DNA combining assay to assess the level and response to replication stress in patient tumour samples.

    Article  CAS  Google Scholar 

  46. Kim, H. et al. Combining PARP with ATR inhibition overcomes PARP inhibitor and platinum resistance in ovarian cancer models. Nat. Commun. 11, 3726 (2020).

    Article  CAS  Google Scholar 

  47. Dréan, A. et al. Modeling therapy resistance in BRCA1/2-mutant cancers. Mol. Cancer Ther. 16, 2022–2034 (2017).

    Article  Google Scholar 

  48. Parmar, K. et al. The CHK1 inhibitor prexasertib exhibits monotherapy activity in high-grade serous ovarian cancer models and sensitizes to PARP inhibition. Clin. Cancer Res. 25, 6127–6140 (2019). This paper shows the monotherapy activity of the CHK1 inhibitor prexasertib in in vitro and in vivo preclinical models of PARPi-resistant ovarian cancer by promoting homologous recombination deficiency and replication fork instability.

    Article  CAS  Google Scholar 

  49. Yazinski, S. A. et al. ATR inhibition disrupts rewired homologous recombination and fork protection pathways in PARP inhibitor-resistant BRCA-deficient cancer cells. Genes Dev. 31, 318–332 (2017). This is a comprehensive preclinical study evaluating the role of ATR inhibition in overcoming PARPi resistance in BRCA1-deficient cells by promoting homologous recombination deficiency and replication fork instability.

    Article  CAS  Google Scholar 

  50. Murai, J. et al. Resistance to PARP inhibitors by SLFN11 inactivation can be overcome by ATR inhibition. Oncotarget 7, 76534–76550 (2016).

    Article  Google Scholar 

  51. Ha, D.-H. et al. Antitumor effect of a WEE1 inhibitor and potentiation of olaparib sensitivity by DNA damage response modulation in triple-negative breast cancer. Sci. Rep. 10, 9930 (2020).

    Article  CAS  Google Scholar 

  52. Moens, S. et al. The mitotic checkpoint is a targetable vulnerability of carboplatin-resistant triple negative breast cancers. Sci. Rep. 11, 3176 (2021).

    Article  CAS  Google Scholar 

  53. Shi, Q. et al. The identification of the ATR inhibitor VE-822 as a therapeutic strategy for enhancing cisplatin chemosensitivity in esophageal squamous cell carcinoma. Cancer Lett. 432, 56–68 (2018).

    Article  CAS  Google Scholar 

  54. Hall, A. B. et al. Potentiation of tumor responses to DNA damaging therapy by the selective ATR inhibitor VX-970. Oncotarget 5, 5674–5685 (2014).

    Article  Google Scholar 

  55. Leonard, B. C. et al. ATR inhibition sensitizes HPV and HPV+ head and neck squamous cell carcinoma to cisplatin. Oral. Oncol. 95, 35–42 (2019).

    Article  CAS  Google Scholar 

  56. Pillay, N. et al. DNA replication vulnerabilities render ovarian cancer cells sensitive to poly(ADP-ribose) glycohydrolase inhibitors. Cancer Cell 35, 519–533.e8 (2019).

    Article  CAS  Google Scholar 

  57. Min, W. et al. Poly(ADP-ribose) binding to CHK1 at stalled replication forks is required for S-phase checkpoint activation. Nat. Commun. 4, 2993 (2013).

    Article  Google Scholar 

  58. Murai, J., Thomas, A., Miettinen, M. & Pommier, Y. Schlafen 11 (SLFN11), a restriction factor for replicative stress induced by DNA-targeting anti-cancer therapies. Pharmacol. Ther. 201, 94–102 (2019).

    Article  CAS  Google Scholar 

  59. Mao, S. et al. Resistance to pyrrolobenzodiazepine dimers is associated with SLFN11 downregulation and can be reversed through inhibition of ATR. Mol. Cancer Ther. 20, 541–552 (2021).

    Article  CAS  Google Scholar 

  60. Winkler, C. et al. SLFN11 informs on standard of care and novel treatments in a wide range of cancer models. Br. J. Cancer 124, 951–962 (2021).

    Article  CAS  Google Scholar 

  61. Shen, J. et al. PARPI triggers the STING-dependent immune response and enhances the therapeutic efficacy of immune checkpoint blockade independent of BRCANEss. Cancer Res. 79, 311–319 (2019).

    Article  CAS  Google Scholar 

  62. Ding, L. et al. PARP inhibition elicits STING-dependent antitumor immunity in BRCA1-deficient ovarian cancer. Cell Rep. 25, 2972–2980.e5 (2018). This is one of the first studies to show that PARPi activate the cGAS–STING pathway to promote antitumour immunity.

    Article  CAS  Google Scholar 

  63. Schoonen, P. M. et al. Premature mitotic entry induced by ATR inhibition potentiates olaparib inhibition-mediated genomic instability, inflammatory signaling, and cytotoxicity in BRCA2-deficient cancer cells. Mol. Oncol. 13, 2422–2440 (2019).

    Article  CAS  Google Scholar 

  64. Mouw, K. W. & Konstantinopoulos, P. A. From checkpoint to checkpoint: DNA damage ATR/Chk1 checkpoint signalling elicits PD-L1 immune checkpoint activation. Br. J. Cancer 118, 933–935 (2018).

    Article  Google Scholar 

  65. Sato, H. et al. DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nat. Commun. 8, 1751 (2017).

    Article  Google Scholar 

  66. Sun, L.-L. et al. Inhibition of ATR downregulates PD-L1 and sensitizes tumor cells to T cell-mediated killing. Am. J. Cancer Res. 8, 1307–1316 (2018).

    CAS  Google Scholar 

  67. Wayne, J., Brooks, T., Landras, A. & Massey, A. J. Targeting DNA damage response pathways to activate the STING innate immune signaling pathway in human cancer cells. FEBS J. 288, 4507–4540 (2021).

    Article  CAS  Google Scholar 

  68. Patel, P. et al. Enhancing direct cytotoxicity and response to immune checkpoint blockade following ionizing radiation with Wee1 kinase inhibition. Oncoimmunology 8, e1638207 (2019).

    Article  Google Scholar 

  69. Sen, T. et al. Targeting DNA damage response promotes antitumor immunity through STING-mediated T-cell activation in small cell lung cancer. Cancer Discov. 9, 646–661 (2019).

    Article  CAS  Google Scholar 

  70. Sen, T. et al. Combination treatment of the oral CHK1 inhibitor, SRA737, and low-dose gemcitabine enhances the effect of programmed death ligand 1 blockade by modulating the immune microenvironment in SCLC. J. Thorac. Oncol. 14, 2152–2163 (2019).

    Article  CAS  Google Scholar 

  71. Alimzhanov, M. et al. Abstract 2269: ATR inhibitor M6620 enhances anti-tumor efficacy of the combination of the anti-PD-L1 antibody avelumab with platinum-based chemotherapy. Cancer Res. 79 (Suppl. 13), Abstr. 2269 (2019).

    Article  Google Scholar 

  72. Zhang, S. et al. Genetically defined, syngeneic organoid platform for developing combination therapies for ovarian cancer. Cancer Discov. 11, 362–383 (2021).

    Article  CAS  Google Scholar 

  73. Iyer, S. et al. Genetically defined syngeneic mouse models of ovarian cancer as tools for the discovery of combination immunotherapy. Cancer Discov. 11, 384–407 (2021).

    Article  CAS  Google Scholar 

  74. Tang, Z. et al. ATR inhibition induces CDK1–SPOP signaling and enhances anti-PD-L1 cytotoxicity in prostate cancer. Clin. Cancer Res. 27, 4898–4909 (2021).

    Article  CAS  Google Scholar 

  75. Pilger, D., Seymour, L. W. & Jackson, S. P. Interfaces between cellular responses to DNA damage and cancer immunotherapy. Genes. Dev. 35, 602–618 (2021).

    Article  CAS  Google Scholar 

  76. Sheng, H. et al. ATR inhibitor AZD6738 enhances the antitumor activity of radiotherapy and immune checkpoint inhibitors by potentiating the tumor immune microenvironment in hepatocellular carcinoma. J. Immunother. Cancer 8, e000340 (2020).

    Article  Google Scholar 

  77. Young, L. A. et al. Differential activity of ATR and Wee1 inhibitors in a highly sensitive subpopulation of DLBCL linked to replication stress. Cancer Res. 79, 3762–3775 (2019).

    Article  CAS  Google Scholar 

  78. Aarts, M. et al. Forced mitotic entry of S-phase cells as a therapeutic strategy induced by inhibition of WEE1. Cancer Discov. 2, 524–539 (2012).

    Article  CAS  Google Scholar 

  79. Moiseeva, T. N., Qian, C., Sugitani, N., Osmanbeyoglu, H. U. & Bakkenist, C. J. WEE1 kinase inhibitor AZD1775 induces CDK1 kinase-dependent origin firing in unperturbed G1- and S-phase cells. Proc. Natl Acad. Sci. USA 116, 23891–23893 (2019).

    Article  CAS  Google Scholar 

  80. Beck, H. et al. Cyclin-dependent kinase suppression by WEE1 kinase protects the genome through control of replication initiation and nucleotide consumption. Mol. Cell Biol. 32, 4226–4236 (2012).

    Article  CAS  Google Scholar 

  81. Cuneo, K. C. et al. Wee1 kinase inhibitor AZD1775 radiosensitizes hepatocellular carcinoma regardless of TP53 mutational status through induction of replication stress. Int. J. Radiat. Oncol. Biol. Phys. 95, 782–790 (2016).

    Article  CAS  Google Scholar 

  82. King, C. et al. LY2606368 causes replication catastrophe and antitumor effects through CHK1-dependent mechanisms. Mol. Cancer Ther. 14, 2004–2013 (2015).

    Article  CAS  Google Scholar 

  83. Morgan, M. A. et al. Mechanism of radiosensitization by the Chk1/2 inhibitor AZD7762 involves abrogation of the G2 checkpoint and inhibition of homologous recombinational DNA repair. Cancer Res. 70, 4972–4981 (2010).

    Article  CAS  Google Scholar 

  84. Dibitetto, D. et al. Intrinsic ATR signaling shapes DNA end resection and suppresses toxic DNA-PKcs signaling. Nar. Cancer 2, 1–14 (2020).

    Article  Google Scholar 

  85. Sørensen, C. S. et al. The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat. Cell Biol. 7, 195–201 (2005). This is the first study to propose that CHK1 is not only crucial for cell-cycle regulation but also has a fundamental role in DNA repair.

    Article  Google Scholar 

  86. Pefani, D. E. et al. RASSF1A-LATS1 signalling stabilizes replication forks by restricting CDK2-mediated phosphorylation of BRCA2. Nat. Cell Biol. 16, 962–971 (2014).

    Article  CAS  Google Scholar 

  87. Parsels, L. A. et al. Gemcitabine sensitization by checkpoint kinase 1 inhibition correlates with inhibition of a Rad51 DNA damage response in pancreatic cancer cells. Mol. Cancer Ther. 8, 45–54 (2009).

    Article  CAS  Google Scholar 

  88. Kausar, T. et al. Sensitization of pancreatic cancers to gemcitabine chemoradiation by WEE1 kinase inhibition depends on homologous recombination repair. Neoplasia 17, 757–766 (2015).

    Article  CAS  Google Scholar 

  89. Aarts, M. et al. Functional genetic screen identifies increased sensitivity to WEE1 inhibition in cells with defects in Fanconi anemia and HR pathways. Mol. Cancer Ther. 14, 865–876 (2015).

    Article  CAS  Google Scholar 

  90. Guertin, A. D. et al. Preclinical evaluation of the WEE1 inhibitor MK-1775 as single-agent anticancer therapy. Mol. Cancer Ther. 12, 1442–1452 (2013).

    Article  CAS  Google Scholar 

  91. Kreahling, J. M. et al. MK1775, a selective WEE1 inhibitor, shows single-agent antitumor activity against sarcoma cells. Mol. Cancer Ther. 11, 174–182 (2012).

    Article  CAS  Google Scholar 

  92. Reaper, P. M. et al. Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat. Chem. Biol. 7, 428–430 (2011).

    Article  CAS  Google Scholar 

  93. Hirai, H. et al. Small-molecule inhibition of Wee1 kinase by MK-1775 selectively sensitizes p53-deficient tumor cells to DNA-damaging agents. Mol. Cancer Ther. 8, 2992–3000 (2009).

    Article  CAS  Google Scholar 

  94. Bridges, K. A. et al. MK-1775, a novel Wee1 kinase inhibitor,radiosensitizes p53-defective human tumor cells. Clin. Cancer Res. 17, 5638–5648 (2011).

    Article  CAS  Google Scholar 

  95. Pappano, W. N., Zhang, Q., Tucker, L. A., Tse, C. & Wang, J. Genetic inhibition of the atypical kinase Wee1 selectively drives apoptosis of p53 inactive tumor cells. BMC Cancer 14, 430 (2014).

    Article  Google Scholar 

  96. Dillon, M. T. et al. Radiosensitization by the ATR inhibitor AZD6738 through generation of acentric micronuclei. Mol. Cancer Ther. 16, 25–34 (2017).

    Article  CAS  Google Scholar 

  97. Middleton, F. K., Pollard, J. R. & Curtin, N. J. The impact of p53 dysfunction in ATR inhibitor cytotoxicity and chemo- and radiosensitisation. Cancers 10, 275 (2018).

    Article  Google Scholar 

  98. Van Linden, A. A. et al. Inhibition of wee1 sensitizes cancer cells to antimetabolite chemotherapeutics in vitro and in vivo, independent of p53 functionality. Mol. Cancer Ther. 12, 2675–2684 (2013).

    Article  Google Scholar 

  99. Dillon, M. et al. A phase I study of ATR inhibitor, AZD6738, as monotherapy in advanced solid tumours (PATRIOT part A, B). Ann. Oncol. 30, v165–v166 (2019).

    Article  Google Scholar 

  100. Aggarwal, R. et al. 512O. Interim results from a phase II study of the ATR inhibitor ceralasertib in ARID1A-deficient and ARID1A-intact advanced solid tumor malignancies. Ann. Oncol. 32, S583 (2021).

    Article  Google Scholar 

  101. Yap, T. A. et al. First-in-human trial of the oral ataxia telangiectasia and Rad3-related inhibitor BAY 1895344 in patients with advanced solid tumors. Cancer Discov. 11, 80–91 (2021).

    Article  CAS  Google Scholar 

  102. Yap, T. A. et al. Phase I trial of first-in-class ATR inhibitor M6620 (VX-970) as monotherapy or in combination with carboplatin in patients with advanced solid tumors. J. Clin. Oncol. 38, 3195–3204 (2020).

    Article  CAS  Google Scholar 

  103. Yap, T. A. et al. Genomic and pathologic determinants of response to RP-3500, an ataxia telangiectasia and Rad3-related inhibitor (ATRi), in patients (pts) with DNA damage repair (DDR) loss-of-function (LOF) mutant tumors in the phase 1/2 TRESR trial. Cancer Res. 82 (Suppl. 12), Abstr. CT030 (2022).

    Article  Google Scholar 

  104. Daud, A. I. et al. Phase I dose-escalation trial of checkpoint kinase 1 inhibitor MK-8776 as monotherapy and in combination with gemcitabine in patients with advanced solid tumors. J. Clin. Oncol. 33, 1060–1066 (2015).

    Article  CAS  Google Scholar 

  105. Italiano, A. et al. Phase I study of the checkpoint kinase 1 inhibitor GDC-0575 in combination with gemcitabine in patients with refractory solid tumors. Ann. Oncol. 29, 1304–1311 (2018).

    Article  CAS  Google Scholar 

  106. Laquente, B. et al. A phase II study to evaluate LY2603618 in combination with gemcitabine in pancreatic cancer patients. BMC Cancer 17, 137 (2017).

    Article  Google Scholar 

  107. Scagliotti, G. et al. Phase II evaluation of LY2603618, a first-generation CHK1 inhibitor, in combination with pemetrexed in patients with advanced or metastatic non-small cell lung cancer. Invest. New Drugs 34, 625–635 (2016).

    Article  CAS  Google Scholar 

  108. Doi, T. et al. Phase I study of LY2603618, a CHK1 inhibitor, in combination with gemcitabine in Japanese patients with solid tumors. Anticancer Drugs 26, 1043–1053 (2015).

    Article  CAS  Google Scholar 

  109. Calvo, E. et al. Phase I study of CHK1 inhibitor LY2603618 in combination with gemcitabine in patients with solid tumors. Oncology 91, 251–260 (2016).

    Article  CAS  Google Scholar 

  110. Seto, T. et al. Phase I, dose-escalation study of AZD7762 alone and in combination with gemcitabine in Japanese patients with advanced solid tumours. Cancer Chemother. Pharmacol. 72, 619–627 (2013).

    Article  CAS  Google Scholar 

  111. Sausville, E. et al. Phase I dose-escalation study of AZD7762, a checkpoint kinase inhibitor, in combination with gemcitabine in US patients with advanced solid tumors. Cancer Chemother. Pharmacol. 73, 539–549 (2014).

    Article  CAS  Google Scholar 

  112. Hong, D. et al. Phase i study of LY2606368, a checkpoint kinase 1 inhibitor, in patients with advanced cancer. J. Clin. Oncol. 34, 1764–1771 (2016).

    Article  CAS  Google Scholar 

  113. Hong, D. S. et al. Evaluation of prexasertib, a checkpoint kinase 1 inhibitor, in a phase Ib study of patients with squamous cell carcinoma. Clin. Cancer Res. 24, 3263–3272 (2018).

    Article  CAS  Google Scholar 

  114. Lee, J. M. et al. Prexasertib, a cell cycle checkpoint kinase 1 and 2 inhibitor, in BRCA wild-type recurrent high-grade serous ovarian cancer: a first-in-class proof-of-concept phase 2 study. Lancet Oncol. 19, 207–215 (2018). This clinical study is the first to show the activity of a CHK1 inhibitor to treat HGSOC.

    Article  CAS  Google Scholar 

  115. Lampert, E. J. et al. Prexasertib, a cell cycle checkpoint kinase 1 inhibitor, in BRCA mutant recurrent high-grade serous ovarian cancer (HGSOC): a proof-of-concept single arm phase II study. J. Clin. Oncol. 38, 6038 (2020).

    Article  Google Scholar 

  116. Ditano, J. P. & Eastman, A. comparative activity and off-target effects in cells of the CHK1 inhibitors MK-8776, SRA737, and LY2606368. ACS Pharmacol. Transl. Sci. 4, 730–743 (2021).

    Article  CAS  Google Scholar 

  117. Plummer, E. R. et al. A first-in-human phase I/II trial of SRA737 (a Chk1 Inhibitor) in subjects with advanced cancer. J. Clin. Oncol. 37, 3094 (2019).

    Article  Google Scholar 

  118. Miller, W. H. et al. A phase Ib study of oral Chk1 inhibitor LY2880070 as monotherapy in patients with advanced or metastatic cancer. J. Clin. Oncol. 38, 3579 (2020).

    Article  Google Scholar 

  119. Do, K. et al. Phase I study of single-agent AZD1775 (MK-1775), a Wee1 kinase inhibitor, in patients with refractory solid tumors. J. Clin. Oncol. 33, 3409–3415 (2015).

    Article  CAS  Google Scholar 

  120. Takebe, N. et al. Safety, antitumor activity, and biomarker analysis in a phase I trial of the once-daily wee1 inhibitor adavosertib (AZD1775) in patients with advanced solid tumors. Clin. Cancer Res. 27, 3834–3844 (2021).

    Article  CAS  Google Scholar 

  121. Tolcher, A. et al. Clinical activity of single-agent ZN-c3, an oral WEE1 inhibitor, in a phase 1 dose-escalation trial in patients with advanced solid tumors. Cancer Res. 81 (Suppl. 13), Abstr. CT016 (2021).

    Article  Google Scholar 

  122. Pasic, A. et al. A phase 1b dose-escalation study of ZN-c3, a WEE1 inhibitor, in combination with chemotherapy (CT) in subjects with platinum-resistant or refractory ovarian, peritoneal, or fallopian tube cancer. Cancer Res. 82 (Suppl. 12), Abstr. CT148 (2022).

    Article  Google Scholar 

  123. Lheureux, S. et al. Adavosertib plus gemcitabine for platinum-resistant or platinum-refractory recurrent ovarian cancer: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 397, 281–292 (2021). This is one of the two main randomized trials showing activity of the combination of a WEE1i with gemcitabine in platinum-resistant ovarian cancers.

    Article  CAS  Google Scholar 

  124. Meric-Bernstam, F. et al. Safety and clinical activity of single-agent ZN-c3, an oral WEE1 inhibitor, in a phase 1 trial in subjects with recurrent or advanced uterine serous carcinoma (USC). Cancer Res. 82 (Suppl. 12), Abstr. CT029 (2022).

    Article  Google Scholar 

  125. Fu, S. et al. Phase II trial of the Wee1 inhibitor adavosertib in advanced refractory solid tumors with CCNE1 amplification. Cancer Res. 81 (Suppl. 13), Abstr. 974 (2021).

    Article  Google Scholar 

  126. Ghelli Luserna Di Rorà, A., Cerchione, C., Martinelli, G. & Simonetti, G. A WEE1 family business: regulation of mitosis, cancer progression, and therapeutic target. J. Hematol. Oncol. 13, 126 (2020).

    Article  Google Scholar 

  127. Gallo, D. et al. CCNE1 amplification is synthetic lethal with PKMYT1 kinase inhibition. Nature 604, 749–756 (2022). This is the first preclinical study to show the synthetic lethality of PKMYT1 inhibition with CCNE1 amplification.

    Article  CAS  Google Scholar 

  128. Meng, X. et al. AZD1775 increases sensitivity to olaparib and gemcitabine in cancer cells with p53 mutations. Cancers 10, 149 (2018).

    Article  Google Scholar 

  129. Xiao, Y. et al. Identification of preferred chemotherapeutics for combining with a CHK1 Inhibitor. Mol. Cancer Ther. 12, 2285–2295 (2013).

    Article  CAS  Google Scholar 

  130. Kreahling, J. M. et al. Wee1 inhibition by MK-1775 leads to tumor inhibition and enhances efficacy of gemcitabine in human sarcomas. PLoS ONE 8, e57523 (2013).

    Article  CAS  Google Scholar 

  131. Koh, S. B. et al. Mechanistic distinctions between CHK1 and WEE1 inhibition guide the scheduling of triple therapy with gemcitabine. Cancer Res. 78, 3054–3066 (2018).

    Article  CAS  Google Scholar 

  132. Montano, R., Chung, I., Garner, K. M., Parry, D. & Eastman, A. Preclinical development of the novel Chk1 inhibitor SCH900776 in combination with DNA-damaging agents and antimetabolites. Mol. Cancer Ther. 11, 427–438 (2012).

    Article  CAS  Google Scholar 

  133. Hirai, H. et al. MK-1775, a small molecule Wee1 inhibitor, enhances antitumor efficacy of various DNA-damaging agents, including 5-fluorouracil. Cancer Biol. Ther. 9, 514–522 (2010).

    Article  CAS  Google Scholar 

  134. Fordham, S. E. et al. Inhibition of ATR acutely sensitizes acute myeloid leukemia cells to nucleoside analogs that target ribonucleotide reductase. Blood Adv. 2, 1157–1169 (2018).

    Article  CAS  Google Scholar 

  135. Liu, S. et al. Inhibition of ATR potentiates the cytotoxic effect of gemcitabine on pancreatic cancer cells through enhancement of DNA damage and abrogation of ribonucleotide reductase induction by gemcitabine. Oncol. Rep. 37, 3377–3386 (2017).

    Article  CAS  Google Scholar 

  136. Wallez, Y. et al. The ATR inhibitor AZD6738 synergizes with gemcitabine in vitro and in vivo to induce pancreatic ductal adenocarcinoma regression. Mol. Cancer Ther. 17, 1670–1682 (2018).

    Article  CAS  Google Scholar 

  137. Venkatesha, V. A. et al. Sensitization of pancreatic cancer stem cells to gemcitabine by Chk1 inhibition. Neoplasia 14, 519–525 (2012).

    Article  CAS  Google Scholar 

  138. Warren, N. J. H. & Eastman, A. Inhibition of checkpoint kinase 1 following gemcitabine-mediated S phase arrest results in CDC7- and CDK2-dependent replication catastrophe. J. Biol. Chem. 294, 1763–1778 (2019).

    Article  CAS  Google Scholar 

  139. Montano, R. et al. Sensitization of human cancer cells to gemcitabine by the Chk1 inhibitor MK-8776: cell cycle perturbation and impact of administration schedule in vitro and in vivo. BMC Cancer 13, 604 (2013).

    Article  Google Scholar 

  140. Leijen, S. et al. Phase I study evaluating WEE1 inhibitor AZD1775 as monotherapy and in combination with gemcitabine, cisplatin, or carboplatin in patients with advanced solid tumors. J. Clin. Oncol. 34, 4371–4380 (2016). This was one of the first clinical studies showing the safety and activity of WEE inhibition in patients with solid tumors.

    Article  CAS  Google Scholar 

  141. Cuneo, K. C. et al. Dose escalation trial of the WEE1 inhibitor adavosertib (AZD1775) in combination with gemcitabine and radiation for patients with locally advanced pancreatic cancer. J. Clin. Oncol. 37, 2643–2650 (2019).

    Article  CAS  Google Scholar 

  142. Banerji, U. et al. A phase I/II first-in-human trial of oral SRA737 (a Chk1 inhibitor) given in combination with low-dose gemcitabine in subjects with advanced cancer. J. Clin. Oncol. 37, 3095 (2019).

    Article  Google Scholar 

  143. Hong, D. S. et al. Preclinical evaluation and phase Ib study of prexasertib, a CHK1 inhibitor, and samotolisib (LY3023414), a dual PI3K/mTOR inhibitor. Clin. Cancer Res. 27, 1864–1874 (2021).

    Article  CAS  Google Scholar 

  144. Konstantinopoulos, P. A. et al. Berzosertib plus gemcitabine versus gemcitabine alone in platinum-resistant high-grade serous ovarian cancer: a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 21, 957–968 (2020). This is the first randomized study to show the activity of the ATRi berzosertib in patients with platinum-resistant HGSOC.

    Article  CAS  Google Scholar 

  145. Leijen, S. et al. Phase II study of WEE1 inhibitor AZD1775 plus carboplatin in patients with TP53-mutated ovarian cancer refractory or resistant to first-line therapy within 3 months. J. Clin. Oncol. 34, 4354–4361 (2016).

    Article  CAS  Google Scholar 

  146. Oza, A. M. et al. A biomarker-enriched, randomized phase II trial of adavosertib (AZD1775) plus paclitaxel and carboplatin for women with platinum-sensitive TP53-mutant ovarian cancer. Clin. Cancer Res. 26, 4767–4776 (2020).

    Article  CAS  Google Scholar 

  147. Moore, K. N. et al. Adavosertib with chemotherapy in patients with primary platinum-resistant ovarian, fallopian tube, or peritoneal cancer: an open-label, four-arm, phase II study. Clin. Cancer Res. 28, 36–44 (2022).

    Article  CAS  Google Scholar 

  148. Huntoon, C. J. et al. ATR inhibition broadly sensitizes ovarian cancer cells to chemotherapy independent of BRCA status. Cancer Res. 73, 3683–3691 (2013).

    Article  CAS  Google Scholar 

  149. Zheng, H., Shao, F., Martin, S., Xu, X. & Deng, C. X. WEE1 inhibition targets cell cycle checkpoints for triple negative breast cancers to overcome cisplatin resistance. Sci. Rep. 7, 43517 (2017).

    Article  Google Scholar 

  150. Jhuraney, A. et al. PAXIP1 potentiates the combination of WEE1 inhibitor AZD1775 and platinum agents in lung cancer. Mol. Cancer Ther. 15, 1669–1681 (2016).

    Article  CAS  Google Scholar 

  151. Osman, A. A. et al. Wee-1 kinase inhibition overcomes cisplatin resistance associated with high-risk TP53 mutations in head and neck cancer through mitotic arrest followed by senescence. Mol. Cancer Ther. 14, 608–619 (2015).

    Article  CAS  Google Scholar 

  152. Mendez, E. et al. A phase I clinical trial of AZD1775 in combination with neoadjuvant weekly docetaxel and cisplatin before definitive therapy in head and neck squamous cell carcinoma. Clin. Cancer Res. 24, 2740–2748 (2018).

    Article  CAS  Google Scholar 

  153. Yap, T. A. et al. Ceralasertib (AZD6738), an oral ATR kinase inhibitor, in combination with carboplatin in patients with advanced solid tumors: a phase I study. Clin. Cancer Res. 27, 5213–5224 (2021).

    Article  CAS  Google Scholar 

  154. Thomas, A. et al. Phase I study of ATR inhibitor M6620 in combination with topotecan in patients with advanced solid tumors. J. Clin. Oncol. 36, 1594–1602 (2018).

    Article  CAS  Google Scholar 

  155. Kabeche, L., Nguyen, H. D., Buisson, R. & Zou, L. A mitosis-specific and R loop–driven ATR pathway promotes faithful chromosome segregation. Science 359, 108–114 (2018).

    Article  CAS  Google Scholar 

  156. Kim, S. T. et al. Phase I study of ceralasertib (AZD6738), a novel DNA damage repair agent, in combination with weekly paclitaxel in refractory cancer. Clin. Cancer Res. 27, 4700–4709 (2021).

    Article  Google Scholar 

  157. Kim, H. et al. Targeting the ATR/CHK1 axis with PARP inhibition results in tumor regression in BRCA-mutant ovarian cancer models. Clin. Cancer Res. 23, 3097–3108 (2017).

    Article  CAS  Google Scholar 

  158. Fang, Y. et al. Sequential therapy with PARP and WEE1 inhibitors minimizes toxicity while maintaining efficacy. Cancer Cell 35, 851–867.e7 (2019). This study proposes an innovative schedule for the combination of PARPi and WEEi to overcome the toxicity of the combination.

    Article  CAS  Google Scholar 

  159. Burgess, B. T. et al. Olaparib combined with an ATR or Chk1 inhibitor as a treatment strategy for acquired olaparib-resistant BRCA1 mutant ovarian cells. Diagnostics 10, 121 (2020).

    Article  CAS  Google Scholar 

  160. Brill, E. et al. Prexasertib, a cell cycle checkpoint kinases 1 and 2 inhibitor, increases in vitro toxicity of PARP inhibition by preventing Rad51 foci formation in BRCA wild type high-grade serous ovarian cancer. Oncotarget 8, 111026–111040 (2017).

    Article  Google Scholar 

  161. Mani, C. et al. Prexasertib treatment induces homologous recombination deficiency and synergizes with olaparib in triple-negative breast cancer cells. Breast Cancer Res. 21, 104 (2019).

    Article  Google Scholar 

  162. Chen, X. et al. Targeting replicative stress and DNA repair by combining PARP and Wee1 kinase inhibitors is synergistic in triple negative breast cancers with cyclin E or BRCA1 alteration. Cancers 13, 1656 (2021).

    Article  CAS  Google Scholar 

  163. Heidler, C. L. et al. Prexasertib (LY2606368) reduces clonogenic survival by inducing apoptosis in primary patient-derived osteosarcoma cells and synergizes with cisplatin and talazoparib. Int. J. Cancer 147, 1059–1070 (2020).

    Article  CAS  Google Scholar 

  164. Garcia, T. B. et al. A small-molecule inhibitor of WEE1, AZD1775, synergizes with olaparib by impairing homologous recombination and enhancing DNA damage and apoptosis in acute leukemia. Mol. Cancer Ther. 16, 2058–2068 (2017).

    Article  CAS  Google Scholar 

  165. Karnak, D. et al. Combined inhibition of Wee1 and PARP1/2 for radiosensitization in pancreatic cancer. Clin. Cancer Res. 20, 5085–5096 (2014).

    Article  CAS  Google Scholar 

  166. Smith, H. L., Prendergast, L. & Curtin, N. J. Exploring the synergy between PARP and CHK1 inhibition in matched BRCA2 mutant and corrected cells. Cancers 12, 878 (2020).

    Article  CAS  Google Scholar 

  167. Krebs, M. G. et al. Abstract CT026: Phase I study of AZD6738, an inhibitor of ataxia telangiectasia Rad3-related (ATR), in combination with olaparib or durvalumab in patients (pts) with advanced solid cancers. Cancer Res. 78 (Suppl. 13), CT026 (2018).

    Article  Google Scholar 

  168. Wethington, S. L. et al. Combination of PARP and ATR inhibitors (olaparib and ceralasertib) shows clinical activity in acquired PARP inhibitor-resistant recurrent ovarian cancer. J. Clin. Oncol. 39, 5516 (2021).

    Article  Google Scholar 

  169. Westin, S. N. et al. EFFORT: EFFicacy Of adavosertib in parp ResisTance: a randomized two-arm non-comparative phase II study of adavosertib with or without olaparib in women with PARP-resistant ovarian cancer. J. Clin. Oncol. 39, 5505 (2021). This is the first clinical study to show the activity of the WEE1 inhibitor adavosertib in which all patients presented PARPi-resistant ovarian cancer.

    Article  Google Scholar 

  170. Do, K. T. et al. Immune modulating activity of the CHK1 inhibitor prexasertib and anti-PD-L1 antibody LY3300054 in patients with high-grade serous ovarian cancer and other solid tumors. Cancer Immunol. Immunother. 70, 2991–3000 (2021).

    Article  CAS  Google Scholar 

  171. Kwon, M. et al. Phase II study of ceralasertib (AZD6738), in combination with durvalumab in patients with metastatic melanoma who have failed prior anti-PD-1 therapy. J. Clin. Oncol. 39, 9514 (2021). This study shows the most promising clinical result of the combination of an ATRi with anti-PD1/PDL1 therapy.

    Article  Google Scholar 

  172. Li, F. et al. mTOR inhibition overcomes primary and acquired resistance to Wee1 inhibition by augmenting replication stress in epithelial ovarian cancers. Am. J. Cancer Res. 10, 908–924 (2020).

    CAS  Google Scholar 

  173. Hai, J. et al. Synergy of WEE1 and mTOR inhibition in mutant KRAS-driven lung cancers. Clin. Cancer Res. 23, 6993–7005 (2017).

    Article  CAS  Google Scholar 

  174. Wu, S. et al. Activation of WEE1 confers resistance to PI3K inhibition in glioblastoma. NeuroOncol. 20, 78–91 (2018).

    CAS  Google Scholar 

  175. Wu, W. et al. Combination of the Chk1 inhibitor (prexasertib) with a PI3K/mTOR inhibitor (LY3023414) induces synergistic anti-tumor activity in triple negative breast cancer (TNBC) models. Cancer Res. 79 (Suppl. 13), Abstr. 3508 (2019).

    Article  Google Scholar 

  176. Ding, Y. et al. PI3K/AKT signaling pathway is transcriptionally elevated in prexasertib-resistant TNBC PDX models. Cancer Res. 78 (Suppl. 13), Abstr. 2586 (2018).

    Article  Google Scholar 

  177. Song, X. et al. Synergistic targeting of CHK1 and mTOR in MYC-driven tumors. Carcinogenesis 42, 448–460 (2021).

    Article  CAS  Google Scholar 

  178. Nayak, S., Calvo, J. A. & Cantor, S. B. Targeting translesion synthesis (TLS) to expose replication gaps, a unique cancer vulnerability. Expert Opin. Ther. Targets 25, 27–36 (2021).

    Article  CAS  Google Scholar 

  179. Lee, J. W. et al. Combined Aurora kinase A (AURKA) and WEE1 inhibition demonstrates synergistic antitumor effect in squamous cell carcinoma of the head and neck. Clin. Cancer Res. 25, 3430–3442 (2019).

    Article  Google Scholar 

  180. Zhou, L. et al. A regimen combining the Wee1 inhibitor AZD1775 with HDAC inhibitors targets human acute myeloid leukemia cells harboring various genetic mutations. Leukemia 29, 807–818 (2015).

    Article  CAS  Google Scholar 

  181. Schwartz, J. et al. Synergistic anti-leukemic interactions between ABT-199 and panobinostat in acute myeloid leukemia ex vivo. Am. J. Transl. Res. 8, 3893–3902 (2016).

    CAS  Google Scholar 

  182. Wang, G. et al. Synergistic antitumor interactions between MK-1775 and panobinostat in preclinical models of pancreatic cancer. Cancer Lett. 356, 656–668 (2015).

    Article  CAS  Google Scholar 

  183. de Jong, M. R. W. et al. WEE1 inhibition enhances anti-apoptotic dependency as a reult of premature mitotic entry and DNA damage. Cancers 11, 1743 (2019).

    Article  Google Scholar 

  184. Nojima, H. et al. Differential properties of mitosis-associated events following CHK1 and WEE1 inhibitor treatments in human tongue carcinoma cells. Exp. Cell Res. 386, 111720 (2020).

    Article  CAS  Google Scholar 

  185. Caeser, R. & Sen, T. Should WEE(1) CHK(1) in on the FAM(122A)ily? Mol. Cell 80, 377–378 (2020).

    Article  CAS  Google Scholar 

  186. Li, F. et al. CHK1 inhibitor blocks phosphorylation of FAM122A and promotes replication stress. Mol. Cell 80, 410–422.e6 (2020).

    Article  CAS  Google Scholar 

  187. Nam, A. R. et al. Inhibition of ATR increases the sensitivity to WEE1 inhibitor in biliary tract cancer. Cancer Res. Treat. 52, 945–956 (2020).

    Article  CAS  Google Scholar 

  188. Bukhari, A. B. et al. Inhibiting Wee1 and ATR kinases produces tumor-selective synthetic lethality and suppresses metastasis. J. Clin. Invest. 129, 1329–1344 (2019).

    Article  Google Scholar 

  189. Restelli, V. et al. DNA damage response inhibitor combinations exert synergistic antitumor activity in aggressive B-cell lymphomas. Mol. Cancer Ther. 18, 1255–1264 (2019).

    Article  CAS  Google Scholar 

  190. Qi, W. et al. Inhibition of Wee1 sensitizes AML cells to ATR inhibitor VE-822-induced DNA damage and apoptosis. Biochem. Pharmacol. 164, 273–282 (2019).

    Article  CAS  Google Scholar 

  191. Deneka, A. Y. et al. Synthetic lethal targeting of mitotic checkpoints in HPV-negative head and neck cancer. Cancers 12, 306 (2020).

    Article  CAS  Google Scholar 

  192. Di Rorá, A. G. L. et al. Synergism through WEE1 and CHK1 inhibition in acute lymphoblastic leukemia. Cancers 11, 1654 (2019).

    Article  Google Scholar 

  193. Maya-Mendoza, A. et al. Myc and Ras oncogenes engage different energy metabolism programs and evoke distinct patterns of oxidative and DNA replication stress. Mol. Oncol. 9, 601–616 (2015).

    Article  CAS  Google Scholar 

  194. Cottini, F. et al. Synthetic lethal approaches exploiting DNA damage in aggressive myeloma. Cancer Discov. 5, 972–987 (2015).

    Article  CAS  Google Scholar 

  195. Murga, M. et al. Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors. Nat. Struct. Mol. Biol. 18, 1331–1335 (2011).

    Article  CAS  Google Scholar 

  196. Liu, J. F. et al. Phase II study of the WEE1 inhibitor adavosertib in recurrent uterine serous carcinoma. J. Clin. Oncol. 39, 1531–1539 (2021).

    Article  CAS  Google Scholar 

  197. Al Zubaidi, T. et al. Targeting the DNA replication stress phenotype of KRAS mutant cancer cells. Sci. Rep. 11, 3656 (2021).

    Article  CAS  Google Scholar 

  198. Konstantinopoulos, P. A. et al. A replication stress biomarker is associated with response to gemcitabine versus combined gemcitabine and ATR inhibitor therapy in ovarian cancer. Nat. Commun. 12, 5574 (2021). This study tests several biomarkers of replication stress in patient tumour samples from a randomized clinical trial. It proposes a score to identify tumours that are more sensitive to replication stress-inducing agents.

    Article  CAS  Google Scholar 

  199. Guerrero Llobet, S. et al. An mRNA expression-based signature for oncogene-induced replication-stress. Oncogene 41, 1216–1224 (2022).

    Article  CAS  Google Scholar 

  200. Cleary, J. M., Aguirre, A. J., Shapiro, G. I. & D’Andrea, A. D. Biomarker-guided development of DNA repair inhibitors. Mol. Cell 78, 1070–1085 (2020).

    Article  CAS  Google Scholar 

  201. Dunlop, C. R. et al. Complete loss of ATM function augments replication catastrophe induced by ATR inhibition and gemcitabine in pancreatic cancer models. Br. J. Cancer 123, 1424–1436 (2020).

    Article  CAS  Google Scholar 

  202. Perkhofer, L. et al. ATM deficiency generating genomic instability sensitizes pancreatic ductal adenocarcinoma cells to therapy-induced DNA damage. Cancer Res. 77, 5576–5590 (2017).

    Article  CAS  Google Scholar 

  203. Schmitt, A. et al. ATM deficiency is associated with sensitivity to PARP1- and ATR inhibitors in lung adenocarcinoma. Cancer Res. 77, 3040–3056 (2017).

    Article  CAS  Google Scholar 

  204. Min, A. et al. AZD6738, A novel oral inhibitor of ATR, induces synthetic lethality with ATM deficiency in gastric cancer cells. Mol. Cancer Ther. 16, 566–577 (2017).

    Article  CAS  Google Scholar 

  205. Wang, Y., Hoang, L., Ji, J. X. & Huntsman, D. G. SWI/SNF complex mutations in gynecologic cancers: molecular mechanisms and models. Annu. Rev. Pathol. Mech. Dis. 15, 467–492 (2020).

    Article  CAS  Google Scholar 

  206. Damelin, M. & Bestor, T. H. The decatenation checkpoint. Br. J. Cancer 96, 201–205 (2007).

    Article  CAS  Google Scholar 

  207. Dykhuizen, E. C. et al. BAF complexes facilitate decatenation of DNA by topoisomerase IIα. Nature 497, 624–627 (2013).

    Article  CAS  Google Scholar 

  208. Williamson, C. T. et al. ATR inhibitors as a synthetic lethal therapy for tumours deficient in ARID1A. Nat. Commun. 7, 13837 (2016).

    Article  CAS  Google Scholar 

  209. Flynn, R. L. et al. Alternative lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors. Science 347, 273–277 (2015).

    Article  CAS  Google Scholar 

  210. Heaphy, C. M. et al. Prevalence of the alternative lengthening of telomeres telomere maintenance mechanism in human cancer subtypes. Am. J. Pathol. 179, 1608–1615 (2011).

    Article  CAS  Google Scholar 

  211. Laroche-Clary, A. et al. ATR inhibition broadly sensitizes soft-tissue sarcoma cells to chemotherapy independent of alternative lengthening telomere (ALT) status. Sci. Rep. 10, 7488 (2020).

    Article  CAS  Google Scholar 

  212. Deeg, K. I., Chung, I., Bauer, C. & Rippe, K. Cancer cells with alternative lengthening of telomeres do not display a general hypersensitivity to ATR inhibition. Front. Oncol. 6, 186 (2016).

    Article  Google Scholar 

  213. Lewis, C. W. et al. Upregulation of MyT1 promotes acquired resistance of cancer cells to WEE1 inhibition. Cancer Res. 79, 5971–5985 (2019).

    Article  CAS  Google Scholar 

  214. Tsai, S. et al. ARID1A regulates R-loop associated DNA replication stress. PLoS Genet. 17, e1009238 (2021).

    Article  CAS  Google Scholar 

  215. Oku, Y. et al. Augmentation of the therapeutic efficacy of WEE1 kinase inhibitor AZD1775 by inhibiting the YAP-E2F1-DNA damage response pathway axis. FEBS Open. Bio 8, 1001–1012 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Dana-Farber/Harvard Cancer Center Specialized Program of Research Excellence (SPORE) in Ovarian Cancer (NIH/NCI 2P50CA240243) and in Gastrointestinal (GI) Cancer (P50 CA127003). The work was also supported by a Lustgarten Foundation/Stand Up To Cancer Pancreatic Cancer Challenge grant, the Breast Cancer Research Foundation, the Gray Foundation, and the Ludwig Center at Harvard.

Author information

Authors and Affiliations

Authors

Contributions

A.D.D. and P.A.K. researched data for the article. A.D.D., P.A.K., A.A.B.A.C. and D.C. contributed substantially to discussion of the content. A.D.D., P.A.K. and A.A.B.A.C. wrote the article. A.D.D., P.A.K., G.I.S. and D.C. reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Alan D. D’Andrea or Panagiotis A. Konstantinopoulos.

Ethics declarations

Competing interests

G.I.S. is a consultant/advisory board member for Lilly, Sierra Oncology, Merck-EMD Serono, Pfizer, Astex, Almac, Roche, Bicycle Therapeutics, Fusion Pharmaceuticals, G1 Therapeutics, Bayer, Ip-sen, Cybrexa Therapeutics, Angiex, Daiichi Sankyo and Seattle Genetics, and reports receipt of commercial research grants from Lilly, Sierra Oncology, Merck-EMD Serono and Merck & Co. P.A.K. reports participation in advisory boards from GlaxoSmithKline/Tesaro, Merck, AstraZeneca and Bayer. A.D.D. is a consultant and/or advisory board member for AstraZeneca, Bayer AG, Cedilla Therapeutics, Celgene, Cyteir Therapeutics, Epizyme, GalaxoSmithKline, Ideaya, Impact Therapeutics, LAV Global Management Company Limited. D.C. and A.A.B.A.C. declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

DNA replication fork

A structure that is formed during DNA replication by the unwinding of the DNA double helix, so that the fork has a DNA double helix downstream, towards which the fork progresses, and two single-stranded DNA strands upstream. The replisome, a multiprotein complex present at the DNA fork, is responsible for DNA unwinding and synthesizes new DNA strands.

Mitotic catastrophe

A mechanism of cell death that is the consequence of the appearance of numerous DNA breaks during DNA replication owing to obstructions of the replication fork progression that the cell is not able to overcome.

Replication origin firing

Replication origins are the genomic regions in which DNA replication starts in a two-step process. First, origin licensing occurs during G1 phase when the pre-replication complex assembles to the DNA and identifies the origin sites. Then, origin firing happens in the G1–S transition and S phase by the formation and activation of the replisome, starting DNA replication at the origin site.

Repriming

A DNA damage tolerance pathway through which the replication fork bypasses DNA damage sites. The enzyme primase–polymerase (PRIMPOL) inserts a new primer immediately after the damage site and allows polymerases to restart DNA synthesis.

DNA fibre assay

An in vitro image technique to visualize single DNA molecules and DNA replication forks. Replicating DNA is labelled with two thymidine analogues such as 5-iodo-2′-deoxyuridine (IdU) and 5-chloro-2′-deoxyuridine (CldU), cells are lysed and DNA fibre stretched on glass coverslips. Fibres are then visualized under a microscope by immunofluorescence, allowing the study of replication fork dynamics.

Enhanced response evaluation criteria in solid tumours

Response evaluation criteria in solid tumours (RECIST) sets the criteria to define tumour response or progression to treatments. Enhanced RECIST are modified RECIST criteria that assess changes in the longest diameter of the lesion, allowing earlier detection of response or progression.

Decatenation

The disentanglement of chromosomes during mitosis to allow proper cell division. Sister chromatids entangle as a consequence of DNA replication, but non-replicative entanglements may also occur during interphase.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Costa, A.A.B.A., Chowdhury, D., Shapiro, G.I. et al. Targeting replication stress in cancer therapy. Nat Rev Drug Discov 22, 38–58 (2023). https://doi.org/10.1038/s41573-022-00558-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-022-00558-5

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer