Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Adaptive immune resistance at the tumour site: mechanisms and therapeutic opportunities

Abstract

Tumours employ various tactics to adapt and eventually resist immune attack. These mechanisms are collectively called adaptive immune resistance (AIR). The first defined and therapeutically validated AIR mechanism is the selective induction of programmed cell death 1 ligand 1 (PDL1) by interferon-γ in the tumour. Blockade of PDL1 binding to its receptor PD1 by antibodies (anti-PD therapy) has resulted in remission of a fraction of patients with advanced-stage cancer, especially in solid tumours. However, many clinical trials combining anti-PD therapy with other antitumour drugs conducted without a strong mechanistic rationale have failed to identify a synergistic or additive effect. In this Perspective article, we discuss why defining AIR mechanisms at the tumour site should be a key focus to direct future drug development as well as practical approaches to improve current cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Resistance to anti-PD therapy depending on type of tumour immune microenvironment.

Similar content being viewed by others

References

  1. Dong, H., Zhu, G., Tamada, K. & Chen, L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med. 5, 1365–1369 (1999). This article is the first to report the molecular cloning of B7-H1 (also called PDL1) and demonstration of its immunosuppressive function.

    Article  CAS  PubMed  Google Scholar 

  2. Freeman, G. J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000). This article reports that PDL1 could interact with PD1 to inhibit T cell activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dong, H. et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med. 8, 793–800 (2002). This is the first paper to demonstrate that PDL1 expressed on tumour cells induces immune evasion by suppressing T cells, that PDL1 can be upregulated by IFNγ, and finally, it also shows the therapeutic effect of an antibody that blocks the PD1–PDL1 interaction.

    Article  CAS  PubMed  Google Scholar 

  4. Dong, H. et al. B7-H1 determines accumulation and deletion of intrahepatic CD8+ T lymphocytes. Immunity 20, 327–336 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Parish, C. R. Cancer immunotherapy: the past, the present and the future. Immunol. Cell Biol. 81, 106–113 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Huang, A. C. et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545, 60–65 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Huang, R. R. et al. CTLA4 blockade induces frequent tumor infiltration by activated lymphocytes regardless of clinical responses in humans. Clin. Cancer Res. 17, 4101–4109 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weide, B. et al. Baseline biomarkers for outcome of melanoma patients treated with pembrolizumab. Clin. Cancer Res. 22, 5487–5496 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wolchok, J. D. et al. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 369, 122–133 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wong, K. K., Li, W. A., Mooney, D. J. & Dranoff, G. Advances in therapeutic cancer vaccines. Adv. Immunol. 130, 191–249 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Rosenberg, S. A. Decade in review — cancer immunotherapy: entering the mainstream of cancer treatment. Nat. Rev. Clin. Oncol. 11, 630–632 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Atkins, M. B. et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J. Clin. Oncol. 17, 2105–2116 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Fesnak, A. D., June, C. H. & Levine, B. L. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat. Rev. Cancer 16, 566–581 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen, L. Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat. Rev. Immunol. 4, 336–347 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Zou, W. & Chen, L. Inhibitory B7-family molecules in the tumour microenvironment. Nat. Rev. Immunol. 8, 467–477 (2008). References 14 and 15 are the first two publications to propose and discuss the TME as a major location for immune evasion.

    Article  CAS  PubMed  Google Scholar 

  16. Curiel, T. J. et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat. Med. 9, 562–567 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Wong, R. M. et al. Programmed death-1 blockade enhances expansion and functional capacity of human melanoma antigen-specific CTLs. Int. Immunol. 19, 1223–1234 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Zou, W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat. Rev. Cancer 5, 263–274 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Ahmadzadeh, M. et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114, 1537–1544 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fourcade, J. et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J. Exp. Med. 207, 2175–2186 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Matsuzaki, J. et al. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc. Natl Acad. Sci. USA 107, 7875–7880 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. PD-1/PD-L1 Landscape https://www.cancerresearch.org/scientists/immuno-oncology-landscape/pd-1-pd-l1-landscape (2020).

  23. Thommen, D. S. & Schumacher, T. N. T cell dysfunction in cancer. Cancer Cell 33, 547–562 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Azuma, T. et al. B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells. Blood 111, 3635–3643 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012). This is the second paper to show activity of anti-PD1 antibody in human cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Taube, J. M. et al. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci. Transl. Med. 4, 127ra137 (2012). This paper provides the first pathological data of TIME classification in human cancer and staining of PDL1 as a biomarker.

    Article  CAS  Google Scholar 

  27. Wang, J. et al. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy. Nat. Med. 25, 656–666 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Joyce, J. A. & Fearon, D. T. T cell exclusion, immune privilege, and the tumor microenvironment. Science 348, 74–80 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Emens, L. A. et al. Long-term clinical outcomes and biomarker analyses of atezolizumab therapy for patients with metastatic triple-negative breast cancer: a phase 1 study. JAMA Oncol. 5, 74–82 (2019).

    Article  PubMed  Google Scholar 

  30. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Garon, E. B. et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 372, 2018–2028 (2015).

    Article  PubMed  Google Scholar 

  32. Zhu, A. X. et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 19, 940–952 (2018).

    Article  PubMed  Google Scholar 

  33. McDermott, D. F. et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat. Med. 24, 749–757 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. McDermott, D. F. et al. Pembrolizumab monotherapy as first-line therapy in advanced clear cell renal cell carcinoma (accRCC): Results from cohort A of KEYNOTE-427. J. Clin. Oncol. 36 (Suppl. 15), Abstr. 4500 (2018).

    Article  Google Scholar 

  35. Motzer, R. J. et al. Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. J. Clin. Oncol. 33, 1430–1437 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Shitara, K. et al. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, open-label, controlled, phase 3 trial. Lancet 392, 123–133 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Bellmunt, J. et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N. Engl. J. Med. 376, 1015–1026 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nghiem, P. T. et al. PD-1 blockade with pembrolizumab in advanced merkel-cell carcinoma. N. Engl. J. Med. 374, 2542–2552 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Burtness, B. et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet 394, 1915–1928 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Naumann, R. W. et al. Safety and efficacy of nivolumab monotherapy in recurrent or metastatic cervical, vaginal, or vulvar carcinoma: results from the phase I/II checkmate 358 trial. J. Clin. Oncol. 37, 2825–2834 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Carbone, D. P. et al. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N. Engl. J. Med. 376, 2415–2426 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Socinski, M. A. et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N. Engl. J. Med. 378, 2288–2301 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Armand, P. et al. Pembrolizumab in relapsed or refractory primary mediastinal large B-cell lymphoma. J. Clin. Oncol. 37, 3291–3299 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ansell, S. M. et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N. Engl. J. Med. 372, 311–319 (2015).

    Article  PubMed  CAS  Google Scholar 

  45. Nghiem, P. et al. Durable tumor regression and overall survival in patients with advanced merkel cell carcinoma receiving pembrolizumab as first-line therapy. J. Clin. Oncol. 37, 693–702 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Topalian, S. L. et al. Five-year survival and correlates among patients with advanced melanoma, renal cell carcinoma, or non-small cell lung cancer treated with nivolumab. JAMA Oncol. 5, 1411–1420 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fehrenbacher, L. et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet 387, 1837–1846 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Herbst, R. S. et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387, 1540–1550 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Reck, M. et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med. 375, 1823–1833 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Rizvi, N. A. et al. Safety and clinical activity of MEDI4736, an anti-programmed cell death-ligand 1 (PD-L1) antibody, in patients with non-small cell lung cancer (NSCLC). J. Clin. Oncol. 33, 8032–8032 (2015).

    Article  Google Scholar 

  51. Obeid, J. M. et al. PD-L1, PD-L2 and PD-1 expression in metastatic melanoma: correlation with tumor-infiltrating immune cells and clinical outcome. Oncoimmunology 5, e1235107 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Teng, M. W., Ngiow, S. F., Ribas, A. & Smyth, M. J. Classifying cancers based on T-cell infiltration and PD-L1. Cancer Res. 75, 2139–2145 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang, Y. & Chen, L. Classification of advanced human cancers based on tumor immunity in the microenvironment (TIME) for cancer immunotherapy. JAMA Oncol. 2, 1403–1404 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sznol, M. & Chen, L. Antagonist antibodies to PD-1 and B7-H1 (PD-L1) in the treatment of advanced human cancer–response. Clin. Cancer Res. 19, 5542 (2013). This is the first paper to propose the TIME classification.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Velcheti, V. et al. Programmed death ligand-1 expression in non-small cell lung cancer. Lab. Invest. 94, 107–116 (2014). This article provides one of the first comprehensive analyses of PDL1 expression in human lung cancer.

    Article  CAS  PubMed  Google Scholar 

  56. Hamada, T. et al. TIME (tumor immunity in the microenvironment) classification based on tumor CD274 (PD-L1) expression status and tumor-infiltrating lymphocytes in colorectal carcinomas. Oncoimmunology 7, e1442999 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Herbst, R. S. et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515, 563–567 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Powles, T. et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515, 558–562 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Robert, C. et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 372, 320–330 (2015). This article reports the first pivotal clinical trial results with an anti-PD1 antibody in metastatic melanoma, which led to FDA approval of nivolumab in this tumour type.

    Article  CAS  PubMed  Google Scholar 

  60. Robert, C. et al. Pembrolizumab versus Ipilimumab in advanced melanoma. N. Engl. J. Med. 372, 2521–2532 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Powles, T. et al. Efficacy and safety of durvalumab in locally advanced or metastatic urothelial carcinoma: updated results from a phase 1/2 open-label study. JAMA Oncol. 3, e172411 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. McLaughlin, J. et al. Quantitative assessment of the heterogeneity of PD-L1 expression in non-small-cell lung cancer. JAMA Oncol. 2, 46–54 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Balar, A. V. et al. First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study. Lancet Oncol. 18, 1483–1492 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Grossman, J. E., Vasudevan, D., Joyce, C. E. & Hildago, M. Is PD-L1 a consistent biomarker for anti-PD-1 therapy? The model of balstilimab in a virally-driven tumor. Oncogene 40, 1393–1395 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Niemeijer, A. N. et al. Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer. Nat. Commun. 9, 4664 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Maute, R. L. et al. Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging. Proc. Natl Acad. Sci. USA 112, E6506–E6514 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Paavilainen, L. et al. The impact of tissue fixatives on morphology and antibody-based protein profiling in tissues and cells. J. Histochem. Cytochem. 58, 237–246 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rimm, D. L. et al. A prospective, multi-institutional, pathologist-based assessment of 4 immunohistochemistry assays for PD-L1 expression in non-small cell lung cancer. JAMA Oncol. 3, 1051–1058 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Mlecnik, B. et al. Integrative analyses of colorectal cancer show immunoscore is a stronger predictor of patient survival than microsatellite instability. Immunity 44, 698–711 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Pages, F. et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N. Engl. J. Med. 353, 2654–2666 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Pages, F. et al. Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene 29, 1093–1102 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Zaretsky, J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016). This article reports one of the mechanisms for acquired resistance to PD1 blockade in melanoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Horn, L. et al. Nivolumab versus docetaxel in previously treated patients with advanced non-small-cell lung cancer: two-year outcomes from two randomized, open-label, phase III trials (CheckMate 017 and CheckMate 057). J. Clin. Oncol. 35, 3924–3933 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lipson, E. J. et al. Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody. Clin. Cancer Res. 19, 462–468 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Vera Aguilera, J. et al. Chemo-immunotherapy combination after PD-1 inhibitor failure improves clinical outcomes in metastatic melanoma patients. Melanoma Res. 30, 364–375 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kalbasi, A. & Ribas, A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat. Rev. Immunol. 20, 25–39 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Benci, J. L. et al. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell 167, 1540–1554.e1512 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jacquelot, N. et al. Predictors of responses to immune checkpoint blockade in advanced melanoma. Nat. Commun. 8, 592 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Koyama, S. et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat. Commun. 7, 10501 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Green, M. R. et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 116, 3268–3277 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160, 48–61 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lastwika, K. J. et al. Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cancer. Cancer Res. 76, 227–238 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Parsa, A. T. et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat. Med. 13, 84–88 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Akbay, E. A. et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov. 3, 1355–1363 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Casey, S. C. et al. MYC regulates the antitumor immune response through CD47 and PD-L1. Science 352, 227–231 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dorand, R. D. et al. Cdk5 disruption attenuates tumor PD-L1 expression and promotes antitumor immunity. Science 353, 399–403 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kataoka, K. et al. Aberrant PD-L1 expression through 3′-UTR disruption in multiple cancers. Nature 534, 402–406 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Gubin, M. M., Artyomov, M. N., Mardis, E. R. & Schreiber, R. D. Tumor neoantigens: building a framework for personalized cancer immunotherapy. J. Clin. Invest. 125, 3413–3421 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Rizvi, N. A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gettinger, S. et al. Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov. 7, 1420–1435 (2017). This article reports on one of the mechanisms of acquired resistance to PD1 blockade in lung cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Marincola, F. M., Jaffee, E. M., Hicklin, D. J. & Ferrone, S. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv. Immunol. 74, 181–273 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Sucker, A. et al. Genetic evolution of T-cell resistance in the course of melanoma progression. Clin. Cancer Res. 20, 6593–6604 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sun, Y. et al. Blockade of the CD93 pathway normalizes tumor vasculature to facilitate drug delivery and immunotherapy. Sci. Transl. Med. 13, eabc8922 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gutierrez, M. et al. Trial in progress: a phase I/II, open-label, dose-escalation, safety and tolerability study of NC318 in subjects with advanced or metastatic solid tumors. J. Clin. Oncol. 38, TPS3166 (2020).

    Article  Google Scholar 

  99. Robert, C. et al. Pembrolizumab versus ipilimumab in advanced melanoma (KEYNOTE-006): post-hoc 5-year results from an open-label, multicentre, randomised, controlled, phase 3 study. Lancet Oncol. 20, 1239–1251 (2019).

    Article  CAS  PubMed  Google Scholar 

  100. Larkin, J. et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 381, 1535–1546 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Tang, J., Shalabi, A. & Hubbard-Lucey, V. M. Comprehensive analysis of the clinical immuno-oncology landscape. Ann. Oncol. 29, 84–91 (2018).

    Article  CAS  PubMed  Google Scholar 

  102. Upadhaya, S., Neftelinov, S. T., Hodge, J. & Campbell, J. Challenges and opportunities in the PD1/PDL1 inhibitor clinical trial landscape. Nat. Rev. Drug Discov. https://doi.org/10.1038/d41573-022-00030-4 (2022).

    Article  PubMed  Google Scholar 

  103. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Curran, M. A., Montalvo, W., Yagita, H. & Allison, J. P. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc. Natl Acad. Sci. USA 107, 4275–4280 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Duraiswamy, J., Kaluza, K. M., Freeman, G. J. & Coukos, G. Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors. Cancer Res. 73, 3591–3603 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fiegle, E. et al. Dual CTLA-4 and PD-L1 blockade inhibits tumor growth and liver metastasis in a highly aggressive orthotopic mouse model of colon cancer. Neoplasia 21, 932–944 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wei, S. C. et al. Combination anti-CTLA-4 plus anti-PD-1 checkpoint blockade utilizes cellular mechanisms partially distinct from monotherapies. Proc. Natl Acad. Sci. USA 116, 22699–22709 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 23–34 (2015). The first clinical trial to assess combination immunotherapy compared with monotherapy.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Aya, F. et al. Ipilimumab after progression on anti-PD-1 treatment in advanced melanoma. Future Oncol. 12, 2683–2688 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Zimmer, L. et al. Ipilimumab alone or in combination with nivolumab after progression on anti-PD-1 therapy in advanced melanoma. Eur. J. Cancer 75, 47–55 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Zitvogel, L., Apetoh, L., Ghiringhelli, F. & Kroemer, G. Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol. 8, 59–73 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Ghiringhelli, F. et al. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol. Immunother. 56, 641–648 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Glaser, M. Regulation of specific cell-mediated cytotoxic response against SV40-induced tumor associated antigens by depletion of suppressor T cells with cyclophosphamide in mice. J. Exp. Med. 149, 774–779 (1979).

    Article  CAS  PubMed  Google Scholar 

  114. Sutmuller, R. P. et al. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25+ regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J. Exp. Med. 194, 823–832 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 13, 1050–1059 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Grimaldi, A. et al. Combination of chemotherapy and PD-1 blockade induces T cell responses to tumor non-mutated neoantigens. Commun. Biol. 3, 85 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Schaer, D. A. et al. The folate pathway inhibitor pemetrexed pleiotropically enhances effects of cancer immunotherapy. Clin. Cancer Res. 25, 7175–7188 (2019).

    Article  CAS  PubMed  Google Scholar 

  118. Paz-Ares, L. et al. Durvalumab plus platinum-etoposide versus platinum-etoposide in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): a randomised, controlled, open-label, phase 3 trial. Lancet 394, 1929–1939 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Paz-Ares, L. et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N. Engl. J. Med. 379, 2040–2051 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Gandhi, L. et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N. Engl. J. Med. 378, 2078–2092 (2018).

    Article  CAS  PubMed  Google Scholar 

  121. Schmid, P. et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med. 379, 2108–2121 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. Druker, B. J. et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N. Engl. J. Med. 355, 2408–2417 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Flaherty, K. T. et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N. Engl. J. Med. 367, 1694–1703 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Rini, B. I. et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1116–1127 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. Wu, F. et al. Single-cell profiling of tumor heterogeneity and the microenvironment in advanced non-small cell lung cancer. Nat. Commun. 12, 2540 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gao, H. et al. Nuclear imaging-guided PD-L1 blockade therapy increases effectiveness of cancer immunotherapy. J. Immunother. Cancer 8, e001156 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Hou, J. et al. Integrating genome-wide CRISPR immune screen with multi-omic clinical data reveals distinct classes of tumor intrinsic immune regulators. J. Immunother. Cancer 9, e001919 (2021).

    Google Scholar 

  129. Wang, Y. et al. High-throughput functional screening for next-generation cancer immunotherapy using droplet-based microfluidics. Sci. Adv. 7, eabe3839 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ye, L. et al. In vivo CRISPR screening in CD8 T cells with AAV-sleeping beauty hybrid vectors identifies membrane targets for improving immunotherapy for glioblastoma. Nat. Biotechnol. 37, 1302–1313 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang, G. et al. Multiplexed activation of endogenous genes by CRISPRa elicits potent antitumor immunity. Nat. Immunol. 20, 1494–1505 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kinkead, H. L. et al. Combining STING-based neoantigen-targeted vaccine with checkpoint modulators enhances antitumor immunity in murine pancreatic cancer. JCI Insight 3, e122857 (2018).

    Article  PubMed Central  Google Scholar 

  133. Ager, C. R. et al. Intratumoral STING activation with T-cell checkpoint modulation generates systemic antitumor Immunity. Cancer Immunol. Res. 5, 676–684 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Liang, Y. et al. Targeting IFNalpha to tumor by anti-PD-L1 creates feedforward antitumor responses to overcome checkpoint blockade resistance. Nat. Commun. 9, 4586 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Takeda, Y. et al. A TLR3-specific adjuvant relieves innate resistance to PD-L1 blockade without cytokine toxicity in tumor vaccine immunotherapy. Cell Rep. 19, 1874–1887 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Sato-Kaneko, F. et al. Combination immunotherapy with TLR agonists and checkpoint inhibitors suppresses head and neck cancer. JCI Insight https://doi.org/10.1172/jci.insight.93397 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Ribas, A. et al. SD-101 in combination with pembrolizumab in advanced melanoma: results of a phase ib, multicenter study. Cancer Discov. 8, 1250–1257 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Harrington, K. J. et al. LBA15. Preliminary results of the first-in-human (FIH) study of MK-1454, an agonist of stimulator of interferon genes (STING), as monotherapy or in combination with pembrolizumab (pembro) in patients with advanced solid tumors or lymphomas. Ann. Oncol. 29 (Suppl. 8), 712 (2018).

    Article  Google Scholar 

  139. Lee, Y. et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood 114, 589–595 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Deng, L. et al. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J. Clin. Invest. 124, 687–695 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wei, S., Egenti, M. U., Teitz-Tennenbaum, S., Zou, W. & Chang, A. E. Effects of tumor irradiation on host T-regulatory cells and systemic immunity in the context of adoptive T-cell therapy in mice. J. Immunother. 36, 124–132 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Twyman-Saint Victor, C. et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520, 373–377 (2015).

    Article  CAS  PubMed  Google Scholar 

  143. Klug, F. et al. Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 24, 589–602 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Dovedi, S. J. et al. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res. 74, 5458–5468 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Sharabi, A. B. et al. Stereotactic radiation therapy augments antigen-specific PD-1-mediated antitumor immune responses via cross-presentation of tumor antigen. Cancer Immunol. Res. 3, 345–355 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. Luo, M. et al. A STING-activating nanovaccine for cancer immunotherapy. Nat. Nanotechnol. 12, 648–654 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kelly, E. & Russell, S. J. History of oncolytic viruses: genesis to genetic engineering. Mol. Ther. 15, 651–659 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Andtbacka, R. H. et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol. 33, 2780–2788 (2015).

    Article  CAS  PubMed  Google Scholar 

  149. Morikawa, M., Derynck, R. & Miyazono, K. TGF-beta and the TGF-beta family: context-dependent roles in cell and tissue physiology. Cold Spring Harb. Perspect. Biol. 8, 021873 (2016).

    Article  CAS  Google Scholar 

  150. Joshi, N. S. et al. Regulatory T cells in tumor-associated tertiary lymphoid structures suppress anti-tumor T cell responses. Immunity 43, 579–590 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wei, S., Kryczek, I. & Zou, W. Regulatory T-cell compartmentalization and trafficking. Blood 108, 426–431 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kryczek, I. et al. Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood 114, 1141–1149 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Allard, B., Pommey, S., Smyth, M. J. & Stagg, J. Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs. Clin. Cancer Res. 19, 5626–5635 (2013).

    Article  CAS  PubMed  Google Scholar 

  154. Fecher, L. A., Agarwala, S. S., Hodi, F. S. & Weber, J. S. Ipilimumab and its toxicities: a multidisciplinary approach. Oncologist 18, 733–743 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kappos, L. et al. Daclizumab HYP versus Interferon beta-1a in relapsing multiple sclerosis. N. Engl. J. Med. 373, 1418–1428 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Gabrilovich, D. I. et al. The terminology issue for myeloid-derived suppressor cells. Cancer Res. 67, 425 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9, 162–174 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Noy, R. & Pollard, J. W. Tumor-associated macrophages: from mechanisms to therapy. Immunity 41, 49–61 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Vincent, J. et al. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 70, 3052–3061 (2010).

    Article  CAS  PubMed  Google Scholar 

  160. De Henau, O. et al. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kgamma in myeloid cells. Nature 539, 443–447 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Kim, K. et al. Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc. Natl Acad. Sci. USA 111, 11774–11779 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Roth, F. et al. Aptamer-mediated blockade of IL4Ralpha triggers apoptosis of MDSCs and limits tumor progression. Cancer Res. 72, 1373–1383 (2012).

    Article  CAS  PubMed  Google Scholar 

  163. Condamine, T. et al. ER stress regulates myeloid-derived suppressor cell fate through TRAIL-R-mediated apoptosis. J. Clin. Invest. 124, 2626–2639 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Qin, H. et al. Generation of a new therapeutic peptide that depletes myeloid-derived suppressor cells in tumor-bearing mice. Nat. Med. 20, 676–681 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Gordon, S. R. et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545, 495–499 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hong, D. S. et al. Phase I/II study of LAG525 ± spartalizumab (PDR001) in patients (pts) with advanced malignancies. J. Clin. Oncol. 36, 3012–3012 (2018).

    Article  Google Scholar 

  167. Murtaza, A. et al. Discovery of TSR-022, a novel, potent anti-human TIM-3 therapeutic antibody [poster]. Eur. J. Cancer 69, S102 (2016).

    Article  Google Scholar 

  168. Solomon, B. L. & Garrido-Laguna, I. TIGIT: a novel immunotherapy target moving from bench to bedside. Cancer Immunol. Immunother. 67, 1659–1667 (2018).

    Article  CAS  PubMed  Google Scholar 

  169. Aslamkhan, A. G. et al. Characterization of indoleamine-2,3-dioxygenase 1, tryptophan-2,3-dioxygenase, and Ido1/Tdo2 knockout mice. Toxicol. Appl. Pharmacol. 406, 115216 (2020).

    Article  CAS  PubMed  Google Scholar 

  170. Boros, F. A., Bohar, Z. & Vecsei, L. Genetic alterations affecting the genes encoding the enzymes of the kynurenine pathway and their association with human diseases. Mutat. Res. Rev. Mutat. Res. 776, 32–45 (2018).

    Article  CAS  PubMed  Google Scholar 

  171. Dong, C. et al. ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 409, 97–101 (2001).

    Article  CAS  PubMed  Google Scholar 

  172. Miyazaki, T., Dierich, A., Benoist, C. & Mathis, D. Independent modes of natural killing distinguished in mice lacking Lag3. Science 272, 405–408 (1996).

    Article  CAS  PubMed  Google Scholar 

  173. Rischin, D. et al. 1119PD - Inducible T cell costimulatory (ICOS) receptor agonist, GSK3359609 (GSK609) alone and in combination with pembrolizumab (pembro): Preliminary results from INDUCE-1 expansion cohorts (EC) in head and neck squamous cell carcinoma (HNSCC). Ann. Oncol. 30, v454–v455 (2019).

    Article  Google Scholar 

  174. Liu, M. et al. Targeting the IDO1 pathway in cancer: from bench to bedside. J. Hematol. Oncol. 11, 100 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Puhr, H. C. & Ilhan-Mutlu, A. New emerging targets in cancer immunotherapy: the role of LAG3. ESMO Open 4, e000482 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Sadelain, M., Riviere, I. & Riddell, S. Therapeutic T cell engineering. Nature 545, 423–431 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Gargett, T. et al. GD2-specific CAR T cells undergo potent activation and deletion following antigen encounter but can be protected from activation-induced cell death by PD-1 blockade. Mol. Ther. 24, 1135–1149 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Ren, J. et al. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin. Cancer Res. 23, 2255–2266 (2017).

    Article  CAS  PubMed  Google Scholar 

  179. Heczey, A. et al. CAR T cells administered in combination with lymphodepletion and PD-1 inhibition to patients with neuroblastoma. Mol. Ther. 25, 2214–2224 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Liu, X. et al. A chimeric switch-receptor targeting PD1 augments the efficacy of second-generation CAR T cells in advanced solid tumors. Cancer Res. 76, 1578–1590 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Chen, L. P. et al. Costimulation of antitumor immunity by the B7 counterreceptor for the lymphocyte-T molecules Cd28 and Ctla-4. Cell 71, 1093–1102 (1992).

    Article  CAS  PubMed  Google Scholar 

  182. Melero, I., Hervas-Stubbs, S., Glennie, M., Pardoll, D. M. & Chen, L. P. Immunostimulatory monoclonal antibodies for cancer therapy. Nat. Rev. Cancer 7, 95–106 (2007).

    Article  CAS  PubMed  Google Scholar 

  183. Kwon, B. S. & Weissman, S. M. cDNA sequences of two inducible T-cell genes. Proc. Natl Acad. Sci. USA 86, 1963–1967 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Wortzman, M. E., Clouthier, D. L., McPherson, A. J., Lin, G. H. & Watts, T. H. The contextual role of TNFR family members in CD8+ T-cell control of viral infections. Immunol. Rev. 255, 125–148 (2013).

    Article  PubMed  CAS  Google Scholar 

  185. Wilcox, R. A. et al. Provision of antigen and CD137 signaling breaks immunological ignorance, promoting regression of poorly immunogenic tumors. J. Clin. Invest. 109, 651–659 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Lee, H. W. et al. 4-1BB promotes the survival of CD8+ T lymphocytes by increasing expression of Bcl-xL and Bfl-1. J. Immunol. 169, 4882–4888 (2002).

    Article  PubMed  Google Scholar 

  187. Segal, N. H. et al. Results from an integrated safety analysis of urelumab, an agonist anti-CD137 monoclonal antibody. Clin. Cancer Res. 23, 1929–1936 (2017).

    Article  CAS  PubMed  Google Scholar 

  188. Croft, M., So, T., Duan, W. & Soroosh, P. The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol. Rev. 229, 173–191 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Bansal-Pakala, P., Jember, A. G. & Croft, M. Signaling through OX40 (CD134) breaks peripheral T-cell tolerance. Nat. Med. 7, 907–912 (2001).

    Article  CAS  PubMed  Google Scholar 

  190. Sotomayor, E. M. et al. Conversion of tumor-specific CD4+ T-cell tolerance to T-cell priming through in vivo ligation of CD40. Nat. Med. 5, 780–787 (1999).

    Article  CAS  PubMed  Google Scholar 

  191. Diehl, L. et al. CD40 activation in vivo overcomes peptide-induced peripheral cytotoxic T-lymphocyte tolerance and augments anti-tumor vaccine efficacy. Nat. Med. 5, 774–779 (1999).

    Article  CAS  PubMed  Google Scholar 

  192. Vonderheide, R. H. et al. Phase I study of the CD40 agonist antibody CP-870,893 combined with carboplatin and paclitaxel in patients with advanced solid tumors. Oncoimmunology 2, e23033 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Fanale, M. et al. Phase IA/II, multicentre, open-label study of the CD40 antagonistic monoclonal antibody lucatumumab in adult patients with advanced non-Hodgkin or Hodgkin lymphoma. Br. J. Haematol. 164, 258–265 (2014).

    Article  CAS  PubMed  Google Scholar 

  194. Furman, R. R., Forero-Torres, A., Shustov, A. & Drachman, J. G. A phase I study of dacetuzumab (SGN-40, a humanized anti-CD40 monoclonal antibody) in patients with chronic lymphocytic leukemia. Leuk. Lymphoma 51, 228–235 (2010).

    Article  CAS  PubMed  Google Scholar 

  195. Hussein, M. et al. A phase I multidose study of dacetuzumab (SGN-40; humanized anti-CD40 monoclonal antibody) in patients with multiple myeloma. Haematologica 95, 845–848 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Advani, R. et al. Phase I study of the humanized anti-CD40 monoclonal antibody dacetuzumab in refractory or recurrent non-Hodgkin’s lymphoma. J. Clin. Oncol. 27, 4371–4377 (2009).

    Article  CAS  PubMed  Google Scholar 

  197. de Vos, S. et al. A phase II study of dacetuzumab (SGN-40) in patients with relapsed diffuse large B-cell lymphoma (DLBCL) and correlative analyses of patient-specific factors. J. Hematol. Oncol. 7, 44 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Faraj, S. F. et al. Assessment of tumoral PD-L1 expression and intratumoral CD8+ T cells in urothelial carcinoma. Urology 85, 703.e701–703.e706 (2015).

    Article  Google Scholar 

  199. Ju, X. et al. Predictive relevance of PD-L1 expression with pre-existing TILs in gastric cancer. Oncotarget 8, 99372–99381 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Yagi, T. et al. PD-L1 expression, tumor-infiltrating lymphocytes, and clinical outcome in patients with surgically resected esophageal cancer. Ann. Surg. 269, 471–478 (2019).

    Article  PubMed  Google Scholar 

  201. Hou, Y. et al. Evaluation of immune reaction and PD-L1 expression using multiplex immunohistochemistry in HER2-positive breast cancer: the association with response to anti-HER2 neoadjuvant therapy. Clin. Breast Cancer 18, e237–e244 (2018).

    Article  CAS  PubMed  Google Scholar 

  202. Ishii, H. et al. Programmed cell death-ligand 1 expression and immunoscore in stage II and III non-small cell lung cancer patients receiving adjuvant chemotherapy. Oncotarget 8, 61618–61625 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Lin, G. et al. Prognostic significance of PD-L1 expression and tumor infiltrating lymphocyte in surgically resectable non-small cell lung cancer. Oncotarget 8, 83986–83994 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Ono, T. et al. Association between PD-L1 expression combined with tumor-infiltrating lymphocytes and the prognosis of patients with advanced hypopharyngeal squamous cell carcinoma. Oncotarget 8, 92699–92714 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  205. AiErken, N. et al. High PD-L1 expression is closely associated with tumor-infiltrating lymphocytes and leads to good clinical outcomes in Chinese triple negative breast cancer patients. Int. J. Biol. Sci. 13, 1172–1179 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Burugu, S., Gao, D., Leung, S., Chia, S. K. & Nielsen, T. O. LAG-3+ tumor infiltrating lymphocytes in breast cancer: clinical correlates and association with PD-1/PD-L1+ tumors. Ann. Oncol. 28, 2977–2984 (2017).

    Article  CAS  PubMed  Google Scholar 

  207. Schalper, K. A. et al. Differential expression and significance of PD-L1, IDO-1, and B7-H4 in human lung cancer. Clin. Cancer Res. 23, 370–378 (2017).

    Article  CAS  PubMed  Google Scholar 

  208. Motzer, R. J. et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med. 378, 1277–1290 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Motzer, R. J. et al. Nivolumab plus ipilimumab versus sunitinib in first-line treatment for advanced renal cell carcinoma: extended follow-up of efficacy and safety results from a randomised, controlled, phase 3 trial. Lancet Oncol. 20, 1370–1385 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Schmid, P. et al. IMpassion130: updated overall survival (OS) from a global, randomized, double-blind, placebo-controlled, Phase III study of atezolizumab (atezo) plus nab-paclitaxel (nP) in previously untreated locally advanced or metastatic triple-negative breast cancer (mTNBC). J. Clin. Oncol. 37 (Suppl. 15), Abstr. 1003 (2019).

    Article  Google Scholar 

  211. Hellmann, M. D. et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N. Engl. J. Med. 381, 2020–2031 (2019).

    Article  CAS  PubMed  Google Scholar 

  212. Lebbe, C. et al. Evaluation of two dosing regimens for nivolumab in combination with ipilimumab in patients with advanced melanoma: results from the phase IIIb/IV CheckMate 511 trial. J. Clin. Oncol. 37, 867–875 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Xu, C. et al. Comparative safety of immune checkpoint inhibitors in cancer: systematic review and network meta-analysis. BMJ 363, k4226 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Dong, H. & Chen, X. Immunoregulatory role of B7-H1 in chronicity of inflammatory responses. Cell Mol. Immunol. 3, 179–187 (2006).

    CAS  PubMed  Google Scholar 

  215. Scandiuzzi, L. et al. Tissue-expressed B7-H1 critically controls intestinal inflammation. Cell Rep. 6, 625–632 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Subudhi, S. K. et al. Local expression of B7-H1 promotes organ-specific autoimmunity and transplant rejection. J. Clin. Invest. 113, 694–700 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Schreiner, B. et al. Interferon-beta enhances monocyte and dendritic cell expression of B7-H1 (PD-L1), a strong inhibitor of autologous T-cell activation: relevance for the immune modulatory effect in multiple sclerosis. J. Neuroimmunol. 155, 172–182 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T.K.K. is a recipient of American Cancer Society Clinician Scientist Development Grant 2019, American Society of Hematology Scholar Award 2016, American Society of Clinical Oncology Career Development Grant 2018, the Edward P. Evans Foundation Young Investigator Award 2018.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Lieping Chen.

Ethics declarations

Competing interests

R.S.H. is a consultant for AstraZeneca, Merck, Genentech/Roche, Lilly, Bristol-Myers Squibb, and a scientific adviser of NextCure. L.C. is a scientific founder, consultant and/or board member of NextCure, Junshi, Tayu, Normunity, Zai Lab, Tpioneer, Vcanbio and GenomiCare; and has sponsored research funds from NextCure, Normunity and DynamiCure. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Dmitry Gabrilovich, Gabriel Abril Rodriguez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T.K., Vandsemb, E.N., Herbst, R.S. et al. Adaptive immune resistance at the tumour site: mechanisms and therapeutic opportunities. Nat Rev Drug Discov 21, 529–540 (2022). https://doi.org/10.1038/s41573-022-00493-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-022-00493-5

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer