Abstract
Psychedelic drugs including psilocybin, N,Nʹ-dimethyltryptamine (DMT) and lysergic acid diethylamide (LSD) are undergoing a renaissance as potentially useful drugs for various neuropsychiatric diseases, with a rapid onset of therapeutic activity. Notably, phase II trials have shown that psilocybin can produce statistically significant clinical effects following one or two administrations in depression and anxiety. These findings have inspired a ‘gold rush’ of commercial interest, with nearly 60 companies already formed to explore opportunities for psychedelics in treating diverse diseases. Additionally, these remarkable phenomenological and clinical observations are informing hypotheses about potential molecular mechanisms of action that need elucidation to realize the full potential of this investigative space. In particular, despite compelling evidence that the 5-HT2A receptor is a critical mediator of the behavioural effects of psychedelic drugs, uncertainty remains about which aspects of 5-HT2A receptor activity in the central nervous system are responsible for therapeutic effects and to what degree they can be isolated by developing novel chemical probes with differing specificity and selectivity profiles. Here, we discuss this emerging area of therapeutics, covering both controversies and areas of consensus related to the opportunities and perils of psychedelic and psychedelic-inspired therapeutics. We highlight how basic science breakthroughs can guide the discovery and development of psychedelic-inspired medications with the potential for improved efficacy without hallucinogenic or rewarding actions.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Cardiovascular safety of psychedelic medicine: current status and future directions
Pharmacological Reports Open Access 24 October 2023
-
Neuroimaging in psychedelic drug development: past, present, and future
Molecular Psychiatry Open Access 27 September 2023
-
Psychedelics reopen the social reward learning critical period
Nature Open Access 14 June 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Hollister, L. E. Chemical Psychoses; LSD and Related Drugs (Thomas, 1968).
Osmond, H. A review of the clinical effects of psychotomimetic agents. Ann. NY Acad. Sci. 66, 418–434 (1957).
Nichols, D. E. Psychedelics. Pharmacol. Rev. 68, 264–355 (2016).
Alper, K. R. Ibogaine: a review. Alkaloids Chem. Biol. 56, 1–38 (2001).
Roth, B. L. et al. Salvinorin A: a potent naturally occurring nonnitrogenous κ opioid selective agonist. Proc. Natl Acad. Sci. USA 99, 11934–11939 (2002).
Johnson, M. W., MacLean, K. A., Reissig, C. J., Prisinzano, T. E. & Griffiths, R. R. Human psychopharmacology and dose-effects of salvinorin A, a κ opioid agonist hallucinogen present in the plant Salvia divinorum. Drug Alcohol Depend. 115, 150–155 (2011).
Hoffman, A. How LSD originated. J. Psychedelic Drugs 11, 53–60 (1979).
Fantegrossi, W. E. et al. Hallucinogen-like effects of 2-([2-(4-cyano-2,5-dimethoxyphenyl) ethylamino]methyl)phenol (25CN-NBOH), a novel N-benzylphenethylamine with 100-fold selectivity for 5-HT2A receptors, in mice. Psychopharmacology 232, 1039–1047 (2015).
Akers, B. P., Ruiz, J. F., Piper, A. & Ruck, C. A. P. A prehistoric mural in Spain depicting neurotropic Psilocybe mushrooms? Economic Bot. 65, 121–128 (2011).
Carod-Artal, F. J. Hallucinogenic drugs in pre-Columbian Mesoamerican cultures. Neurologia 30, 42–49 (2015).
Heffter, A. Ueber Pellote. Ein Betrag zur pharmakologischen Kenntnis der Cacteen [German]. Naunyn Schmiedebergs Arch. Exp. Pathol. Pharmakol. 34, 65–86 (1894).
Heffter, A. Uber peyote [German]. Naunyn Schmiedebergs Arch. Exp. Path. Pharmacol. 40, 385–429 (1898).
Wasson, R. G. Notes on the present status of ololuiqui and the other hallucinogens of Mexico. Bot. Mus. Leafl. Harv. Univ. 20, 163–193 (1963).
Wasson, R. G. A new Mexican psychotropic drug from the mint family. Bot. Mus. Leafl. Harv. Univ. 20, 77–84 (1962).
Abramson, H. A. The Use of LSD in Psychotherapy and Alcoholism (Bobbs-Merrill, 1967).
Wooley, D. W. & Shaw, E. A biochemical and pharmacological suggestion about certain mental disorders. Proc. Natl Acad. Sci. USA 40, 228–231 (1954).
Cole, J. O. & Katz, M. M. The psychotomimetic drugs. An overview. JAMA 187, 758–761 (1964).
Wooley, D. & Shaw, E. A biochemical and pharmacological suggestion about certain mental disoders. Proc. Natl Acad. Sci. USA 40, 228–231 (1954).
Gaddum, J. H. & Hameed, K. A. Drugs which antagonize 5-hydroxytryptamine. Br. J. Pharmacol. Chemother. 9, 240–248 (1954).
Glennon, R. A., Titler, M. & McKenney, J. D. Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sci. 35, 2505–2511 (1984).
Titeler, M., Lyon, R. A. & Glennon, R. A. Radioligand binding evidence implicates the brain 5-HT2 receptor as a site-of-action for LSD and phenylisopropylamine hallucinogens. Psychopharmacology 94, 213–216 (1988).
Shulgin, A. T. & Shulgin, A. PIKHAL — A Chemical Love Story (Transform, 1991).
Standridge, R. T., Howell, H. G., Gylys, J. A., Partyka, R. A. & Shulgin, A. T. Phenylakylamines with potential psychotherapeutic utility: 1. 2-amino-1-(2,5-dimethoxy-4-methylphenyl)butane. J. Med. Chem. 19, 1400–1404 (1976).
Repke, D. B., Grotjahn, D. B. & Shulgin, A. T. Psychotomimetic N-methyl-N-isopropyltryptamines. Effects of variation of aromatic oxygen substituents. J. Med. Chem. 28, 892–896 (1985).
Lemaire, D., Jacob, P. III & Shulgin, A. T. Ring-substituted β-methoxyphenethylamines: a new class of psychotomimetic agents active in man. J. Pharm. Pharmacol. 37, 575–577 (1985).
Porter, R. H. et al. Functional characterization of agonists at recombinant human 5-HT2A, 5-HT2B and 5-HT2C receptors in CHO-K1 cells. Br. J. Pharmacol. 128, 13–20 (1999).
Kroeze, W. K. et al. PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. Nat. Struct. Mol. Biol. 22, 362–369 (2015).
Rickli, A. et al. Receptor interaction profiles of novel N-2-methoxybenzyl (NBOMe) derivatives of 2,5-dimethoxy-substituted phenethylamines (2C drugs). Neuropharmacology 99, 546–553 (2015).
Rickli, A., Moning, O. D., Hoener, M. C. & Liechti, M. E. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens. Eur. Neuropsychopharmacol. 26, 1327–1337 (2016).
Simmler, L. D., Buchy, D., Chaboz, S., Hoener, M. C. & Liechti, M. E. In vitro characterization of psychoactive substances at rat, mouse, and human trace amine-associated receptor 1. J. Pharmacol. Exp. Ther. 357, 134–144 (2016).
Barnes, N. M., Hales, T. G., Lummis, S. C. & Peters, J. A. The 5-HT3 receptor — the relationship between structure and function. Neuropharmacology 56, 273–284 (2009).
Bunzow, J. R. et al. Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol. Pharmacol. 60, 1181–1188 (2001).
Keiser, M. et al. Predicting new molecular targets for known drugs. Nature 462, 175–181 (2009).
Cassels, B. K. & Saez-Briones, P. Dark classics in chemical neuroscience: mescaline. ACS Chem. Neurosci. 9, 2448–2458 (2018).
Kim, K. et al. Structure of a hallucinogen activated Gq-coupled 5-HT2A serotonin receptor. Cell 182, 1574–1588.e19 (2020).
Hansen, M. et al. Synthesis and structure-activity relationships of N-benzyl phenethylamines as 5-HT2A/2C agonists. ACS Chem. Neurosci. 5, 243–249 (2014).
Roth, B. et al. Salvinorin A: a potent naturally occurring nonnitrogenous κ opioid selective agonist. Proc. Natl Acad. Sci. USA 99, 11934–11939 (2002).
Pearl, S. M., Herrick-Davis, K., Teitler, M. & Glick, S. D. Radioligand-binding study of noribogaine, a likely metabolite of ibogaine. Brain Res. 675, 342–344 (1995).
Peng, Y. et al. 5-HT2C receptor structures reveal the structural basis of GPCR polypharmacology. Cell 172, 719–730.e14 (2018).
Wacker, D. et al. Structural features for functional selectivity at serotonin receptors. Science 340, 615–619 (2013).
Sanders-Bush, E., Burris, K. D. & Knoth, K. Lysergic acid diethylamide and 2,5-dimethoxy-4-methylamphetamine are partial agonists at serotonin receptors linked to phosphoinositide hydrolysis. J. Pharmacol. Exp. Ther. 246, 924–928 (1988).
Gonzalez-Maeso, J. et al. Hallucinogens recruit specific cortical 5-HT2A receptor-mediated signaling pathways to affect behavior. Neuron 53, 439–452 (2007).
Preller, K. H. et al. Changes in global and thalamic brain connectivity in LSD-induced altered states of consciousness are attributable to the 5-HT2A receptor. eLife 7, e35082 (2018).
Kometer, M., Schmidt, A., Jancke, L. & Vollenweider, F. X. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on alpha oscillations, N170 visual-evoked potentials, and visual hallucinations. J. Neurosci. 33, 10544–10551 (2013).
Ettrup, A. et al. Serotonin 2A receptor agonist binding in the human brain with [11C]Cimbi-36. J. Cereb. Blood Flow Metab. 34, 1188–1196 (2014).
Willins, D., Deutch, A. & Roth, B. Serotonin 5-HT2A receptors are expressed on pyramidal cells and interneurons in the rat cortex. Synapse 27, 79–82 (1997).
Jakab, R. & Goldman-Rakic, P. 5-hydroxytryptamine 2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc. Natl Acad. Sci. USA 95, 735–740 (1998).
Aghajanian, G. K. & Marek, G. J. Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells. Neuropharmacology 36, 589–599 (1997).
Roth, B. L., Nakaki, T., Chuang, D. M. & Costa, E. Aortic recognition sites for serotonin (5HT) are coupled to phospholipase C and modulate phosphatidylinositol turnover. Neuropharmacology 23, 1223–1225 (1984).
Conn, P. J. & Sanders-Bush, E. Selective 5-HT2 antagonists inhibit serotonin-stimulated phosphatidylinositol metabolism in cerebral cortex. Neuropharmacology 23, 993–996 (1984).
Roth, B. L., Nakaki, T., Chuang, D. M. & Costa, E. 5-hydroxytryptamine 2 receptors coupled to phospholipase C in rat aorta — modulation of phosphoinositide turnover by phorbol ester. J. Pharmacol. Exp. Ther. 238, 480–485 (1986).
Roth, B. L. Molecular pharmacology of metabotropic receptors targeted by neuropsychiatric drugs. Nat. Struct. Mol. Biol. 26, 535–544 (2019).
Gelber, E. et al. Structure and function of the third intracellular loop of the 5-hydroxytryptamine 2A receptor: the third intracellular loop is α-helical and binds purified arrestins. J. Neurochem. 72, 2206–2214 (1999).
Gray, J., Bhatnagar, A., Gurevich, V. & Roth, B. The interaction of a constitutively active arrestin with the arrestin-insensitive 5-HT2A receptor induces agonist-independent internalization. Mol. Pharmacol. 63, 961–972 (2003).
Wacker, D. et al. Crystal structure of an LSD-bound human serotonin receptor. Cell 168, 377–389.e12 (2017).
Schmid, C. L., Raehal, K. M. & Bohn, L. M. Agonist-directed signaling of the serotonin 2A receptor depends on β-arrestin-2 interactions in vivo. Proc. Natl Acad. Sci. USA 105, 1079–1084 (2008).
Schmid, C. L. & Bohn, L. M. Serotonin, but not N-methyltryptamines, activates the serotonin 2A receptor via a ss-arrestin2/Src/Akt signaling complex in vivo. J. Neurosci. 30, 13513–13524 (2010).
Rodriguez, R. M. et al. LSD-stimulated behaviors in mice require β-arrestin 2 but not β-arrestin 1. Sci. Rep. 11, 17690 (2021).
Pottie, E., Dedecker, P. & Stove, C. P. Identification of psychedelic new psychoactive substances (NPS) showing biased agonism at the 5-HT2AR through simultaneous use of β-arrestin 2 and miniGalphaq bioassays. Biochem. Pharmacol. 182, 114251 (2020).
Johnson, M. P., Loncharich, R. J., Baez, M. & Nelson, D. L. Species variations in transmembrane region V of the 5-hydroxytryptamine type 2A receptor alter the structure–activity relationship of certain ergolines and tryptamines. Mol. Pharmacol. 45, 277–286 (1994).
Roth, B. L. Drugs and valvular heart disease. N. Engl. J. Med. 356, 6–9 (2007).
Rothman, R. et al. Evidence for possible involvement of 5-HT2B receptors in the cardiac valvulopathy associated with fenfluramine and other serotonergic medications. Circulation 102, 2836–2841 (2000).
Connolly, H. M. et al. Valvular heart disease associated with fenfluramine-phentermine. N. Engl. J. Med. 337, 581–588 (1997).
Devereux, R. B. Appetite suppressants and valvular heart disease. N. Engl. J. Med. 339, 765–766 (1998).
Salner, A. L., Mullany, L. D. & Cole, S. R. Methysergide induced mitral valvular insufficiency. Conn. Med. 44, 6–8 (1980).
Hendrikx, M., Van Dorpe, J., Flameng, W. & Daenen, W. Aortic and mitral valve disease induced by ergotamine therapy for migraine: a case report and review of the literature. J. Heart Valve Dis. 5, 235–237 (1996).
Zanettini, R. et al. Valvular heart disease and the use of dopamine agonists for Parkinson’s disease. N. Engl. J. Med. 356, 39–46 (2007).
Setola, V. et al. 3,4-Methylenedioxymethamphetamine (MDMA, “Ecstasy”) induces fenfluramine-like proliferative actions on human cardiac valvular interstitial cells in vitro. Mol. Pharmacol. 63, 1223–1229 (2003).
Droogmans, S. et al. Possible association between 3,4-methylenedioxymethamphetamine abuse and valvular heart disease. Am. J. Cardiol. 100, 1442–1445 (2007).
Montastruc, F. et al. Valvular heart disease in a patient taking 3,4-methylenedioxymethamphetamine (MDMA, ‘Ecstasy’). Br. J. Clin. Pharmacol. 74, 547–548 (2012).
Fortier, J. H. et al. Drug-associated valvular heart diseases and serotonin-related pathways: a meta-analysis. Heart 105, 1140–1148 (2019).
Thomsen, W. J. et al. Lorcaserin, a novel selective human 5-hydroxytryptamine 2C agonist: in vitro and in vivo pharmacological characterization. J. Pharmacol. Exp. Ther. 325, 577–587 (2008).
Smith, S. R. et al. Multicenter, placebo-controlled trial of lorcaserin for weight management. N. Engl. J. Med. 363, 245–256 (2010).
Studerus, E., Kometer, M., Hasler, F. & Vollenweider, F. X. Acute, subacute and long-term subjective effects of psilocybin in healthy humans: a pooled analysis of experimental studies. J. Psychopharmacol. 25, 1434–1452 (2011).
Schifano, F. et al. New psychoactive substances (NPS) and serotonin syndrome onset: a systematic review. Exp. Neurol. 339, 113638 (2021).
Mills, K. C. Serotonin syndrome. A clinical update. Crit. Care Clin. 13, 763–783 (1997).
Boyer, E. W. & Shannon, M. The serotonin syndrome. N. Engl. J. Med. 352, 1112–1120 (2005).
Canal, C. E. & Morgan, D. Head-twitch response in rodents induced by the hallucinogen 2,5-dimethoxy-4-iodoamphetamine: a comprehensive history, a re-evaluation of mechanisms, and its utility as a model. Drug Test. Anal. 4, 556–576 (2012).
Appel, J. B., White, F. J. & Holohean, A. M. Analyzing mechanism(s) of hallucinogenic drug action with drug discrimination procedures. Neurosci. Biobehav. Rev. 6, 529–536 (1982).
Nielsen, E. B., Ginn, S. R., Cunningham, K. A. & Appel, J. B. Antagonism of the LSD cue by putative serotonin antagonists: relationship to inhibition of in vivo [3H]spiroperidol binding. Behav. Brain Res. 16, 171–176 (1985).
White, F. J. & Appel, J. B. Lysergic acid diethylamide (LSD) and lisuride: differentiation of their neuropharmacological actions. Science 216, 535–537 (1982).
Koerner, J. & Appel, J. B. Psilocybin as a discriminative stimulus: lack of specificity in an animal behavior model for ‘hallucinogens’. Psychopharmacology 76, 130–135 (1982).
Cunningham, K. A. & Appel, J. B. Neuropharmacological reassessment of the discriminative stimulus properties of d-lysergic acid diethylamide (LSD). Psychopharmacology 91, 67–73 (1987).
Glennon, R. A., Young, R. & Rosencrans, J. A. Antagonism of the effects of the hallucinogen DOM, and the purported 5-HT agonist quipazine, by 5-HT2 antagonists. Eur. Pharm. 91, 189–193 (1983).
Fiorella, D., Rabin, R. A. & Winter, J. C. The role of the 5-HT2A and 5-HT2C receptors in the stimulus effects of m-chlorophenylpiperazine. Psychopharmacology 119, 222–230 (1995).
Halberstadt, A. L., Chatha, M., Klein, A. K., Wallach, J. & Brandt, S. D. Correlation between the potency of hallucinogens in the mouse head-twitch response assay and their behavioral and subjective effects in other species. Neuropharmacology 167, 107933 (2020).
Keller, D. L. & Umbreit, W. W. Permanent alteration of behavior in mice by chemical and psychological means. Science 124, 723–724 (1956).
Corne, S. J. & Pickering, R. W. A possible correlation between drug-induced hallucinations in man and a behavioural response in mice. Psychopharmacologia 11, 65–78 (1967).
Silva, M. T. & Calil, H. M. Screening hallucinogenic drugs: systematic study of three behavioral tests. Psychopharmacologia 42, 163–171 (1975).
Barrett, F. S., Preller, K. H., Herdener, M., Janata, P. & Vollenweider, F. X. Serotonin 2A receptor signaling underlies LSD-induced alteration of the neural response to dynamic changes in music. Cereb. Cortex 28, 3939–3950 (2018).
Holze, F. et al. Acute dose-dependent effects of lysergic acid diethylamide in a double-blind placebo-controlled study in healthy subjects. Neuropsychopharmacology 46, 537–544 (2021).
Vollenweider, F. X., Vollenweider-Scherpenhuyzen, M. F., Babler, A., Vogel, H. & Hell, D. Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. Neuroreport 9, 3897–3902 (1998).
Abbas, A. et al. PSD-95 is essential for hallucinogen and atypical antipsychotic drug actions at serotonin receptors. J. Neurosci. 29, 7124–7136 (2009).
Corne, S. J., Pickering, R. W. & Warner, B. T. A method for assessing the effects of drugs on the central actions of 5-hydroxytryptamine. Br. J. Pharmacol. Chemother. 20, 106–120 (1963).
Halberstadt, A. L. & Geyer, M. A. Effect of hallucinogens on unconditioned behavior. Curr. Top. Behav. Neurosci. 36, 159–199 (2017).
Abbas, A. I. et al. PSD-95 is essential for hallucinogen and atypical antipsychotic drug actions at serotonin receptors. J. Neurosci. 29, 7124–7136 (2009).
Allen, J. A., Yadav, P. N., Setola, V., Farrell, M. & Roth, B. L. Schizophrenia risk gene CAV1 is both pro-psychotic and required for atypical antipsychotic drug actions in vivo. Transl. Psych. 1, e33 (2011).
Jones, K. et al. Rapid modulation of spine morphology by the 5-HT2A serotonin receptor through kalirin-7 signaling. Proc. Natl Acad. Sci. USA 106, 19575–19580 (2009).
Ly, C. et al. Psychedelics promote structural and functional neural plasticity. Cell Rep. 23, 3170–3182 (2018).
Raval, N. R. et al. A single dose of psilocybin increases synaptic density and decreases 5-HT2A receptor density in the pig brain. Int. J. Mol. Sci. 22, 835 (2021).
Duman, R. S., Li, N., Liu, R. J., Duric, V. & Aghajanian, G. Signaling pathways underlying the rapid antidepressant actions of ketamine. Neuropharmacology 62, 35–41 (2012).
Coyle, J. T. & Duman, R. S. Finding the intracellular signaling pathways affected by mood disorder treatments. Neuron 38, 157–160 (2003).
Kavalali, E. T. & Monteggia, L. M. Targeting homeostatic synaptic plasticity for treatment of mood disorders. Neuron 106, 715–726 (2020).
Olsen, R. H. J. et al. TRUPATH, an open-source biosensor platform for interrogating the GPCR transducerome. Nat. Chem. Biol. 16, 841–849 (2020).
Che, T. et al. Structure of the nanobody-stabilized active state of the κ opioid receptor. Cell 172, 55–67.e15 (2018).
Coleman, J. A. et al. Serotonin transporter–ibogaine complexes illuminate mechanisms of inhibition and transport. Nature 569, 141–145 (2019).
Nutt, D., Erritzoe, D. & Carhart-Harris, R. Psychedelic psychiatry’s brave new world. Cell 181, 24–28 (2020).
Carhart-Harris, R. L. et al. Psilocybin with psychological support for treatment-resistant depression: an open-label feasibility study. Lancet Psychiatry 3, 619–627 (2016).
Griffiths, R. R. et al. Psilocybin produces substantial and sustained decreases in depression and anxiety in patients with life-threatening cancer: a randomized double-blind trial. J. Psychopharmacol. 30, 1181–1197 (2016).
Carhart-Harris, R. et al. Trial of psilocybin versus escitalopram for depression. N. Engl. J. Med. 384, 1402–1411 (2021).
Carhart-Harris, R. L. et al. Psilocybin with psychological support for treatment-resistant depression: six-month follow-up. Psychopharmacology 235, 399–408 (2018).
Reiff, C. M. et al. Psychedelics and psychedelic-assisted psychotherapy. Am. J. Psychiatry 177, 391–410 (2020).
McCorvy, J. D., Olsen, R. H. & Roth, B. L. Psilocybin for depression and anxiety associated with life-threatening illnesses. J. Psychopharmacol. 30, 1209–1210 (2016).
Barnby, J. M. & Mehta, M. A. Psilocybin and mental health — don’t lose control. Front Psychiatry 9, 293 (2018).
Ross, S. et al. Rapid and sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with life-threatening cancer: a randomized controlled trial. J. Psychopharmacol. 30, 1165–1180 (2016).
Davis, A. K. et al. Effects of psilocybin-assisted therapy on major depressive disorder: a randomized clinical trial. JAMA Psychiatry 78, 481–489 (2020).
Bonson, K. R., Buckholtz, J. W. & Murphy, D. L. Chronic administration of serotonergic antidepressants attenuates the subjective effects of LSD in humans. Neuropsychopharmacology 14, 425–436 (1996).
Bonson, K. R. & Murphy, D. L. Alterations in responses to LSD in humans associated with chronic administration of tricyclic antidepressants, monoamine oxidase inhibitors or lithium. Behav. Brain Res. 73, 229–233 (1996).
Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).
Davies, M. A. et al. Pharmacologic analysis of non-synonymous coding h5-HT2A SNPs reveals alterations in atypical antipsychotic and agonist efficacies. Pharmacogenomics J. 6, 42–51 (2005).
Niswender, C. M. et al. RNA editing of the human serotonin 5-HT2C receptor. alterations in suicide and implications for serotonergic pharmacotherapy. Neuropsychopharmacology 24, 478–491 (2001).
Klein, A. K. et al. Investigation of the structure–activity relationships of psilocybin analogues. ACS Pharmacol. Transl. Sci. 4, 533–542 (2021).
Roseman, L., Nutt, D. J. & Carhart-Harris, R. L. Quality of acute psychedelic experience predicts therapeutic efficacy of psilocybin for treatment-resistant depression. Front. Pharmacol. 8, 974 (2017).
Barrett, F. S. & Griffiths, R. R. Classic hallucinogens and mystical experiences: phenomenology and neural correlates. Curr. Top. Behav. Neurosci. 36, 393–430 (2018).
Madsen, M. K. et al. Psychedelic effects of psilocybin correlate with serotonin 2A receptor occupancy and plasma psilocin levels. Neuropsychopharmacology 44, 1328–1334 (2019).
Hesselgrave, N., Troppoli, T. A., Wulff, A. B., Cole, A. B. & Thompson, S. M. Harnessing psilocybin: antidepressant-like behavioral and synaptic actions of psilocybin are independent of 5-HT2R activation in mice. Proc. Natl Acad. Sci. USA 118, e2022489118 (2021).
Conn, P. & Roth, B. Opportunities and challenges of psychiatric drug discovery: roles for scientists in academic, industry, and government settings. Neuropsychopharmacology 33, 2048–2060 (2008).
Cameron, L. P. et al. A non-hallucinogenic psychedelic analogue with therapeutic potential. Nature 589, 474–479 (2021).
Dong, C. et al. Psychedelic-inspired drug discovery using an engineered biosensor. Cell 184, 2779–2792.e18 (2021).
Lyu, J. et al. Ultra-large library docking for discovering new chemotypes. Nature 566, 224–229 (2019).
Stein, R. M. et al. Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. Natur 579, 609–614 (2020).
Wacker, D., Stevens, R. C. & Roth, B. L. How ligands illuminate GPCR molecular pharmacology. Cell 170, 414–427 (2017).
Acknowledgements
B.L.R. was supported by grants from the National Institutes of Health (NIH), a cooperative agreement from the Defense Advanced Research Projects Agency (DARPA) and the Michael Hooker Distinguished Professorship. T.D.M.-B. is a programme manager in the DARPA Biological Technologies Office.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Drug Discovery thanks David Nutt, Harriet de Wit and Magali Haas for their contribution to the peer review of this work.
Additional information
Disclaimer
The views, opinions and/or findings expressed are those of the authors and should not be interpreted as representing the official views or policies of the US Department of Defense or the US Government.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
FDA Breakthrough Therapy: https://www.fda.gov/patients/fast-track-breakthrough-therapy-accelerated-approval-priority-review/breakthrough-therapy
Genome Aggregation Database: https://gnomad.broadinstitute.org/
Psychedelic Stock Index: www.psychedelicinvest.com
Substance Abuse and Mental Health Service Administration — 2019 National Survey on Drug Use and Health Detailed Tables: https://www.samhsa.gov/data/report/2019-nsduh-detailed-tables
Supplementary information
Rights and permissions
About this article
Cite this article
McClure-Begley, T.D., Roth, B.L. The promises and perils of psychedelic pharmacology for psychiatry. Nat Rev Drug Discov 21, 463–473 (2022). https://doi.org/10.1038/s41573-022-00421-7
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41573-022-00421-7
This article is cited by
-
Sustained effects of single doses of classical psychedelics in humans
Neuropsychopharmacology (2023)
-
Synergistic psychedelic - NMDAR modulator treatment for neuropsychiatric disorders
Molecular Psychiatry (2023)
-
Rapid homeostatic plasticity and neuropsychiatric therapeutics
Neuropsychopharmacology (2023)
-
Psychedelics reopen the social reward learning critical period
Nature (2023)
-
Psychedelics: preclinical insights provide directions for future research
Neuropsychopharmacology (2023)