Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic RNA-silencing oligonucleotides in metabolic diseases

Abstract

Recent years have seen unprecedented activity in the development of RNA-silencing oligonucleotide therapeutics for metabolic diseases. Improved oligonucleotide design and optimization of synthetic nucleic acid chemistry, in combination with the development of highly selective and efficient conjugate delivery technology platforms, have established and validated oligonucleotides as a new class of drugs. To date, there are five marketed oligonucleotide therapies, with many more in clinical studies, for both rare and common liver-driven metabolic diseases. Here, we provide an overview of recent developments in the field of oligonucleotide therapeutics in metabolism, review past and current clinical trials, and discuss ongoing challenges and possible future developments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Applications of antisense RNA and RNAi in metabolic disease.
Fig. 2: siRNA and ASO-based therapies in hypercholesterolaemia.
Fig. 3: Acute hepatic porphyria subtypes and mechanism of ALAS1-siRNA action.
Fig. 4: Oxalate metabolism and RNAi targeting of HAO to reduce oxalate levels.

Similar content being viewed by others

References

  1. Scott, D. E., Bayly, A. R., Abell, C. & Skidmore, J. Small molecules, big targets: drug discovery faces the protein–protein interaction challenge. Nat. Rev. Drug Discov. 15, 533–550 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Gurevich, E. V. & Gurevich, V. V. In Arrestins: Pharmacology and Therapeutic Potential (ed. Gurevich, V. V.) 1–12 (Springer, 2014).

  3. Crooke, S. T., Witztum, J. L., Bennett, C. F. & Baker, B. F. RNA-targeted therapeutics. Cell Metab. 27, 714–739 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Egli, M. & Manoharan, M. Re-engineering RNA molecules into therapeutic agents. Acc. Chem. Res. 52, 1036–1047 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Krieg, A. M. et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546–549 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Hornung, V. et al. Sequence-specific potent induction of IFN-α by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat. Med. 11, 263–270 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Pichlmair, A. et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314, 997–1001 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Kleinman, M. E. et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 452, 591–597 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kulkarni, J. A. et al. Fusion-dependent formation of lipid nanoparticles containing macromolecular payloads. Nanoscale 11, 9023–9031 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Shi, B. et al. Biodistribution of small interfering RNA at the organ and cellular levels after lipid nanoparticle-mediated delivery. J. Histochem. Cytochem. 59, 727–740 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, S. et al. Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA. J. Controlled Rel. 235, 236–244 (2016).

    Article  CAS  Google Scholar 

  12. Rantanen, J. & Khinast, J. The future of pharmaceutical manufacturing sciences. J. Pharm. Sci. 104, 3612–3638 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Galant, N. J., Westermark, P., Higaki, J. N. & Chakrabartty, A. Transthyretin amyloidosis: an under-recognized neuropathy and cardiomyopathy. Clin. Sci. 131, 395–409 (2017).

    Article  CAS  Google Scholar 

  14. Liu, M. et al. INS-gene mutations: from genetics and beta cell biology to clinical disease. Mol. Asp. Med. 42, 3–18 (2015).

    Article  CAS  Google Scholar 

  15. Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 11–21 (2018). This article reports a phase III trial of an siRNA that inhibits hepatic synthesis of TTR, leading to the first RNAi therapeutic drug for the treatment of the polyneuropathy of hereditary transthyretin-mediated amyloidosis.

    Article  CAS  PubMed  Google Scholar 

  16. Stoekenbroek, R. M., Kastelein, J. J. & Huijgen, R. PCSK9 inhibition: the way forward in the treatment of dyslipidemia. BMC Med. 13, 258 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Barquera, S. et al. Global overview of the epidemiology of atherosclerotic cardiovascular disease. Arch. Med. Res. 46, 328–338 (2015).

    Article  PubMed  Google Scholar 

  18. Moran, A. E. et al. The global burden of ischemic heart disease in 1990 and 2010. Circulation 129, 1493–1501 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chen, Z. et al. Serum cholesterol concentration and coronary heart disease in population with low cholesterol concentrations. BMJ 303, 276–282 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stamler, J., Vaccaro, O., Neaton, J. D. & Wentworth, D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the multiple risk factor intervention trial. Diabetes Care 16, 434–444 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Reiner, Ž. Hypertriglyceridaemia and risk of coronary artery disease. Nat. Rev. Cardiol. 14, 401–411 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Burgess, S. et al. Association of LPA variants with risk of coronary disease and the implications for lipoprotein(a)-lowering therapies. JAMA Cardiol. 3, 619 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Escobar, E. Hypertension and coronary heart disease. J. Hum. Hypertens. 16, S61–S63 (2002).

    Article  PubMed  Google Scholar 

  24. Grundy, S. M. et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: executive summary. J. Am. Coll. Cardiol. 73, 3168–3209 (2019).

    Article  PubMed  Google Scholar 

  25. Mach, F. et al. 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk: The Task Force for the Management of Dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur. Heart J. 41, 111–188 (2019).

    Article  Google Scholar 

  26. Hirota, T., Fujita, Y. & Ieiri, I. An updated review of pharmacokinetic drug interactions and pharmacogenetics of statins. Expert Opin. Drug Metab. Toxicol. 16, 809–822 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. du Souich, P., Roederer, G. & Dufour, R. Myotoxicity of statins: mechanism of action. Pharmacol. Ther. 175, 1–16 (2017).

    Article  PubMed  CAS  Google Scholar 

  28. Zhang, H. et al. Discontinuation of statins in routine care settings. Ann. Intern. Med. 158, 526 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wiggins, B. S. et al. Recommendations for management of clinically significant drug-drug interactions with statins and select agents used in patients with cardiovascular disease: a scientific statement from the American Heart Association. Circulation 134, e468–e495 (2016).

    Article  PubMed  Google Scholar 

  30. Abifadel, M. et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34, 154–156 (2003). This is the first report showing that mutations in the gene PCSK9 have a key role in cholesterol metabolism.

    Article  CAS  PubMed  Google Scholar 

  31. Park, S. W., Moon, Y.-A. & Horton, J. D. Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/kexin type 9a in mouse liver. J. Biol. Chem. 279, 50630–50638 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Maxwell, K. N. & Breslow, J. L. Adenoviral-mediated expression of Pcsk9 in mice results in a low-density lipoprotein receptor knockout phenotype. Proc. Natl Acad. Sci. USA 101, 7100–7105 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Frank-Kamenetsky, M. et al. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc. Natl Acad. Sci. USA 105, 11915–11920 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fitzgerald, K. et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N. Engl. J. Med. 376, 41–51 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Ray, K. K. et al. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N. Engl. J. Med. 382, 1507–1519 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Raal, F. J. et al. Inclisiran for the treatment of heterozygous familial hypercholesterolemia. N. Engl. J. Med. 382, 1520–1530 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Lamb, Y. N. Inclisiran: first approval. Drugs 81, 389–395 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gennemark, P. et al. An oral antisense oligonucleotide for PCSK9 inhibition. Sci. Transl. Med. 13, eabe9117 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Reiner, Ž. Management of patients with familial hypercholesterolaemia. Nat. Rev. Cardiol. 12, 565–575 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Cuchel, M. et al. Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur. Heart J. 35, 2146–2157 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Watts, G. F. et al. Integrated guidance on the care of familial hypercholesterolaemia from the International FH Foundation. Int. J. Cardiol. 171, 309–325 (2014).

    Article  PubMed  Google Scholar 

  42. Naveen, T. et al. Role of LDL apheresis in a case of homozygous familial hypercholesterolemia. Drug Discov. Ther. 13, 59–61 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Raal, F. J. et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet 375, 998–1006 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. McGowan, M. P. et al. Randomized, placebo-controlled trial of mipomersen in patients with severe hypercholesterolemia receiving maximally tolerated lipid-lowering therapy. PLoS ONE 7, e49006 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Reeskamp, L. F. et al. Safety and efficacy of mipomersen in patients with heterozygous familial hypercholesterolemia. Atherosclerosis 280, 109–117 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Basu, D. & Goldberg, I. J. Regulation of lipoprotein lipase-mediated lipolysis of triglycerides. Curr. Opin. Lipidol. 31, 154–160 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, D. J. et al. Exome-wide association study of plasma lipids in >300,000 individuals. Nat. Genet. 49, 1758–1766 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Willer, C. J. et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat. Genet. 40, 161–169 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Klarin, D. et al. Genetics of blood lipids among ~300,000 multi-ethnic participants of the Million Veteran Program. Nat. Genet. 50, 1514–1523 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tall, A. R. Increasing lipolysis and reducing atherosclerosis. N. Engl. J. Med. 377, 280–283 (2017).

    Article  PubMed  Google Scholar 

  51. TG and HDL Working Group of the Exome Sequencing Project, N.H., Lung, and Blood Institute. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N. Engl. J. Med. 371, 22–31 (2014).

    Article  CAS  Google Scholar 

  52. Jørgensen, A. B., Frikke-Schmidt, R., Nordestgaard, B. G. & Tybjærg-Hansen, A. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N. Engl. J. Med. 371, 32–41 (2014).

    Article  PubMed  CAS  Google Scholar 

  53. Reyes-Soffer, G. et al. Effects of APOC3 heterozygous deficiency on plasma lipid and lipoprotein metabolism. Arterioscler. Thromb. Vasc. Biol. 39, 63–72 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pollin, T. I. et al. A null mutation in human APOC3 confers a favorable plasma lipid profile and apparent cardioprotection. Science 322, 1702–1705 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Graham, M. J. et al. Antisense oligonucleotide inhibition of apolipoprotein C-III reduces plasma triglycerides in rodents, nonhuman primates, and humans. Circ. Res. 112, 1479–1490 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Duivenvoorden, I. et al. Apolipoprotein C3 deficiency results in diet-induced obesity and aggravated insulin resistance in mice. Diabetes 54, 664–671 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Fitzgerald, K. et al. A subcutaneous, potent and durable RNAi platform targeting metabolic diseases, genes PCSK9, ApoC3 and ANGPLT3. Arterioscler. Thromb. Vasc. Biol. 34, Abstr. 7 (2014).

    Article  Google Scholar 

  58. Witztum, J. L. et al. Volanesorsen and triglyceride levels in familial chylomicronemia syndrome. N. Engl. J. Med. 381, 531–542 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Khetarpal, S. A., Wang, M. & Khera, A. V. Volanesorsen, familial chylomicronemia syndrome, and thrombocytopenia. N. Engl. J. Med. 381, 2582–2584 (2019). This letter to the editor shows that the thrombocytopenia in patients treated with volanesorsen is a medication-specific effect rather than an inherent property of apolipoprotein C-III inhibition.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gouni-Berthold, I. et al. Efficacy and safety of volanesorsen in patients with multifactorial chylomicronaemia (COMPASS): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol. 9, 264–275 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Schmidt, K., Noureen, A., Kronenberg, F. & Utermann, G. Structure, function, and genetics of lipoprotein (a). J. Lipid Res. 57, 1339–1359 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gencer, B., Kronenberg, F., Stroes, E. S. & Mach, F. Lipoprotein(a): the revenant. Eur. Heart J. 38, 1553–1560 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Kostner, K. M., Kostner, G. M. & Wierzbicki, A. S. Is Lp(a) ready for prime time use in the clinic? A pros-and-cons debate. Atherosclerosis 274, 16–22 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Clarke, R. et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N. Engl. J. Med. 361, 2518–2528 (2009). Genetic study identifying two LPA variants that are strongly associated with increased levels of Lp(a) and an increased risk of coronary disease.

    Article  CAS  PubMed  Google Scholar 

  65. Kamstrup, P. R. Genetically elevated lipoprotein(a) and increased risk of myocardial infarction. JAMA 301, 2331 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Kamstrup, P. R., Tybjærg-Hansen, A. & Nordestgaard, B. G. Elevated lipoprotein(a) and risk of aortic valve stenosis in the general population. J. Am. Coll. Cardiol. 63, 470–477 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Watanabe, J., Hamasaki, M. & Kotani, K. Risk of cardiovascular disease with lipoprotein(a) in familial hypercholesterolemia: a review. Arch. Med. Sci. Atheroscler. Dis. 5, 148–152 (2020).

    Article  Google Scholar 

  68. Harada-Shiba, M. et al. Guidelines for the management of familial hypercholesterolemia. J. Atheroscler. Thromb. 19, 1043–1060 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Raal, F. J. et al. Reduction in lipoprotein(a) with PCSK9 monoclonal antibody evolocumab (AMG 145). J. Am. Coll. Cardiol. 63, 1278–1288 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Reyes-Soffer, G. et al. Effects of PCSK9 inhibition with alirocumab on lipoprotein metabolism in healthy humans. Circulation 135, 352–362 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bittner, V. A. et al. Effect of alirocumab on lipoprotein(a) and cardiovascular risk after acute coronary syndrome. J. Am. Coll. Cardiol. 75, 133–144 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. O’Donoghue, M. L. et al. Lipoprotein(a), PCSK9 inhibition, and cardiovascular risk. Circulation 139, 1483–1492 (2019).

    Article  PubMed  CAS  Google Scholar 

  73. Macchi, C. et al. A new dawn for managing dyslipidemias: the era of RNA-based therapies. Pharmacol. Res. 150, 104413 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Viney, N. J. et al. Antisense oligonucleotides targeting apolipoprotein(a) in people with raised lipoprotein(a): two randomised, double-blind, placebo-controlled, dose-ranging trials. Lancet 388, 2239–2253 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Tsimikas, S. et al. Lipoprotein(a) reduction in persons with cardiovascular disease. N. Engl. J. Med. 382, 244–255 (2020). First report showing that an ASO targeting LPA reduces Lp(a) levels in patients with elevated Lp(a) levels and established CVD.

    Article  CAS  PubMed  Google Scholar 

  76. Muhanhali, D., Zhai, T., Cai, Z. & Ling, Y. Lipoprotein(a) concentration is associated with risk of type 2 diabetes and cardiovascular events in a Chinese population with very high cardiovascular risk. Endocrine 69, 63–72 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Roth, C. et al. Lipoprotein(a) plasma levels are not associated with survival after acute coronary syndromes: an observational cohort study. PLoS ONE 15, e0227054 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Danesh, J., Collins, R. & Peto, R. Lipoprotein(a) and coronary heart disease. Circulation 102, 1082–1085 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Boffa, M. B. et al. Lipoprotein(a) and secondary prevention of atherothrombotic events: a critical appraisal. J. Clin. Lipidol. 12, 1358–1366 (2018).

    Article  PubMed  Google Scholar 

  80. Zewinger, S. et al. Relations between lipoprotein(a) concentrations, LPA genetic variants, and the risk of mortality in patients with established coronary heart disease: a molecular and genetic association study. Lancet Diabetes Endocrinol. 5, 534–543 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yoshida, K., Shimizugawa, T., Ono, M. & Furukawa, H. Angiopoietin-like protein 4 is a potent hyperlipidemia-inducing factor in mice and inhibitor of lipoprotein lipase. J. Lipid Res. 43, 1770–1772 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Liu, J., Afroza, H., Rader, D. J. & Jin, W. Angiopoietin-like protein 3 inhibits lipoprotein lipase activity through enhancing its cleavage by proprotein convertases. J. Biol. Chem. 285, 27561–27570 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shimamura, M. et al. Angiopoietin-like protein 3 regulates plasma HDL cholesterol through suppression of endothelial lipase. Arterioscler. Thromb. Vasc. Biol. 27, 366–372 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Adam, R. C. et al. Angiopoietin-like protein 3 governs LDL-cholesterol levels through endothelial lipase-dependent VLDL clearance. J. Lipid Res. 61, 1271–1286 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Shimizugawa, T. et al. ANGPTL3 decreases very low density lipoprotein triglyceride clearance by inhibition of lipoprotein lipase. J. Biol. Chem. 277, 33742–33748 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Kersten, S. Angiopoietin-like 3 in lipoprotein metabolism. Nat. Rev. Endocrinol. 13, 731–739 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Christopoulou, E., Elisaf, M. & Filippatos, T. Effects of angiopoietin-like 3 on triglyceride regulation, glucose homeostasis, and diabetes. Dis. Markers 2019, 6578327 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Musunuru, K. et al. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N. Engl. J. Med. 363, 2220–2227 (2010). This study reports individuals with compound heterozygotes for two distinct nonsense mutations in ANGPTL3, leading to combined hypolipidaemia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dewey, F. E. et al. Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease. N. Engl. J. Med. 377, 211–221 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Laufs, U., Parhofer, K. G., Ginsberg, H. N. & Hegele, R. A. Clinical review on triglycerides. Eur. Heart J. 41, 99–109c (2019).

    Article  PubMed Central  CAS  Google Scholar 

  91. Gusarova, V. et al. ANGPTL3 blockade with a human monoclonal antibody reduces plasma lipids in dyslipidemic mice and monkeys. J. Lipid Res. 56, 1308–1317 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Graham, M. J. et al. Cardiovascular and metabolic effects of ANGPTL3 antisense oligonucleotides. N. Engl. J. Med. 377, 222–232 (2017). Article describing that an ASO targeting ANGPTL3 reduces atherogenic lipoproteins in mice and humans.

    Article  CAS  PubMed  Google Scholar 

  93. Watts, G. F. et al. RNAi inhibition of angiopoietin-like protein 3 (ANGPTL3) with ARO-ANG3 mimics the lipid and lipoprotein profile of familial combined hypolipidemia. Eur. Heart J. 41(Suppl. 2), ehaa946.3331 (2020).

    Article  Google Scholar 

  94. Wu, L., Soundarapandian, M. M., Castoreno, A. B., Millar, J. S. & Rader, D. J. LDL-cholesterol reduction by ANGPTL3 inhibition in mice is dependent on endothelial lipase. Circ. Res. 127, 1112–1114 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Xu, Y.-X. et al. Role of angiopoietin-like 3 (ANGPTL3) in regulating plasma level of low-density lipoprotein cholesterol. Atherosclerosis 268, 196–206 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Zhao, Y. et al. RNA interference targeting liver angiopoietin-like protein 3 protects from nephrotic syndrome in a rat model via amelioration of pathologic hypertriglyceridemia. J. Pharmacol. Exp. Ther. 376, 428–435 (2021).

    Article  PubMed  CAS  Google Scholar 

  97. Gaudet, D. et al. ANGPTL3 inhibition in homozygous familial hypercholesterolemia. N. Engl. J. Med. 377, 296–297 (2017).

    Article  PubMed  Google Scholar 

  98. Ahmad, Z. et al. Inhibition of angiopoietin-like protein 3 with a monoclonal antibody reduces triglycerides in hypertriglyceridemia. Circulation 140, 470–486 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Raal, F. J. et al. Evinacumab for homozygous familial hypercholesterolemia. N. Engl. J. Med. 383, 711–720 (2020).

    Article  CAS  PubMed  Google Scholar 

  100. Rosenson, R. S. et al. Evinacumab in patients with refractory hypercholesterolemia. N. Engl. J. Med. 383, 2307–2319 (2020). The article reports on a phase II trial showing that the monoclonal antibody evinacumab significantly reduces LDL-C levels in patients with refractory hypercholesterolaemia.

    Article  CAS  PubMed  Google Scholar 

  101. Gaudet, D. et al. Vupanorsen, an N-acetyl galactosamine-conjugated antisense drug to ANGPTL3 mRNA, lowers triglycerides and atherogenic lipoproteins in patients with diabetes, hepatic steatosis, and hypertriglyceridaemia. Eur. Heart J. 41, 3936–3945 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Watts, G. F. et al. Pharmacodynamic effect of ARO-ANG3, an investigational RNA interference targeting hepatic angiopoietin-like protein 3, in patients with hypercholesterolemia. Circulation 142, A15751 (2020).

    Article  Google Scholar 

  103. Kokubo, Y. & Matsumoto, C. Hypertension is a risk factor for several types of heart disease: review of prospective studies. Adv. Intern. Med. 2, 419–426 (2017).

    Google Scholar 

  104. Lawes, C. M. M., Hoorn, S. V. & Rodgers, A. Global burden of blood-pressure-related disease, 2001. Lancet 371, 1513–1518 (2008).

    Article  PubMed  Google Scholar 

  105. Carson, A. P. et al. Ethnic differences in hypertension incidence among middle-aged and older adults. Hypertension 57, 1101–1107 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Oparil, S. et al. Hypertension. Nat. Rev. Dis. Prim. 4, 18014 (2018). This is a review discussing the pathophysiology, diagnosis, prevention and management of hypertension.

    Article  PubMed  Google Scholar 

  107. He, F. J. & Macgregor, G. A. Cost of poor blood pressure control in the UK: 62 000 unnecessary deaths per year. J. Hum. Hypertens. 17, 455–457 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Miller, N. H. Compliance with treatment regimens in chronic asymptomatic diseases. Am. J. Med. 102, 43–49 (1997).

    Article  CAS  PubMed  Google Scholar 

  109. Dunbar-Jacob, J. & Mortimer-Stephens, M. K. Treatment adherence in chronic disease. J. Clin. Epidemiol. 54, S57–S60 (2001).

    Article  PubMed  Google Scholar 

  110. Riet, L. T., Esch, J. H. M. V., Roks, A. J. M., Meiracker, A. H. V. D. & Danser, A. H. J. Hypertension. Circ. Res. 116, 960–975 (2015).

    Article  CAS  Google Scholar 

  111. Tomita, N. et al. Transient decrease in high blood pressure by in vivo transfer of antisense oligodeoxynucleotides against rat angiotensinogen. Hypertension 26, 131–136 (1995).

    Article  CAS  PubMed  Google Scholar 

  112. Wielbo, D., Simon, A., Phillips, M. I. & Toffolo, S. Inhibition of hypertension by peripheral administration of antisense oligodeoxynucleotides. Hypertension 28, 147–151 (1996).

    Article  CAS  PubMed  Google Scholar 

  113. Makino, N., Sugano, M., Ohtsuka, S. & Sawada, S. Intravenous injection with antisense oligodeoxynucleotides against angiotensinogen decreases blood pressure in spontaneously hypertensive rats. Hypertension 31, 1166–1170 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Olearczyk, J. et al. Targeting of hepatic angiotensinogen using chemically modified siRNAs results in significant and sustained blood pressure lowering in a rat model of hypertension. Hypertens. Res. 37, 405–412 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Huang, S. A. et al. Safety, pharmacodynamics, and blood pressure effects of ALN-AGT, an RNA interference therapeutic targeting angiotensinogen, in a randomized single ascending dose study of hypertensive adults. in European Society of Hypertension-International Society of Hypertension (ESH-ISH) Congress (Alnylam Pharmaceuticals, 2021).

  116. Morgan, E. S. et al. Antisense inhibition of angiotensinogen with IONIS-AGT-LRx: results of phase 1 and phase 2 studies. J. Am. Coll. Cardiol. Basic. Trans. Sci. 6, 485–496 (2021). This study describes the safety, tolerability and efficacy of an ASO targeting angiotensinogen (AGT) in subjects with hypertension.

    Google Scholar 

  117. Reaven, G. M. Role of insulin resistance in human disease. Diabetes 37, 1595–1607 (1988). Banting lecture describing the relationship of hypertension, insulin resistance, hyperinsulinaemia and T2DM.

    Article  CAS  PubMed  Google Scholar 

  118. Younossi, Z. M. et al. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64, 73–84 (2016). The article describes a meta-analysis assessing the prevalence, incidence and outcomes of NAFLD.

    Article  PubMed  Google Scholar 

  119. Holman, R. R., Paul, S. K., Bethel, M. A., Matthews, D. R. & Neil, H. A. W. 10-Year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med. 359, 1577–1589 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Su, W. et al. Role of HSD17B13 in the liver physiology and pathophysiology. Mol. Cell. Endocrinol. 489, 119–125 (2019).

    Article  CAS  PubMed  Google Scholar 

  121. Adam, M. et al. Hydroxysteroid (17β) dehydrogenase 13 deficiency triggers hepatic steatosis and inflammation in mice. FASEB J. 32, 3434–3447 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. Su, W. et al. Comparative proteomic study reveals 17β-HSD13 as a pathogenic protein in nonalcoholic fatty liver disease. Proc. Natl Acad. Sci. USA 111, 11437–11442 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang, P., Wu, C. X., Li, Y. & Shen, N. HSD17B13 rs72613567 protects against liver diseases and histological progression of nonalcoholic fatty liver disease: a systematic review and meta-analysis. Eur. Rev. Med. Pharmacol. Sci. 24, 8997–9007 (2020).

    CAS  PubMed  Google Scholar 

  124. Ting, Y.-W. et al. Loss-of-function HSD17B13 variants, non-alcoholic steatohepatitis and adverse liver outcomes: results from a multi-ethnic Asian cohort. Clin. Mol. Hepatol. 27, 486–498 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Luukkonen, P. K. et al. Hydroxysteroid 17-β dehydrogenase 13 variant increases phospholipids and protects against fibrosis in nonalcoholic fatty liver disease. JCI Insight 5, e132158 (2020).

    Article  PubMed Central  Google Scholar 

  126. Gane, E. ARO-HSD reduces hepatic HSD17B13 mRNA expression and protein levels in patients with suspected NASH. in EASL International Liver Congress (EASL, 2021).

  127. Alnylam R&D Day. ALN-HSD Pre-Clinical Development Highlights. https://www.alnylam.com/wp-content/uploads/2020/07/RNAi-Roundtable_Early-Pipeline_FINAL_07172020.pdf (Alnylam Pharmaceuticals, 2019).

  128. Luukkonen, P. K. et al. Human PNPLA3-I148M variant increases hepatic retention of polyunsaturated fatty acids. JCI Insight 4, e127902 (2019).

    Article  PubMed Central  Google Scholar 

  129. Romeo, S. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 40, 1461–1465 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Dai, G., Liu, P., Li, X., Zhou, X. & He, S. Association between PNPLA3 rs738409 polymorphism and nonalcoholic fatty liver disease (NAFLD) susceptibility and severity: a meta-analysis. Medicine 98, e14324 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lindén, D. et al. Pnpla3 silencing with antisense oligonucleotides ameliorates nonalcoholic steatohepatitis and fibrosis in Pnpla3 I148M knock-in mice. Mol. Metab. 22, 49–61 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Smith, S. J. et al. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat. Nat. Genet. 25, 87–90 (2000).

    Article  CAS  PubMed  Google Scholar 

  133. Stone, S. J. et al. Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. J. Biol. Chem. 279, 11767–11776 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Yu, X. X. et al. Antisense oligonucleotide reduction of DGAT2 expression improves hepatic steatosis and hyperlipidemia in obese mice. Hepatology 42, 362–371 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. McLaren, D. G. et al. DGAT2 inhibition alters aspects of triglyceride metabolism in rodents but not in non-human primates. Cell Metab. 27, 1236–1248.e1236 (2018). This study shows that pharmacological inhibition of DGAT2 in a murine model of obesity leads to the correction of multiple lipid parameters; however, in primary human, rhesus and cynomolgus hepatocytes inhibition of DGAT2 had only a modest effect.

    Article  CAS  PubMed  Google Scholar 

  136. Loomba, R. et al. Novel antisense inhibition of diacylglycerol O-acyltransferase 2 for treatment of non-alcoholic fatty liver disease: a multicentre, double-blind, randomised, placebo-controlled phase 2 trial. Lancet Gastroenterol. Hepatol. 5, 829–838 (2020).

    Article  PubMed  Google Scholar 

  137. Lund, A., Bagger, J. I., Christensen, M., Knop, F. K. & Vilsbøll, T. Glucagon and type 2 diabetes: the return of the alpha cell. Curr. Diab. Rep. 14, 555 (2014).

    Article  PubMed  CAS  Google Scholar 

  138. Godoy-Matos, A. F. The role of glucagon on type 2 diabetes at a glance. Diabetol. Metab. Syndr. 6, 91 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Janah et al. Glucagon receptor signaling and glucagon resistance. Int. J. Mol. Sci. 20, 3314 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  140. Parker, J. C., Andrews, K. M., Allen, M. R., Stock, J. L. & McNeish, J. D. Glycemic control in mice with targeted disruption of the glucagon receptor gene. Biochem. Biophys. Res. Commun. 290, 839–843 (2002).

    Article  CAS  PubMed  Google Scholar 

  141. Gelling, R. W. et al. Lower blood glucose, hyperglucagonemia, and pancreatic cell hyperplasia in glucagon receptor knockout mice. Proc. Natl Acad. Sci. USA 100, 1438–1443 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Liang, Y. et al. Reduction in glucagon receptor expression by an antisense oligonucleotide ameliorates diabetic syndrome in db/db mice. Diabetes 53, 410–417 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. Morgan, E. S. et al. Antisense inhibition of glucagon receptor by IONIS-GCGRRx improves type 2 diabetes without increase in hepatic glycogen content in patients with type 2 diabetes on stable metformin therapy. Diabetes Care 42, 585–593 (2019).

    Article  CAS  PubMed  Google Scholar 

  144. Johnson, D. G., Goebel, C. U., Hruby, V. J., Bregman, M. D. & Trivedi, D. Hyperglycemia of diabetic rats decreased by a glucagon receptor antagonist. Science 215, 1115–1116 (1982).

    Article  CAS  PubMed  Google Scholar 

  145. Brand, C. L. et al. Immunoneutralization of endogenous glucagon with monoclonal glucagon antibody normalizes hyperglycaemia in moderately streptozotocin-diabetic rats. Diabetologia 37, 985–993 (1994).

    Article  CAS  PubMed  Google Scholar 

  146. Qureshi, S. A. et al. A novel glucagon receptor antagonist inhibits glucagon-mediated biological effects. Diabetes 53, 3267–3273 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Estall, J. & Drucker, D. Glucagon and glucagon-like peptide receptors as drug targets. Curr. Pharm. Des. 12, 1731–1750 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Kazda, C. M. et al. Treatment with the glucagon receptor antagonist LY2409021 increases ambulatory blood pressure in patients with type 2 diabetes. Diabetes Obes. Metab. 19, 1071–1077 (2017).

    Article  CAS  PubMed  Google Scholar 

  149. Guzman, C. B. et al. Treatment with LY2409021, a glucagon receptor antagonist, increases liver fat in patients with type 2 diabetes. Diabetes Obes. Metab. 19, 1521–1528 (2017).

    Article  CAS  PubMed  Google Scholar 

  150. Havel, P. J. Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutr. Rev. 63, 133–157 (2005).

    Article  PubMed  Google Scholar 

  151. Nakagawa, T., Tuttle, K. R., Short, R. A. & Johnson, R. J. Hypothesis: fructose-induced hyperuricemia as a causal mechanism for the epidemic of the metabolic syndrome. Nat. Clini. Pract. Nephrol. 1, 80–86 (2005).

    Article  CAS  Google Scholar 

  152. Stanhope, K. L. et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J. Clin. Invest. 119, 1322–1334 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Johnson, R. J. et al. Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am. J. Clin. Nutr. 86, 899–906 (2007).

    CAS  PubMed  Google Scholar 

  154. Steinmann, B., Santer, R. & van den Berghe, G. In Inborn Metabolic Diseases: Diagnosis and Treatment (eds Fernandes, J. et al.) 135–142 (Springer, 2006).

  155. Miller, C. O. et al. Ketohexokinase knockout mice, a model for essential fructosuria, exhibit altered fructose metabolism and are protected from diet-induced metabolic defects. Am. J. Physiol. Endocrinol. Metab. 315, E386–E393 (2018). This article reports that genetic ablation of KHK in diet-induced obese mice alters fructose metabolism, protects from liver steatosis and reduces TG and insulin levels.

    Article  CAS  PubMed  Google Scholar 

  156. Gutierrez, J. A. et al. Pharmacologic inhibition of ketohexokinase prevents fructose-induced metabolic dysfunction. Mol. Metab. 48, 101196 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zelniker, T. A. & Braunwald, E. Mechanisms of cardiorenal effects of sodium-glucose cotransporter 2 inhibitors: JACC state-of-the-art review. J. Am. Coll. Cardiol. 75, 422–434 (2020).

    Article  CAS  PubMed  Google Scholar 

  158. Nakagawa, T. et al. Fructose production and metabolism in the kidney. J. Am. Soc. Nephrol. 31, 898–906 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Mirtschink, P. et al. HIF-driven SF3B1 induces KHK-C to enforce fructolysis and heart disease. Nature 522, 444–449 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Jiang, H. et al. Fructose and fructose kinase in cancer and other pathologies. J. Genet. Genomics 48, 531–539 (2021).

    Article  PubMed  Google Scholar 

  161. Dalbeth, N., Merriman, T. R. & Stamp, L. K. Gout. Lancet 388, 2039–2052 (2016). A review describing the pathophysiology and advances in the clinical management of gout.

    Article  CAS  PubMed  Google Scholar 

  162. Borghi, C. et al. Hyperuricaemia and gout in cardiovascular, metabolic and kidney disease. Eur. J. Intern. Med. 80, 1–11 (2020). This article highlights the link between hyperuricaemia and gout in cardiovascular, metabolic and kidney disease and discusses the benefit of lowering serum uric acid in cardiometabolic disorders.

    Article  CAS  PubMed  Google Scholar 

  163. Major, T. J., Dalbeth, N., Stahl, E. A. & Merriman, T. R. An update on the genetics of hyperuricaemia and gout. Nat. Rev. Rheumatol. 14, 341–353 (2018).

    Article  CAS  PubMed  Google Scholar 

  164. Pillinger, M. H. & Mandell, B. F. Therapeutic approaches in the treatment of gout. Semin. Arthritis Rheum. 50, S24–S30 (2020).

    Article  CAS  PubMed  Google Scholar 

  165. Halevy, S. et al. Allopurinol is the most common cause of Stevens-Johnson syndrome and toxic epidermal necrolysis in Europe and Israel. J. Am. Acad. Dermatol. 58, 25–32 (2008).

    Article  PubMed  Google Scholar 

  166. Kardaun, S. H. et al. Drug reaction with eosinophilia and systemic symptoms (DRESS): an original multisystem adverse drug reaction. Results from the prospective RegiSCAR study. Br. J. Dermatol. 169, 1071–1080 (2013).

    Article  CAS  PubMed  Google Scholar 

  167. Arellano, F. & Sacristán, J. A. Allopurinol hypersensitivity syndrome: a review. Ann. Pharmacother. 27, 337–343 (1993). The article reviews the clinical features of hypersensitivity reactions in response to allopurinal treatment and discusses possible pathogenetic mechanisms.

    Article  CAS  PubMed  Google Scholar 

  168. Jamialahmadi, O. et al. Exome-wide association study on alanine aminotransferase identifies sequence variants in the GPAM and APOE associated with fatty liver disease. Gastroenterology 160, 1634–1646.e1637 (2021).

    Article  CAS  PubMed  Google Scholar 

  169. Jamdar, S. C. & Fang Cao, W. Triacylglycerol biosynthetic enzymes in lean and obese Zucker rats. Biochim. Biophys. Acta 1255, 237–243 (1995).

    Article  PubMed  Google Scholar 

  170. Shin, D. H., Paulauskis, J. D., Moustaïd, N. & Sul, H. S. Transcriptional regulation of p90 with sequence homology to Escherichia coli glycerol-3-phosphate acyltransferase. J. Biol. Chem. 266, 23834–23839 (1991).

    Article  CAS  PubMed  Google Scholar 

  171. Hammond Linda, E. et al. Mitochondrial glycerol-3-phosphate acyltransferase-deficient mice have reduced weight and liver triacylglycerol content and altered glycerolipid fatty acid composition. Mol. Cell. Biol. 22, 8204–8214 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Dowhan, W. Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu. Rev. Biochem. 66, 199–232 (1997).

    Article  CAS  PubMed  Google Scholar 

  173. Spector, A. A. & Yorek, M. A. Membrane lipid composition and cellular function. J. Lipid Res. 26, 1015–1035 (1985).

    Article  CAS  PubMed  Google Scholar 

  174. Sprong, H., Van Der Sluijs, P. & Van Meer, G. How proteins move lipids and lipids move proteins. Nat. Rev. Mol. Cell Biol. 2, 504–513 (2001).

    Article  CAS  PubMed  Google Scholar 

  175. Abul-Husn, N. S. et al. A protein-truncating HSD17B13 variant and protection from chronic liver disease. N. Engl. J. Med. 378, 1096–1106 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Emdin, C. A. et al. A missense variant in mitochondrial amidoxime reducing component 1 gene and protection against liver disease. PLoS Genet. 16, e1008629 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Anstee, Q. M. et al. Genome-wide association study of non-alcoholic fatty liver and steatohepatitis in a histologically characterised cohort. J. Hepatol. 73, 505–515 (2020).

    Article  CAS  PubMed  Google Scholar 

  178. Schwantes-An, T. H. et al. Genome-wide association study and meta-analysis on alcohol-associated liver cirrhosis identifies genetic risk factors. Hepatology 73, 1920–1931 (2021).

    Article  PubMed  CAS  Google Scholar 

  179. Ott, G., Havemeyer, A. & Clement, B. The mammalian molybdenum enzymes of mARC. J. Biol. Inorg. Chem. 20, 265–275 (2015).

    Article  CAS  PubMed  Google Scholar 

  180. Schneider, C. V. et al. A genome-first approach to mortality and metabolic phenotypes in MTARC1 p.Ala165Thr (rs2642438) heterozygotes and homozygotes. Med 2, 851–863.e853 (2021).

    Article  PubMed  Google Scholar 

  181. Williams, A. L. et al. Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature 506, 97–101 (2014).

    Article  CAS  PubMed  Google Scholar 

  182. Zhao, Y. et al. Gain-of-function mutations of SLC16A11 contribute to the pathogenesis of type 2 diabetes. Cell Rep. 26, 884–892.e884 (2019).

    Article  CAS  PubMed  Google Scholar 

  183. Bissell, D. M., Anderson, K. E. & Bonkovsky, H. L. Porphyria. N. Engl. J. Med. 377, 862–872 (2017).

    Article  CAS  PubMed  Google Scholar 

  184. Anderson, K. E. et al. Recommendations for the diagnosis and treatment of the acute porphyrias. Ann. Intern. Med. 142, 439 (2005). This review discusses the clinical manifestation, pathophysiology and genetics of the acute porphyrias and provides recommendations for diagnosis and treatment on the basis of reviews of the literature and clinical experience.

    Article  PubMed  Google Scholar 

  185. Harper, P. & Wahlin, S. Treatment options in acute porphyria, porphyria cutanea tarda, and erythropoietic protoporphyria. Curr. Treat. Options Gastroenterol. 10, 444–455 (2007).

    Article  PubMed  Google Scholar 

  186. Singal, A. K. et al. Liver transplantation in the management of porphyria. Hepatology 60, 1082–1089 (2014).

    Article  PubMed  Google Scholar 

  187. Yasuda, M. et al. RNAi-mediated silencing of hepatic Alas1 effectively prevents and treats the induced acute attacks in acute intermittent porphyria mice. Proc. Natl Acad. Sci. USA 111, 7777–7782 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Sardh, E. et al. Phase 1 trial of an RNA interference therapy for acute intermittent porphyria. N. Engl. J. Med. 380, 549–558 (2019).

    Article  PubMed  Google Scholar 

  189. Scott, L. J. Givosiran: first approval. Drugs 80, 335–339 (2020). This article summarizes the milestones in the development of the drug givosiran, leading to this first approval for the treatment of adults with acute hepatic porphyrias.

    Article  PubMed  Google Scholar 

  190. Ventura, P. et al. Hyperhomocysteinemia in patients with acute porphyrias: a potentially dangerous metabolic crossroad? Eur. J. Intern. Med. 79, 101–107 (2020).

    Article  CAS  PubMed  Google Scholar 

  191. To-Figueras, J. et al. Dysregulation of homocysteine homeostasis in acute intermittent porphyria patients receiving heme arginate or givosiran. J. Inherit. Metab. Dis. 44, 961–971 (2021). The study describes the presence of hyperhomocysteinaemia in acute intermittent porphyria patients and a givosiran-induced aggravation of this condition, possibly due to low blood concentrations of pyridoxal-5′-phosphate and folate.

    Article  PubMed  CAS  Google Scholar 

  192. Lonn, E. et al. Homocysteine lowering with folic acid and B vitamins in vascular disease. N. Engl. J. Med. 354, 1567–1577 (2006).

    Article  CAS  PubMed  Google Scholar 

  193. Ghiasi, M., Mortazavi, H. & Jafari, M. Efficacy of folic acid and vitamin B12 replacement therapies in the reduction of adverse effects of isotretinoin: a randomized controlled trial. Skinmed 16, 239–245 (2018).

    PubMed  Google Scholar 

  194. Martin-Higueras, C., Luis-Lima, S. & Salido, E. Glycolate oxidase is a safe and efficient target for substrate reduction therapy in a mouse model of primary hyperoxaluria type I. Mol. Ther. 24, 719–725 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Dutta, C. et al. Inhibition of glycolate oxidase with dicer-substrate siRNA reduces calcium oxalate deposition in a mouse model of primary hyperoxaluria type 1. Mol. Ther. 24, 770–778 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Frishberg, Y., Zeharia, A., Lyakhovetsky, R., Bargal, R. & Belostotsky, R. Mutations in HAO1 encoding glycolate oxidase cause isolated glycolic aciduria. J. Med. Genet. 51, 526–529 (2014).

    Article  CAS  PubMed  Google Scholar 

  197. McGregor, T. L. et al. Characterising a healthy adult with a rare HAO1 knockout to support a therapeutic strategy for primary hyperoxaluria. eLife 9, e54363 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Garrelfs, S. F. et al. Lumasiran, an RNAi therapeutic for primary hyperoxaluria type 1. N. Engl. J. Med. 384, 1216–1226 (2021). The article reports a phase III study demonstrating that lumasiran, a GalNAc-conjugated siRNA, inhibits kidney failure by reducing kidney oxalate.

    Article  CAS  PubMed  Google Scholar 

  199. Lai, C. et al. Specific inhibition of hepatic lactate dehydrogenase reduces oxalate production in mouse models of primary hyperoxaluria. Mol. Ther. 26, 1983–1995 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Frishberg, Y. et al. Phase 1/2 study of lumasiran for treatment of primary hyperoxaluria type 1. Clin. J. Am. Soc. Nephrol. 16, 1025–1036 (2021).

    Article  CAS  PubMed  Google Scholar 

  201. Mendonça, M. C. P., Kont, A., Aburto, M. R., Cryan, J. F. & O’Driscoll, C. M. Advances in the design of (nano)formulations for delivery of antisense oligonucleotides and small interfering RNA: focus on the central nervous system. Mol. Pharm. 18, 1491–1506 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Osborn, M. F. & Khvorova, A. Improving siRNA delivery in vivo through lipid conjugation. Nucleic Acid. Ther. 28, 128–136 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Kirk, B. et al. Expanding the reach of RNAi therapeutics with next generation lipophilic siRNA conjugates. Nat. Portfolio https://www.researchsquare.com/article/rs-946835/v1 (2021).

  204. Akbari, P. et al. Sequencing of 640,000 exomes identifies GPR75 variants associated with protection from obesity. Science 373, eabf8683 (2021).

    Article  CAS  PubMed  Google Scholar 

  205. Ämmälä, C. et al. Targeted delivery of antisense oligonucleotides to pancreatic β-cells. Sci. Adv. 4, eaat3386 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Güemes, M. & Hussain, K. Hyperinsulinemic hypoglycemia. Pediatr. Clin. North Am. 62, 1017–1036 (2015).

    Article  PubMed  Google Scholar 

  207. Khan, T. et al. Silencing myostatin using cholesterol-conjugated siRNAs induces muscle growth. Mol. Ther. Nucleic Acids 5, e342 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Sharma, B. K., Patil, M. & Satyanarayana, A. Negative regulators of brown adipose tissue (BAT)-mediated thermogenesis. J. Cell. Physiol. 229, 1901–1907 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Santos, G. M., Neves, Fd. A. R. & Amato, A. A. Thermogenesis in white adipose tissue: an unfinished story about PPARγ. Biochim. Biophys. Acta 1850, 691–695 (2015).

    Article  CAS  PubMed  Google Scholar 

  210. Görgens, S. W. et al. A siRNA mediated hepatic Dpp4 knockdown affects lipid, but not glucose metabolism in diabetic mice. PLoS ONE 14, e0225835 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Roberts, T. C., Langer, R. & Wood, M. J. A. Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. 19, 673–694 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Anderson, B. A. et al. Towards next generation antisense oligonucleotides: mesylphosphoramidate modification improves therapeutic index and duration of effect of gapmer antisense oligonucleotides. Nucleic Acids Res. 49, 9026–9041 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Godinho, B. M. D. C. et al. Pharmacokinetic profiling of conjugated therapeutic oligonucleotides: a high-throughput method based upon serial blood microsampling coupled to peptide nucleic acid hybridization assay. Nucleic Acid. Ther. 27, 323–334 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Musunuru, K. & Kathiresan, S. Genetics of common, complex coronary artery disease. Cell 177, 132–145 (2019).

    Article  CAS  PubMed  Google Scholar 

  215. Nichols, G. A. et al. Effect of combination cholesterol-lowering therapy and triglyceride-lowering therapy on medical costs in patients with type 2 diabetes mellitus. Am. J. Cardiol. 119, 410–415 (2017).

    Article  PubMed  Google Scholar 

  216. Ding, J. et al. Dual glycolate oxidase/lactate dehydrogenase A inhibitors for primary hyperoxaluria. ACS Med. Chem. Lett. 12, 1116–1123 (2021).

    Article  CAS  PubMed  Google Scholar 

  217. Li, P. et al. LTB4 promotes insulin resistance in obese mice by acting on macrophages, hepatocytes and myocytes. Nat. Med. 21, 239–247 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Basuray, S., Wang, Y., Smagris, E., Cohen, J. C. & Hobbs, H. H. Accumulation of PNPLA3 on lipid droplets is the basis of associated hepatic steatosis. Proc. Natl Acad. Sci. USA 116, 9521–9526 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Wang, Y., Kory, N., Basuray, S., Cohen, J. C. & Hobbs, H. H. PNPLA3, CGI-58, and inhibition of hepatic triglyceride hydrolysis in mice. Hepatology 69, 2427–2441 (2019).

    CAS  PubMed  Google Scholar 

  220. Mann, J. P. et al. Insights into genetic variants associated with NASH-fibrosis from metabolite profiling. Hum. Mol. Genet. 29, 3451–3463 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Lewington, S. et al. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 360, 1903–1913 (2003).

    Google Scholar 

  222. Vernia, S. et al. An alternative splicing program promotes adipose tissue thermogenesis. eLife 5, e17672 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Lim, K. H., Ferraris, L., Filloux, M. E., Raphael, B. J. & Fairbrother, W. G. Using positional distribution to identify splicing elements and predict pre-mRNA processing defects in human genes. Proc. Natl Acad. Sci. USA 108, 11093–11098 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Soemedi, R. et al. Pathogenic variants that alter protein code often disrupt splicing. Nat. Genet. 49, 848–855 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Iftikhar, M., Frey, J., Shohan, M. J., Malek, S. & Mousa, S. A. Current and emerging therapies for Duchenne muscular dystrophy and spinal muscular atrophy. Pharmacol. Ther. 220, 107719 (2021).

    Article  CAS  PubMed  Google Scholar 

  226. Wang, Z., Jeon, H. Y., Rigo, F., Bennett, C. F. & Krainer, A. R. Manipulation of PK-M mutually exclusive alternative splicing by antisense oligonucleotides. Open. Biol. 2, 120133 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Wang, Z. et al. Exon-centric regulation of pyruvate kinase M alternative splicing via mutually exclusive exons. J. Mol. Cell. Biol. 4, 79–87 (2012).

    Article  CAS  PubMed  Google Scholar 

  228. Clower, C. V. et al. The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism. Proc. Natl Acad. Sci. USA 107, 1894–1899 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Goodson, M. L. et al. Specific ablation of the NCoR corepressor δ splice variant reveals alternative RNA splicing as a key regulator of hepatic metabolism. PLoS ONE 15, e0241238 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Goodson, M. L., Mengeling, B. J., Jonas, B. A. & Privalsky, M. L. Alternative mRNA splicing of corepressors generates variants that play opposing roles in adipocyte differentiation. J. Biol. Chem. 286, 44988–44999 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Goodson, M. L., Young, B. M., Snyder, C. A., Schroeder, A. C. & Privalsky, M. L. Alteration of NCoR corepressor splicing in mice causes increased body weight and hepatosteatosis without glucose intolerance. Mol. Cell. Biol. 34, 4104–4114 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  232. Verma, S. K. et al. Reactivation of fetal splicing programs in diabetic hearts is mediated by protein kinase C signaling. J. Biol. Chem. 288, 35372–35386 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Nutter, C. A. et al. Dysregulation of RBFOX2 is an early event in cardiac pathogenesis of diabetes. Cell Rep. 15, 2200–2213 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Juliano, R. L. The delivery of therapeutic oligonucleotides. Nucleic Acids Res. 44, 6518–6548 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Crooke, S. T. Molecular mechanisms of antisense oligonucleotides. Nucleic Acid. Ther. 27, 70–77 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Eckstein, F. Phosphorothioates, essential components of therapeutic oligonucleotides. Nucleic Acid. Ther. 24, 374–387 (2014).

    Article  CAS  PubMed  Google Scholar 

  237. Shen, W. et al. Chemical modification of PS-ASO therapeutics reduces cellular protein-binding and improves the therapeutic index. Nat. Biotechnol. 37, 640–650 (2019).

    Article  CAS  PubMed  Google Scholar 

  238. Monia, B. P. et al. Evaluation of 2′-modified oligonucleotides containing 2′-deoxy gaps as antisense inhibitors of gene expression. J. Biol. Chem. 268, 14514–14522 (1993).

    Article  CAS  PubMed  Google Scholar 

  239. Seth, P. P., Tanowitz, M. & Bennett, C. F. Selective tissue targeting of synthetic nucleic acid drugs. J. Clin. Invest. 129, 915–925 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Shemesh, C. et al. Pharmacokinetic and pharmacodynamic investigations of ION-353382, a model antisense oligonucleotide: using alpha-2-macroglobulin and murinoglobulin double-knockout mice. Nucleic Acid. Ther. 26, 223–235 (2016).

    Article  CAS  PubMed  Google Scholar 

  241. Prakash, T. P. et al. Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice. Nucleic Acids Res. 42, 8796–8807 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Kole, R., Krainer, A. R. & Altman, S. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat. Rev. Drug Discov. 11, 125–140 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Finkel, R. S. et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N. Engl. J. Med. 377, 1723–1732 (2017).

    Article  CAS  PubMed  Google Scholar 

  244. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001). This article demonstrates that 21-nucleotide siRNA duplexes provide a tool for studying gene function in mammalian cells and can be used as gene-specific therapeutics.

    Article  CAS  PubMed  Google Scholar 

  245. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004).

    Article  CAS  PubMed  Google Scholar 

  246. Roberts, T. C. In MicroRNA: Basic Science (ed. Santulli, G.) 15–30 (Springer International Publishing, 2015).

  247. Schürmann, N., Trabuco, L. G., Bender, C., Russell, R. B. & Grimm, D. Molecular dissection of human Argonaute proteins by DNA shuffling. Nat. Struct. Mol. Biol. 20, 818–826 (2013).

    Article  PubMed  CAS  Google Scholar 

  248. Soutschek, J. et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432, 173–178 (2004).

    Article  CAS  PubMed  Google Scholar 

  249. Morrissey, D. V. et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat. Biotechnol. 23, 1002–1007 (2005).

    Article  CAS  PubMed  Google Scholar 

  250. Setten, R. L., Rossi, J. J. & Han, S.-P. The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Discov. 18, 421–446 (2019).

    Article  CAS  PubMed  Google Scholar 

  251. Bramsen, J. B. et al. A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity. Nucleic Acids Res. 37, 2867–2881 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Chiu, Y. L. siRNA function in RNAi: a chemical modification analysis. RNA 9, 1034–1048 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Prakash, T. P. et al. Positional effect of chemical modifications on short interference RNA activity in mammalian cells. J. Med. Chem. 48, 4247–4253 (2005).

    Article  CAS  PubMed  Google Scholar 

  254. Huang, Y. Preclinical and clinical advances of GalNAc-decorated nucleic acid therapeutics. Mol. Ther. Nucleic Acids 6, 116–132 (2017).

    Article  CAS  PubMed  Google Scholar 

  255. Huang, Y. & Liang, Z. C. Asialoglycoprotein receptor and its application in liver-targeted drug delivery. Prog. Biochem. Biophys. 42, 501–510 (2015).

    CAS  Google Scholar 

  256. Rajeev, K. G. et al. Modified RNAi Agents. Patent No. WO2013074974 (2013).

  257. Maier, M. et al. Modified Double-Stranded RNA Agents. Patent No.WO2016028649 (2016). This patent application describes the ‘enhanced stability chemistry’ of therapeutic siRNAs developed by Alnylam.

  258. Schlegel, M. K. et al. Chirality dependent potency enhancement and structural impact of glycol nucleic acid modification on siRNA. J. Am. Chem. Soc. 139, 8537–8546 (2017).

    Article  CAS  PubMed  Google Scholar 

  259. Brown, C. R. et al. Investigating the pharmacodynamic durability of GalNAc–siRNA conjugates. Nucleic Acids Res. 48, 11827–11844 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Parmar, R. et al. 5′-(E)-vinylphosphonate: a stable phosphate mimic can improve the RNAi activity of siRNA-GalNAc conjugates. Chembiochem 17, 985–989 (2016).

    Article  CAS  PubMed  Google Scholar 

  261. Prakash, T. P. et al. Synergistic effect of phosphorothioate, 5′-vinylphosphonate and GalNAc modifications for enhancing activity of synthetic siRNA. Bioorg. Med. Chem. Lett. 26, 2817–2820 (2016).

    Article  CAS  PubMed  Google Scholar 

  262. Debacker, A. J., Voutila, J., Catley, M., Blakey, D. & Habib, N. Delivery of oligonucleotides to the liver with GalNAc: from research to registered therapeutic drug. Mol. Ther. 28, 1759–1771 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Gagliardi, M. & Ashizawa, A. T. The challenges and strategies of antisense oligonucleotide drug delivery. Biomedicines 9, 433 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Yonezawa, S., Koide, H. & Asai, T. Recent advances in siRNA delivery mediated by lipid-based nanoparticles. Adv. Drug Deliv. Rev. 154–155, 64–78 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  265. Akinc, A. et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther. 18, 1357–1364 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Maier, M. A. et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol. Ther. 21, 1570–1578 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28, 172–176 (2010).

    Article  CAS  PubMed  Google Scholar 

  268. Jayaraman, M. et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem. 124, 8657–8661 (2012).

    Article  Google Scholar 

  269. Azarnezhad, A., Samadian, H., Jaymand, M., Sobhani, M. & Ahmadi, A. Toxicological profile of lipid-based nanostructures: are they considered as completely safe nanocarriers? Crit. Rev. Toxicol. 50, 148–176 (2020).

    Article  CAS  PubMed  Google Scholar 

  270. Benson, M. D. et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 22–31 (2018).

    Article  CAS  PubMed  Google Scholar 

  271. Akinc, A. et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 14, 1084–1087 (2019).

    Article  CAS  PubMed  Google Scholar 

  272. Steirer, L. M., Park, E. I., Townsend, R. R. & Baenziger, J. U. The asialoglycoprotein receptor regulates levels of plasma glycoproteins terminating with sialic acid α2,6-galactose. J. Biol. Chem. 284, 3777–3783 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Onizuka, T. et al. NMR study of ligand release from asialoglycoprotein receptor under solution conditions in early endosomes. FEBS J. 279, 2645–2656 (2012).

    Article  CAS  PubMed  Google Scholar 

  274. Ashwell, G. & Morell, A. G. The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. in. Adv. Enzymol. Relat. Areas Mol. Biol. 41, 99–128 (1974).

    CAS  PubMed  Google Scholar 

  275. Lee, Y. C. et al. Binding of synthetic oligosaccharides to the hepatic Gal/GalNAc lectin. Dependence on fine structural features. J. Biol. Chem. 258, 199–202 (1983).

    Article  CAS  PubMed  Google Scholar 

  276. Lee, R. T. & Lee, Y. C. Preparation of cluster glycosides of N-acetylgalactosamine that have subnanomolar binding constants towards the mammalian hepatic Gal/GalNAc-specific receptor. Glycoconj. J. 4, 317–328 (1987).

    Article  CAS  Google Scholar 

  277. Nair, J. K. et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J. Am. Chem. Soc. 136, 16958–16961 (2014).

    Article  CAS  PubMed  Google Scholar 

  278. Nair, J. K. et al. Impact of enhanced metabolic stability on pharmacokinetics and pharmacodynamics of GalNAc–siRNA conjugates. Nucleic Acids Res. 45, 10969–10977 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Horton, J., Cohen, J. & Hobbs, H. Molecular biology of PCSK9: its role in LDL metabolism. Trends Biochem. Sci. 32, 71–77 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Horton, J. D., Cohen, J. C. & Hobbs, H. H. PCSK9: a convertase that coordinates LDL catabolism. J. Lipid Res. 50, S172–S177 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  281. Li, S. & Li, J.-J. PCSK9: a key factor modulating atherosclerosis. J. Ather. Thromb. 22, 221–230 (2015).

    Article  Google Scholar 

  282. Lipari, M. T. et al. Furin-cleaved proprotein convertase subtilisin/kexin type 9 (PCSK9) is active and modulates low density lipoprotein receptor and serum cholesterol levels. J. Biol. Chem. 287, 43482–43491 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Pisciotta, L. et al. Additive effect of mutations in LDLR and PCSK9 genes on the phenotype of familial hypercholesterolemia. Atherosclerosis 186, 433–440 (2006).

    Article  CAS  PubMed  Google Scholar 

  284. Timms, K. M. et al. A mutation in PCSK9 causing autosomal-dominant hypercholesterolemia in a Utah pedigree. Hum. Genet. 114, 349–353 (2004).

    Article  CAS  PubMed  Google Scholar 

  285. Cohen, J. et al. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat. Genet. 37, 161–165 (2005).

    Article  CAS  PubMed  Google Scholar 

  286. Berge, K. E., Ose, L. & Leren, T. P. Missense mutations in the PCSK9 gene are associated with hypocholesterolemia and possibly increased response to statin therapy. Arterioscler. Thromb. Vasc. Biol. 26, 1094–1100 (2006).

    Article  CAS  PubMed  Google Scholar 

  287. Cohen, J. C., Boerwinkle, E., Mosley, T. H. & Hobbs, H. H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354, 1264–1272 (2006). This article describes a human genetic study demonstrating that moderate lifelong reduction in plasma level of LDL-C is associated with a substantial reduction in the incidence of coronary events.

    Article  CAS  PubMed  Google Scholar 

  288. Rashid, S. et al. Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc. Natl Acad. Sci. USA 102, 5374–5379 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Guo, Q., Feng, X. & Zhou, Y. PCSK9 variants in familial hypercholesterolemia: a comprehensive synopsis. Front. Genet. 11, 1020 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Brown, M. S. & Goldstein, J. L. Lowering LDL: not only how low, but how long? Science 311, 1721–1723 (2006).

    Article  CAS  PubMed  Google Scholar 

  291. Chan, J. C. Y. et al. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc. Natl Acad. Sci. USA 106, 9820–9825 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Schwartz, G. G. et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N. Engl. J. Med. 379, 2097–2107 (2018).

    Article  CAS  PubMed  Google Scholar 

  293. Sabatine, M. S. et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med. 376, 1713–1722 (2017).

    Article  CAS  PubMed  Google Scholar 

  294. Balwani, M. & Desnick, R. J. The porphyrias: advances in diagnosis and treatment. Blood 120, 4496–4504 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Stein, P. E., Badminton, M. N. & Rees, D. C. Update review of the acute porphyrias. Br. J. Haematol. 176, 527–538 (2017).

    Article  PubMed  Google Scholar 

  296. Handschin, C. et al. Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1α. Cell 122, 505–515 (2005).

    Article  CAS  PubMed  Google Scholar 

  297. Miller, L. K. & Kappas, A. The effect of progesterone on activities of δ-aminolevulinic acid synthetase and δ-aminolevulinic acid dehydratase in estrogen-primed avian oviduct. Gen. Comp. Endocrinol. 22, 238–244 (1974).

    Article  CAS  PubMed  Google Scholar 

  298. Sassa, S., Bradlow, H. L. & Kappas, A. Steroid induction of delta-aminolevulinic acid synthase and porphyrins in liver. Structure-activity studies and the permissive effects of hormones on the induction process. J. Biol. Chem. 254, 10011–10020 (1979).

    Article  CAS  PubMed  Google Scholar 

  299. De Matteis, F. Disturbances of liver porphyrin metabolism caused by drugs. Pharmacol. Rev. 19, 523–557 (1967).

    PubMed  Google Scholar 

  300. Granick, S. Induction of the synthesis of δ-amino-levulinic acid synthetase in liver parenchyma cells in culture by chemicals that induce acute porphyria. J. Biol. Chem. 238, PC2247–PC2249 (1963).

    Article  CAS  Google Scholar 

  301. Yamamoto, M., Kure, S., Engel, J. D. & Hiraga, K. Structure, turnover, and heme-mediated suppression of the level of mRNA encoding rat liver delta-aminolevulinate synthase. J. Biol. Chem. 263, 15973–15979 (1988).

    Article  CAS  PubMed  Google Scholar 

  302. Drew, P. D. & Ades, I. Z. Regulation of the stability of chicken embryo liver δ-aminolevulinate synthase mRNA by hemin. Biochem. Biophys. Res. Commun. 162, 102–107 (1989).

    Article  CAS  PubMed  Google Scholar 

  303. Lathrop, J. T. & Timko, M. P. Regulation by heme of mitochondrial protein transport through a conserved amino acid motif. Science 259, 522–525 (1993).

    Article  CAS  PubMed  Google Scholar 

  304. Bishop, D. F. & Desnick, R. J. Assays of the heme biosynthetic enzymes. Enzyme 28, 2–3 (1982).

    Google Scholar 

  305. Bonkovsky, H. L. et al. Acute porphyrias in the USA: features of 108 subjects from porphyrias consortium. Am. J. Med. 127, 1233–1241 (2014). This paper describes clinical and laboratory features of subjects with acute porphyrias in the USA.

    Article  PubMed  PubMed Central  Google Scholar 

  306. Wang, B., Rudnick, S., Cengia, B. & Bonkovsky, H. L. Acute hepatic porphyrias: review and recent progress. Hepatol. Commun. 3, 193–206 (2019).

    Article  PubMed  Google Scholar 

  307. Balwani, M. et al. Acute hepatic porphyrias: recommendations for evaluation and long-term management. Hepatology 66, 1314–1322 (2017).

    Article  PubMed  Google Scholar 

  308. Balwani, M. et al. Phase 3 trial of RNAi therapeutic givosiran for acute intermittent porphyria. N. Engl. J. Med. 382, 2289–2301 (2020). Paper reports on a phase III trial demonstrating efficacy of givosiran by lowering the rate of porphyria attacks and a lower frequency of hepatic and renal adverse events.

    Article  CAS  PubMed  Google Scholar 

  309. Cochat, P. et al. Primary hyperoxaluria type 1: indications for screening and guidance for diagnosis and treatment. Nephrol. Dial. Transplant. 27, 1729–1736 (2012).

    Article  CAS  PubMed  Google Scholar 

  310. Baker, P. R. S., Cramer, S. D., Kennedy, M., Assimos, D. G. & Holmes, R. P. Glycolate and glyoxylate metabolism in HepG2 cells. Am. J. Cell Physiol. 287, C1359–C1365 (2004).

    Article  CAS  Google Scholar 

  311. Weigert, A., Martin-Higueras, C. & Hoppe, B. Novel therapeutic approaches in primary hyperoxaluria. Expert Opin. Emerg. Drugs 23, 349–357 (2018).

    Article  CAS  PubMed  Google Scholar 

  312. van Woerden, C. S., Groothoff, J. W., Wanders, R. J. A., Davin, J. C. & Wijburg, F. A. Primary hyperoxaluria type 1 in The Netherlands: prevalence and outcome. Nephrol. Dial. Transpl. 18, 273–279 (2003).

    Article  Google Scholar 

  313. Bouzidi, H., Majdoub, A., Daudon, M. & Najjar, M. F. Primary hyperoxaluria: a review. Nephrol. Ther. 12, 431–436 (2016).

    Article  PubMed  Google Scholar 

  314. Hoppe, B. An update on primary hyperoxaluria. Nat. Rev. Nephrol. 8, 467–475 (2012).

    Article  CAS  PubMed  Google Scholar 

  315. Harambat, J. et al. Characteristics and outcomes of children with primary oxalosis requiring renal replacement therapy. Clin. J. Am. Soc. Nephrol. 7, 458–465 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors regret omission of citations of papers that have contributed to the field owing to space limitation. Work in the M.S. laboratory is supported by the Swiss National Science Foundation (SNSF), the NCCR ‘RNA and Disease’ (51NF40-182880), the Novartis Foundation and the Vontobel Foundation. Figures were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

A.G. and M.S. contributed equally to the development of presented concepts and writing of the manuscript.

Corresponding author

Correspondence to Markus Stoffel.

Ethics declarations

Competing interests

M.S. is a member of the scientific advisory board of Alnylam Pharmaceuticals. A.G. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Gain-of-function mutations

Mutations in which the altered gene product possesses a new molecular function or a new pattern of gene expression.

Lipid nanoparticle

Non-viral drug delivery system, composed of biodegradable and biocompatible solid lipids and stabilized by emulsifiers, with sizes typically in the range 50–1,000 nm.

PEG–lipid

PEG–lipid Polyethylene glycol (PEG)–lipid conjugates are PEG derivatives that contain phospholipid molecules such as dimyristoyl glycerol (DMG) or 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE), which have been used in bioconjugation and lipid nanoparticle drug delivery to reduce liposome aggregation and prolong circulation lifetime.

Sarcopenia

A syndrome characterized by progressive and generalized loss of skeletal muscle mass and strength.

Haem

An iron-centred porphyrin and the prosthetic group in many proteins, including haemoglobin and cytochrome P450 enzymes.

Statins

A class of lipid-lowering medications that inhibit HMG-CoA reductase, a rate-limiting enzyme of cholesterol biosynthesis.

Glomerulonephritis

Inflammation of the kidney glomeruli.

Enhancer

A short region of DNA that can be bound by proteins to increase the likelihood that transcription of a particular gene will occur.

Bile acid sequestrants

Resins that bind to negatively charged bile acids and bile salts in the small intestine to interrupt the enterohepatic circulation of bile acids and increase the conversion of cholesterol into bile, thereby lowering LDL-cholesterol.

Steatosis

The accumulation of lipid droplets within hepatocytes, considered pathological when it exceeds 5% of liver weight or affects more than 5% of hepatocytes.

Apolipoprotein

Protein that binds lipid to form lipoprotein and enable lipid transport in the circulation.

Chylomicrons

Lipoprotein particles that consist of dietary triglycerides, phospholipids, cholesterol and proteins produced in the enterocytes that transport lipids in other parts of the body.

Thrombocytopenia

A condition characterized by abnormally low levels of blood platelets that may result in bleeding problems.

Lipodystrophy

A group of genetic or acquired disorders in which the body is unable to produce and maintain healthy fat tissue.

Pancreatitis

Inflammation of the exocrine pancreas.

Remnant particles

Products of partially catabolized chylomicrons and VLDL particles, from which some triglycerides have been removed.

Proteinuria

Refers to increased levels of proteins in the urine.

Nephrotic syndrome

A group of kidney disorders that causes too much protein to be lost from the blood into the urine.

Cardiomyopathy

An acquired or hereditary disease of the heart muscle.

Atrial fibrillation

The most common irregular heart rhythm, which starts in the atria, causes poor blood flow and is associated with heart failure, dementia and stroke.

Aneurysms

Ballooning and weakened areas in arteries, often occurring in the aorta, brain, back of the knee, intestine or spleen.

Liver cirrhosis

Chronic liver damage from various causes leading to scarring and liver failure.

NAS

(NAFLD Activity Score). Represents the sum of numerical scores for steatosis (0–3), hepatocellular ballooning (0–2) and lobular inflammation (0–3).

HOMA-IR

Homeostasis model assessment–estimated insulin resistance is an indicator of insulin resistance and is widely used for the estimation of insulin resistance in research. It is calculated from fasting blood glucose (FPG) and insulin (FPI) levels, that is, HOMA-IR = (FPI × FPG)/22.5.

Erythema

Skin rash caused by injured blood capillaries.

Hyperplasia

An enlargement of an organ or tissue caused by an increase in the amount of organic tissue that results from cell proliferation.

Arthropathy

A term used for any disease of the joints.

Endocytosis

A cellular process in which substances are brought into the cell.

Haplotype

A group of alleles in an organism that are inherited together from a single parent.

Neurovisceral attacks

Symptoms consisting of autonomic neuropathies such as severe abdominal pain, constipation and vomiting.

Nephrocalcinosis

A condition characterized by the deposition of calcium in the kidney parenchyma and tubules.

Thermogenic metabolism

Refers to the process in which heat production is increased through metabolic stimulation.

Urolithiasis

A small, hard deposit of minerals and salts that forms in the kidneys and is often painful when passed.

Alternative RNA splicing

A process during gene expression that allows a single gene to code for multiple proteins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goga, A., Stoffel, M. Therapeutic RNA-silencing oligonucleotides in metabolic diseases. Nat Rev Drug Discov 21, 417–439 (2022). https://doi.org/10.1038/s41573-022-00407-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-022-00407-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing