Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pharmacological targeting of endoplasmic reticulum stress in disease

Abstract

The accumulation of misfolded proteins in the endoplasmic reticulum (ER) leads to ER stress, resulting in activation of the unfolded protein response (UPR) that aims to restore protein homeostasis. However, the UPR also plays an important pathological role in many diseases, including metabolic disorders, cancer and neurological disorders. Over the last decade, significant effort has been invested in targeting signalling proteins involved in the UPR and an array of drug-like molecules is now available. However, these molecules have limitations, the understanding of which is crucial for their development into therapies. Here, we critically review the existing ER stress and UPR-directed drug-like molecules, highlighting both their value and their limitations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The UPR.
Fig. 2: Mechanism of action of chemical chaperones.
Fig. 3: Structural insight into small-molecule manipulations of PERK and eIF2B.
Fig. 4: Structural insight into small-molecule manipulations of IRE1.
Fig. 5: Potential clinical utility of UPR manipulation.

Similar content being viewed by others

References

  1. Marciniak, S. J. & Ron, D. Endoplasmic reticulum stress signaling in disease. Physiol. Rev. 86, 1133–1149 (2006).

    CAS  PubMed  Google Scholar 

  2. Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519–529 (2007).

    CAS  PubMed  Google Scholar 

  3. Mori, K., Ma, W., Gething, M. J. & Sambrook, J. A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell 74, 743–756 (1993).

    CAS  PubMed  Google Scholar 

  4. Yoshida, H., Haze, K., Yanagi, H., Yura, T. & Mori, K. Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J. Biol. Chem. 273, 33741–33749 (1998).

    CAS  PubMed  Google Scholar 

  5. Harding, H. P., Zhang, Y. & Ron, D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397, 271–274 (1999).

    CAS  PubMed  Google Scholar 

  6. Delepine, M. et al. EIF2AK3, encoding translation initiation factor 2-α kinase 3, is mutated in patients with Wolcott–Rallison syndrome. Nat. Genet. 25, 406–409 (2000).

    CAS  PubMed  Google Scholar 

  7. Liu, M., Li, Y., Cavener, D. & Arvan, P. Proinsulin disulfide maturation and misfolding in the endoplasmic reticulum. J. Biol. Chem. 280, 13209–13212 (2005).

    CAS  PubMed  Google Scholar 

  8. Harding, H. et al. Diabetes mellitus and excocrine pancreatic dysfunction in Perk–/– mice reveals a role for translational control in survival of secretory cells. Mol. Cell 7, 1153–1163 (2001).

    CAS  PubMed  Google Scholar 

  9. Marciniak, S. J. et al. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 18, 3066–3077 (2004). This work provides the first evidence that prolongation of the ISR by inactivation of the inducible eIF2α phosphatase PPP1R15A renders mice resistant to ER stress-induced cell death.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wen, X. Y. et al. Identification of c-myc promoter-binding protein and X-box binding protein 1 as interleukin-6 target genes in human multiple myeloma cells. Int. J. Oncol. 15, 173–178 (1999).

    CAS  PubMed  Google Scholar 

  11. Claudio, J. O. et al. A molecular compendium of genes expressed in multiple myeloma. Blood 100, 2175–2186 (2002).

    CAS  PubMed  Google Scholar 

  12. Estabrooks, S. & Brodsky, J. L. Regulation of CFTR biogenesis by the proteostatic network and pharmacological modulators. Int. J. Mol. Sci. 21, 452 (2020).

    CAS  PubMed Central  Google Scholar 

  13. Manasanch, E. E. & Orlowski, R. Z. Proteasome inhibitors in cancer therapy. Nat. Rev. Clin. Oncol. 14, 417–433 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Atkins, C. et al. Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res. 73, 1993–2002 (2013). This work reports the characterization of an early PERK inhibitor that could impair the growth of tumour xenografts in mice, but at the cost of impairing pancreatic function.

    CAS  PubMed  Google Scholar 

  15. Kaushik, J. K. & Bhat, R. A mechanistic analysis of the increase in the thermal stability of proteins in aqueous carboxylic acid salt solutions. Protein Sci. 8, 222–233 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Arakawa, T., Prestrelski, S. J., Kenney, W. C. & Carpenter, J. F. Factors affecting short-term and long-term stabilities of proteins. Adv. Drug Deliv. Rev. 46, 307–326 (2001).

    CAS  PubMed  Google Scholar 

  17. Olsson, C., Jansson, H. & Swenson, J. The role of trehalose for the stabilization of proteins. J. Phys. Chem. B 120, 4723–4731 (2016).

    CAS  PubMed  Google Scholar 

  18. Gault, J. et al. Mass spectrometry reveals the direct action of a chemical chaperone. J. Phys. Chem. Lett. 9, 4082–4086 (2018).

    CAS  PubMed  Google Scholar 

  19. Bandyopadhyay, A. et al. Chemical chaperones assist intracellular folding to buffer mutational variations. Nat. Chem. Biol. 8, 238–245 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Diamant, S., Eliahu, N., Rosenthal, D. & Goloubinoff, P. Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J. Biol. Chem. 276, 39586–39591 (2001).

    CAS  PubMed  Google Scholar 

  21. Beck, D. A., Bennion, B. J., Alonso, D. O. & Daggett, V. Simulations of macromolecules in protective and denaturing osmolytes: properties of mixed solvent systems and their effects on water and protein structure and dynamics. Methods Enzymol. 428, 373–396 (2007).

    CAS  PubMed  Google Scholar 

  22. Papp, E. & Csermely, P. in Molecular Chaperones in Health and Disease. Handbook of Experimental Pharmacology Vol. 172 (eds Starke, K. & Gaestel, M.) 405–416 (Springer, 2006).

  23. Berger, E. & Haller, D. Structure–function analysis of the tertiary bile acid TUDCA for the resolution of endoplasmic reticulum stress in intestinal epithelial cells. Biochem. Biophys. Res. Commun. 409, 610–615 (2011).

    CAS  PubMed  Google Scholar 

  24. Ozcan, U. et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313, 1137–1140 (2006).

    PubMed  PubMed Central  Google Scholar 

  25. Kusaczuk, M. Tauroursodeoxycholate-bile acid with chaperoning activity: molecular and cellular effects and therapeutic perspectives. Cells 8, 1471 (2019).

    CAS  PubMed Central  Google Scholar 

  26. Hao, H. et al. Farnesoid X receptor regulation of the NLRP3 inflammasome underlies cholestasis-associated sepsis. Cell Metab. 25, 856–867.e5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Dicks, N. et al. Tauroursodeoxycholic acid acts via TGR5 receptor to facilitate DNA damage repair and improve early porcine embryo development. Mol. Reprod. Dev. 87, 161–173 (2020).

    CAS  PubMed  Google Scholar 

  28. Han, C. Y. et al. FXR inhibits endoplasmic reticulum stress-induced NLRP3 inflammasome in hepatocytes and ameliorates liver injury. Cell Rep. 24, 2985–2999 (2018).

    CAS  PubMed  Google Scholar 

  29. Cortez, L. & Sim, V. The therapeutic potential of chemical chaperones in protein folding diseases. Prion 8, 197–202 (2014).

    CAS  PubMed Central  Google Scholar 

  30. Dover, G. J., Brusilow, S. & Samid, D. Increased fetal hemoglobin in patients receiving sodium 4-phenylbutyrate. N. Engl. J. Med. 327, 569–570 (1992).

    CAS  PubMed  Google Scholar 

  31. Carducci, M. A. et al. Phenylbutyrate induces apoptosis in human prostate cancer and is more potent than phenylacetate. Clin. Cancer Res. 2, 379–387 (1996).

    CAS  PubMed  Google Scholar 

  32. Davie, J. R. Inhibition of histone deacetylase activity by butyrate. J. Nutr. 133, 2485S–2493S (2003).

    CAS  PubMed  Google Scholar 

  33. Cheng, S. H. et al. Functional activation of the cystic fibrosis trafficking mutant delta F508-CFTR by overexpression. Am. J. Physiol. 268, L615–L624 (1995).

    CAS  PubMed  Google Scholar 

  34. Rubenstein, R. C., Egan, M. E. & Zeitlin, P. L. In vitro pharmacologic restoration of CFTR-mediated chloride transport with sodium 4-phenylbutyrate in cystic fibrosis epithelial cells containing delta F508-CFTR. J. Clin. Invest. 100, 2457–2465 (1997). This work provides early evidence that 4-PBA, a putative chemical chaperone, is able to restore trafficking and activity of a disease-associated mutant form of CFTR.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Brown, C. R., Hong-Brown, L. Q., Biwersi, J., Verkman, A. S. & Welch, W. J. Chemical chaperones correct the mutant phenotype of the delta F508 cystic fibrosis transmembrane conductance regulator protein. Cell Stress Chaperones 1, 117–125 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sato, S., Ward, C. L., Krouse, M. E., Wine, J. J. & Kopito, R. R. Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation. J. Biol. Chem. 271, 635–638 (1996).

    CAS  PubMed  Google Scholar 

  37. Vega, H., Agellon, L. B. & Michalak, M. The rise of proteostasis promoters. IUBMB Life 68, 943–954 (2016).

    CAS  PubMed  Google Scholar 

  38. Iram, S. H. & Cole, S. P. Mutation of Glu521 or Glu535 in cytoplasmic loop 5 causes differential misfolding in multiple domains of multidrug and organic anion transporter MRP1 (ABCC1). J. Biol. Chem. 287, 7543–7555 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ma, W., Goldberg, E. & Goldberg, J. ER retention is imposed by COPII protein sorting and attenuated by 4-phenylbutyrate. eLife 6, e26624 (2017). This work demonstrates that 4-PBA relieves the ER of stress-inducing client proteins, at least in part, by reducing the stringency of protein exit quality control.

    PubMed  PubMed Central  Google Scholar 

  40. Rubenstein, R. C. & Zeitlin, P. L. A pilot clinical trial of oral sodium 4-phenylbutyrate (Buphenyl) in бF508-homozygous cystic fibrosis patients: partial restoration of nasal epithelial CFTR function. Am. J. Respir. Crit. Care Med. 157, 484–490 (1998).

    CAS  PubMed  Google Scholar 

  41. Mayer, M. Lumacaftor–ivacaftor (Orkambi) for cystic fibrosis: behind the ‘breakthrough’. Evid. Based Med. 21, 83–86 (2016).

    PubMed  Google Scholar 

  42. Keating, D. et al. VX-445–tezacaftor–ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles. N. Engl. J. Med. 379, 1612–1620 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Heijerman, H. G. M. et al. Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial. Lancet 394, 1940–1948 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Middleton, P. G. et al. Elexacaftor–tezacaftor–ivacaftor for cystic fibrosis with a single Phe508del allele. N. Engl. J. Med. 381, 1809–1819 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ortiz, A. et al. Fabry disease revisited: management and treatment recommendations for adult patients. Mol. Genet. Metab. 123, 416–427 (2018).

    CAS  PubMed  Google Scholar 

  46. Lenders, M. & Brand, E. Fabry disease: the current treatment landscape. Drugs 81, 635–645 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Germain, D. P. et al. Treatment of Fabry’s disease with the pharmacologic chaperone migalastat. N. Engl. J. Med. 375, 545–555 (2016).

    CAS  PubMed  Google Scholar 

  48. Hughes, D. A. et al. Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease: 18-month results from the randomised phase III ATTRACT study. J. Med. Genet. 54, 288–296 (2017).

    CAS  PubMed  Google Scholar 

  49. Bezerra, F., Saraiva, M. J. & Almeida, M. R. Modulation of the mechanisms driving transthyretin amyloidosis. Front. Mol. Neurosci. 13, 592644 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Bulawa, C. E. et al. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Proc. Natl Acad. Sci. USA 109, 9629–9634 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Damy, T. et al. Efficacy and safety of tafamidis doses in the Tafamidis in Transthyretin Cardiomyopathy Clinical Trial (ATTR-ACT) and long-term extension study. Eur. J. Heart Fail. 23, 277–285 (2021).

    CAS  PubMed  Google Scholar 

  52. Powers, M. V. & Workman, P. Inhibitors of the heat shock response: biology and pharmacology. FEBS Lett. 581, 3758–3769 (2007).

    CAS  PubMed  Google Scholar 

  53. Gestwicki, J. E. & Shao, H. Inhibitors and chemical probes for molecular chaperone networks. J. Biol. Chem. 294, 2151–2161 (2019).

    CAS  PubMed  Google Scholar 

  54. Clarke, H. J., Chambers, J. E., Liniker, E. & Marciniak, S. J. Endoplasmic reticulum stress in malignancy. Cancer Cell 25, 563–573 (2014).

    CAS  PubMed  Google Scholar 

  55. Hoter, A., El-Sabban, M. E. & Naim, H. Y. The HSP90 family: structure, regulation, function, and implications in health and disease. Int. J. Mol. Sci. 19, 2560 (2018).

    PubMed Central  Google Scholar 

  56. Rosenzweig, R., Nillegoda, N. B., Mayer, M. P. & Bukau, B. The Hsp70 chaperone network. Nat. Rev. Mol. Cell Biol. 20, 665–680 (2019).

    CAS  PubMed  Google Scholar 

  57. Duerfeldt, A. S. et al. Development of a Grp94 inhibitor. J. Am. Chem. Soc. 134, 9796–9804 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Crowley, V. M. et al. Development of glucose regulated protein 94-selective inhibitors based on the BnIm and radamide scaffold. J. Med. Chem. 59, 3471–3488 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Crowley, V. M., Huard, D. J. E., Lieberman, R. L. & Blagg, B. S. J. Second generation Grp94-selective inhibitors provide opportunities for the inhibition of metastatic cancer. Chemistry 23, 15775–15782 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Cerezo, M. et al. Compounds triggering ER stress exert anti-melanoma effects and overcome BRAF inhibitor resistance. Cancer Cell 29, 805–819 (2016).

    CAS  PubMed  Google Scholar 

  61. Lippincott-Schwartz, J., Bonifacino, J. S., Yuan, L. C. & Klausner, R. D. Degradation from the endoplasmic reticulum: disposing of newly synthesized proteins. Cell 54, 209–220 (1988).

    CAS  PubMed  Google Scholar 

  62. McCracken, A. A. & Brodsky, J. L. Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J. Cell Biol. 132, 291–298 (1996).

    CAS  PubMed  Google Scholar 

  63. Berkers, C. R. et al. Activity probe for in vivo profiling of the specificity of proteasome inhibitor bortezomib. Nat. Methods 2, 357–362 (2005).

    CAS  PubMed  Google Scholar 

  64. Groll, M., Berkers, C. R., Ploegh, H. L. & Ovaa, H. Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome. Structure 14, 451–456 (2006).

    CAS  PubMed  Google Scholar 

  65. Ye, Y., Meyer, H. H. & Rapoport, T. A. The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414, 652–656 (2001).

    CAS  PubMed  Google Scholar 

  66. Ju, J. S. et al. Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease. J. Cell Biol. 187, 875–888 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Tresse, E. et al. VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD. Autophagy 6, 217–227 (2010).

    CAS  PubMed  Google Scholar 

  68. Bartolome, F. et al. Pathogenic VCP mutations induce mitochondrial uncoupling and reduced ATP levels. Neuron 78, 57–64 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Fiebiger, E. et al. Dissection of the dislocation pathway for type I membrane proteins with a new small molecule inhibitor, eeyarestatin. Mol. Biol. Cell 15, 1635–1646 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang, Q., Li, L. & Ye, Y. Inhibition of p97-dependent protein degradation by Eeyarestatin I. J. Biol. Chem. 283, 7445–7454 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang, Q. et al. The ERAD inhibitor Eeyarestatin I is a bifunctional compound with a membrane-binding domain and a p97/VCP inhibitory group. PLoS ONE 5, e15479 (2010).

    PubMed  PubMed Central  Google Scholar 

  72. Ernst, R. et al. Enzymatic blockade of the ubiquitin–proteasome pathway. PLoS Biol. 8, e1000605 (2011).

    PubMed  Google Scholar 

  73. Cross, B. C. et al. Eeyarestatin I inhibits Sec61-mediated protein translocation at the endoplasmic reticulum. J. Cell Sci. 122, 4393–4400 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Magnaghi, P. et al. Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death. Nat. Chem. Biol. 9, 548–556 (2013).

    CAS  PubMed  Google Scholar 

  75. Noguchi, M. et al. ATPase activity of p97/valosin-containing protein is regulated by oxidative modification of the evolutionally conserved cysteine 522 residue in Walker A motif. J. Biol. Chem. 280, 41332–4134 (2005).

    CAS  PubMed  Google Scholar 

  76. LaPorte, M. G. et al. Optimization of phenyl indole inhibitors of the AAA+ ATPase p97. ACS Med. Chem. Lett. 9, 1075–1081 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Chou, T. F. et al. Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways. Proc. Natl Acad. Sci. USA 108, 4834–4839 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Chou, T. F., Li, K., Frankowski, K. J., Schoenen, F. J. & Deshaies, R. J. Structure–activity relationship study reveals ML240 and ML241 as potent and selective inhibitors of p97 ATPase. ChemMedChem 8, 297–312 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Anderson, D. J. et al. Targeting the AAA ATPase p97 as an approach to treat cancer through disruption of protein homeostasis. Cancer Cell 28, 653–665 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhou, H. J. et al. Discovery of a first-in-class, potent, selective, and orally bioavailable inhibitor of the p97 AAA ATPase (CB-5083). J. Med. Chem. 58, 9480–9497 (2015).

    CAS  PubMed  Google Scholar 

  81. Bastola, P. et al. Specific mutations in the D1–D2 linker region of VCP/p97 enhance ATPase activity and confer resistance to VCP inhibitors. Cell Death Discov. 3, 17065 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Tang, W. K., Odzorig, T., Jin, W. & Xia, D. Structural basis of p97 inhibition by the site-selective anticancer compound CB-5083. Mol. Pharmacol. 95, 286–293 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Gareau, A., Rico, C., Boerboom, D. & Nadeau, M. E. In vitro efficacy of a first-generation valosin-containing protein inhibitor (CB-5083) against canine lymphoma. Vet. Comp. Oncol. 16, 311–317 (2018).

    CAS  PubMed  Google Scholar 

  84. Gugliotta, G. et al. Valosin-containing protein/p97 as a novel therapeutic target in acute lymphoblastic leukemia. Neoplasia 19, 750–761 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Mu, T. W. et al. Chemical and biological approaches synergize to ameliorate protein-folding diseases. Cell 134, 769–781 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang, F., Song, W., Brancati, G. & Segatori, L. Inhibition of endoplasmic reticulum-associated degradation rescues native folding in loss of function protein misfolding diseases. J. Biol. Chem. 286, 43454–43464 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Avezov, E., Frenkel, Z., Ehrlich, M., Herscovics, A. & Lederkremer, G. Z. Endoplasmic reticulum (ER) mannosidase I is compartmentalized and required for N-glycan trimming to Man5–6GlcNAc2 in glycoprotein ER-associated degradation. Mol. Biol. Cell 19, 216–225 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Hosokawa, N. et al. Enhancement of endoplasmic reticulum (ER) degradation of misfolded null Hong Kong α1-antitrypsin by human ER mannosidase I. J. Biol. Chem. 278, 26287–26294 (2003).

    CAS  PubMed  Google Scholar 

  89. Elbein, A. D., Kerbacher, J. K., Schwartz, C. J. & Sprague, E. A. Kifunensine inhibits glycoprotein processing and the function of the modified LDL receptor in endothelial cells. Arch. Biochem. Biophys. 288, 177–184 (1991).

    CAS  PubMed  Google Scholar 

  90. Lu, M. et al. Cell death. Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis. Science 345, 98–101 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Bertolotti, A., Zhang, Y., Hendershot, L., Harding, H. & Ron, D. Dynamic interaction of BiP and the ER stress transducers in the unfolded protein response. Nat. Cell Biol. 2, 326–332 (2000).

    CAS  PubMed  Google Scholar 

  92. Axten, J. M. et al. Discovery of 7-methyl-5-(1-{[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). J. Med. Chem. 55, 7193–7207 (2012). This work reports the development of the first-in-class PERK inhibitor GSK2606414, which proved to be a useful tool compound to study the UPR and, subsequently, led to the development of several derivative compounds.

    CAS  PubMed  Google Scholar 

  93. Smith, A. L. et al. Discovery of 1H-pyrazol-3(2H)-ones as potent and selective inhibitors of protein kinase R-like endoplasmic reticulum kinase (PERK). J. Med. Chem. 58, 1426–1441 (2015).

    CAS  PubMed  Google Scholar 

  94. Krishnamoorthy, J. et al. Evidence for eIF2α phosphorylation-independent effects of GSK2656157, a novel catalytic inhibitor of PERK with clinical implications. Cell Cycle 13, 801–806 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Rojas-Rivera, D. et al. When PERK inhibitors turn out to be new potent RIPK1 inhibitors: critical issues on the specificity and use of GSK2606414 and GSK2656157. Cell Death Differ. 24, 1100–1110 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Harding, H. P., Zyryanova, A. F. & Ron, D. Uncoupling proteostasis and development in vitro with a small molecule inhibitor of the pancreatic endoplasmic reticulum kinase, PERK. J. Biol. Chem. 287, 44338–44344 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Yu, Q. et al. Type I interferons mediate pancreatic toxicities of PERK inhibition. Proc. Natl Acad. Sci. USA 112, 15420–15425 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Stockwell, S. R. et al. Mechanism-based screen for G1/S checkpoint activators identifies a selective activator of EIF2AK3/PERK signalling. PLoS ONE 7, e28568 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Ganz, J. et al. A novel specific PERK activator reduces toxicity and extends survival in Huntington’s disease models. Sci. Rep. 10, 6875 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Sidrauski, C. et al. Pharmacological brake-release of mRNA translation enhances cognitive memory. eLife 2, e00498 (2013). This work presents a cell-based screen for inhibitors of PERK that identified ISRIB, a small molecule that potently inhibits the ISR by antagonizing the effects of phosphorylated eIF2α.

    PubMed  PubMed Central  Google Scholar 

  101. Sekine, Y. et al. Stress responses. Mutations in a translation initiation factor identify the target of a memory-enhancing compound. Science 348, 1027–1030 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Sidrauski, C. et al. Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes the integrated stress response. eLife 4, e07314 (2015).

    PubMed  PubMed Central  Google Scholar 

  103. Tsai, J. C. et al. Structure of the nucleotide exchange factor eIF2B reveals mechanism of memory-enhancing molecule. Science 359, eaaq0939 (2018).

    PubMed  PubMed Central  Google Scholar 

  104. Zyryanova, A. F. et al. Binding of ISRIB reveals a regulatory site in the nucleotide exchange factor eIF2B. Science 359, 1533–1536 (2018). Together with Tsai et al. (2018), this paper describes the use of cryo-electron microscopy to reveal the binding site of the ISR inhibitor ISRIB to eIF2B.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Zyryanova, A. F. et al. ISRIB blunts the integrated stress response by allosterically antagonising the inhibitory effect of phosphorylated eIF2 on eIF2B. Mol. Cell 81, 88–103.e6 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Kashiwagi, K. et al. Structural basis for eIF2B inhibition in integrated stress response. Science 364, 495–499 (2019).

    CAS  PubMed  Google Scholar 

  107. Kenner, L. R. et al. eIF2B-catalyzed nucleotide exchange and phosphoregulation by the integrated stress response. Science 364, 491–495 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Gordiyenko, Y., Llacer, J. L. & Ramakrishnan, V. Structural basis for the inhibition of translation through eIF2α phosphorylation. Nat. Commun. 10, 2640 (2019).

    PubMed  PubMed Central  Google Scholar 

  109. Schoof, M. et al. eIF2B conformation and assembly state regulate the integrated stress response. eLife 10, e65703 (2020).

    Google Scholar 

  110. Wong, Y. L. et al. The small molecule ISRIB rescues the stability and activity of vanishing white matter disease eIF2B mutant complexes. eLife 7, e32733 (2018).

    PubMed  PubMed Central  Google Scholar 

  111. Abbink, T. E. M. et al. Vanishing white matter: deregulated integrated stress response as therapy target. Ann. Clin. Transl. Neurol. 6, 1407–1422 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Malzer, E. et al. Coordinate regulation of eIF2α phosphorylation by PPP1R15 and GCN2 is required during Drosophila development. J. Cell Sci. 126, 1406–1415 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Novoa, I., Zeng, H., Harding, H. & Ron, D. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2α. J. Cell Biol. 153, 1011–1022 (2001). This paper describes the discovery of PPP1R15A (also known as GADD34), a stress-inducible regulatory subunit of PPP1 that promotes eIF2α dephosphorylation to terminate the ISR.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Brush, M. H., Weiser, D. C. & Shenolikar, S. Growth arrest and DNA damage-inducible protein GADD34 targets protein phosphatase 1α to the endoplasmic reticulum and promotes dephosphorylation of the alpha subunit of eukaryotic translation initiation factor 2. Mol. Cell Biol. 23, 1292–1303 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Kojima, E. et al. The function of GADD34 is a recovery from a shutoff of protein synthesis induced by ER stress-elucidation by GADD34-deficient mice. FASEB J. 17, 1573–1575 (2003).

    CAS  PubMed  Google Scholar 

  116. Novoa, I. et al. Stress-induced gene expression requires programmed recovery from translational repression. EMBO J. 22, 1180–1187 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Jousse, C. et al. Inhibition of a constitutive translation initiation factor 2α phosphatase, CReP, promotes survival of stressed cells. J. Cell Biol. 163, 767–775 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Reid, D. W. et al. Complementary roles of GADD34- and CReP-containing eukaryotic initiation factor 2α phosphatases during the unfolded protein response. Mol. Cell Biol. 36, 1868–1880 (2016).

    PubMed  PubMed Central  Google Scholar 

  119. Harding, H. P. et al. Ppp1r15 gene knockout reveals an essential role for translation initiation factor 2α (eIF2α) dephosphorylation in mammalian development. Proc. Natl Acad. Sci. USA 106, 1832–1837 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Lu, P. D. et al. Cytoprotection by pre-emptive conditional phosphorylation of translation initiation factor 2. EMBO J. 23, 169–179 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. D’Antonio, M. et al. Resetting translational homeostasis restores myelination in Charcot–Marie–Tooth disease type 1B mice. J. Exp. Med. 210, 821–838 (2013).

    PubMed  PubMed Central  Google Scholar 

  122. Wang, L., Popko, B. & Roos, R. P. An enhanced integrated stress response ameliorates mutant SOD1-induced ALS. Hum. Mol. Genet. 23, 2629–2638 (2014).

    CAS  PubMed  Google Scholar 

  123. Boyce, M. et al. A Selective inhibitor of eIF2α dephosphorylation protects cells from ER stress. Science 307, 935–939 (2005).

    CAS  PubMed  Google Scholar 

  124. Crespillo-Casado, A. et al. A Sephin1-insensitive tripartite holophosphatase dephosphorylates translation initiation factor 2α. J. Biol. Chem. 293, 7766–7776 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Carrara, M., Sigurdardottir, A. & Bertolotti, A. Decoding the selectivity of eIF2α holophosphatases and PPP1R15A inhibitors. Nat. Struct. Mol. Biol. 24, 708–716 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Tribouillard-Tanvier, D. et al. Antihypertensive drug guanabenz is active in vivo against both yeast and mammalian prions. PLoS ONE 3, e1981 (2008).

    PubMed  PubMed Central  Google Scholar 

  127. Rojas, M., Gingras, A. C. & Dever, T. E. Protein phosphatase PP1/GLC7 interaction domain in yeast eIF2γ bypasses targeting subunit requirement for eIF2α dephosphorylation. Proc. Natl Acad. Sci. USA 111, E1344–E1353 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Tsaytler, P., Harding, H. P., Ron, D. & Bertolotti, A. Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science 332, 91–94 (2011).

    CAS  PubMed  Google Scholar 

  129. Das, I. et al. Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit. Science 348, 239–242 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Krzyzosiak, A. et al. Target-based discovery of an inhibitor of the regulatory phosphatase PPP1R15B. Cell 174, 1216–1228.e19 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Crespillo-Casado, A., Chambers, J. E., Fischer, P. M., Marciniak, S. J. & Ron, D. PPP1R15A-mediated dephosphorylation of eIF2α is unaffected by Sephin1 or guanabenz. eLife 6, e26109 (2017). This work demonstrates that Sephin1 and guanabenz, which exert beneficial effects on cell function during proteotoxic stress, do not directly alter eIF2α dephosphorylation, retaining activity in cells lacking PPP1R15A or in cells with non-phosphorylatable eIF2αS51A.

    PubMed  PubMed Central  Google Scholar 

  132. Chen, R. et al. G-actin provides substrate-specificity to eukaryotic initiation factor 2α holophosphatases. eLife 4, e04871 (2015).

    PubMed Central  Google Scholar 

  133. Choy, M. S. et al. Structural and functional analysis of the GADD34:PP1 eIF2α phosphatase. Cell Rep. 11, 1885–1891 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Chambers, J. E. et al. Actin dynamics tune the integrated stress response by regulating eukaryotic initiation factor 2α dephosphorylation. eLife 4, e04872 (2015). This work reveals a critical role of G-actin as a component of the eIF2α phosphatase.

    PubMed Central  Google Scholar 

  135. Cross, B. C. et al. The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule. Proc. Natl Acad. Sci. USA 109, E869–E878 (2012). This paper reports the discovery of a small molecule, 4μ8C, that inhibits IRE1 through the formation of a specific Schiff base with a lysin in the endonuclease domain.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Papandreou, I. et al. Identification of an Ire1α endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood 117, 1311–1314 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Volkmann, K. et al. Potent and selective inhibitors of the inositol-requiring enzyme 1 endoribonuclease. J. Biol. Chem. 286, 12743–12755 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Sanches, M. et al. Structure and mechanism of action of the hydroxy-aryl-aldehyde class of IRE1 endoribonuclease inhibitors. Nat. Commun. 5, 4202 (2014).

    CAS  PubMed  Google Scholar 

  139. Tomasio, S. M., Harding, H. P., Ron, D., Cross, B. C. & Bond, P. J. Selective inhibition of the unfolded protein response: targeting catalytic sites for Schiff base modification. Mol. Biosyst. 9, 2408–2416 (2013).

    CAS  PubMed  Google Scholar 

  140. Chan, S. M. H., Lowe, M. P., Bernard, A., Miller, A. A. & Herbert, T. P. The inositol-requiring enzyme 1 (IRE1α) RNAse inhibitor, 4μ8C, is also a potent cellular antioxidant. Biochem. J. 475, 923–929 (2018).

    CAS  PubMed  Google Scholar 

  141. Sato, H., Shiba, Y., Tsuchiya, Y., Saito, M. & Kohno, K. 4μ8C inhibits insulin secretion independent of IRE1α RNase activity. Cell Struct. Funct. 42, 61–70 (2017).

    CAS  PubMed  Google Scholar 

  142. Mimura, N. et al. Blockade of XBP1 splicing by inhibition of IRE1α is a promising therapeutic option in multiple myeloma. Blood 119, 5772–5781 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Korennykh, A. V. et al. Cofactor-mediated conformational control in the bifunctional kinase/RNase Ire1. BMC Biol. 9, 48 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Lee, K. P. K. et al. Structure of the dual enzyme Ire1 reveals the basis for catalysis and regulation in non-conventional RNA splicing. Cell 132, 89–100 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Papa, F. R., Zhang, C., Shokat, K. & Walter, P. Bypassing a kinase activity with an ATP-competitive drug. Science 302, 1533–1537 (2003). This work provides proof of principle that a conformational change of IRE1 is sufficient to trigger UPR signalling without the need for IRE1 kinase activity.

    CAS  PubMed  Google Scholar 

  146. Wang, L. et al. Divergent allosteric control of the IRE1α endoribonuclease using kinase inhibitors. Nat. Chem. Biol. 8, 982–989 (2012). This work demonstrates that different classes of IRE1 kinase-domain ligands can either inhibit or activate XBP1 mRNA cleavage by IRE1’s endonuclease domain.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Mendez, A. S. et al. Endoplasmic reticulum stress-independent activation of unfolded protein response kinases by a small molecule ATP-mimic. eLife 4, e05434 (2015).

    PubMed Central  Google Scholar 

  148. Morita, S. et al. Targeting ABL–IRE1α signaling spares ER-stressed pancreatic β cells to reverse autoimmune diabetes. Cell Metab. 25, 883–897.e8 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Ghosh, R. et al. Allosteric inhibition of the IRE1α RNase preserves cell viability and function during endoplasmic reticulum stress. Cell 158, 534–548 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Wiseman, R. L. et al. Flavonol activation defines an unanticipated ligand-binding site in the kinase–RNase domain of IRE1. Mol. Cell 38, 291–304 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Concha, N. O. et al. Long-range inhibitor-induced conformational regulation of human IRE1α endoribonuclease activity. Mol. Pharmacol. 88, 1011–1023 (2015).

    CAS  PubMed  Google Scholar 

  152. Grandjean, J. M. D. et al. Pharmacologic IRE1/XBP1s activation confers targeted ER proteostasis reprogramming. Nat. Chem. Biol. 16, 1052–1061 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Bertolotti, A. et al. Increased sensitivity to dextran sodium sulfate colitis in IRE1b deficient mice. J. Clin. Invest. 107, 585–593 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Cloots, E. et al. Evolution and function of the epithelial cell-specific ER stress sensor IRE1β. Mucosal Immunol. https://doi.org/10.1038/s41385-021-00412-8 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Iwawaki, T. et al. Translational control by the ER transmembrane kinase/ribonuclease IRE1 under ER stress. Nat. Cell Biol. 3, 158–164 (2001).

    CAS  PubMed  Google Scholar 

  156. Imagawa, Y., Hosoda, A., Sasaka, S., Tsuru, A. & Kohno, K. RNase domains determine the functional difference between IRE1α and IRE1β. FEBS Lett. 582, 656–660 (2008).

    CAS  PubMed  Google Scholar 

  157. Feldman, H. C. et al. Development of a chemical toolset for studying the paralog-specific function of IRE1. ACS Chem. Biol. 14, 2595–2605 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Yoshida, H., Haze, K., Yanagi, H., Yura, T. & Mori, K. Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose- regulated proteins. Involvement of basic leucine zipper transcription factors. J. Biol. Chem. 273, 33741–33749 (1998).

    CAS  PubMed  Google Scholar 

  159. Haze, K., Yoshida, H., Yanagi, H., Yura, T. & Mori, K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol. Cell 10, 3787–3799 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Ye, J. et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell 6, 1355–1364 (2000).

    CAS  PubMed  Google Scholar 

  161. Schindler, A. J. & Schekman, R. In vitro reconstitution of ER-stress induced ATF6 transport in COPII vesicles. Proc. Natl Acad. Sci. USA 106, 17775–17780 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Glembotski, C. C., Rosarda, J. D. & Wiseman, R. L. Proteostasis and beyond: ATF6 in ischemic disease. Trends Mol. Med. 25, 538–550 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Okada, T. et al. A serine protease inhibitor prevents endoplasmic reticulum stress-induced cleavage but not transport of the membrane-bound transcription factor ATF6. J. Biol. Chem. 278, 31024–31032 (2003).

    CAS  PubMed  Google Scholar 

  164. Gallagher, C. M. et al. Ceapins are a new class of unfolded protein response inhibitors, selectively targeting the ATF6α branch. eLife 5, e11878 (2016).

    PubMed  PubMed Central  Google Scholar 

  165. Torres, S. E. et al. Ceapins block the unfolded protein response sensor ATF6α by inducing a neomorphic inter-organelle tether. eLife 8, e46595 (2019). This paper describes a CRISPR interference screen that revealed the mechanism of ATF6 inhibition by Ceapins, which involves tethering of the cytosolic domain of ATF6 to the peroxisome protein ABCD3.

    PubMed  PubMed Central  Google Scholar 

  166. Gallagher, C. M. & Walter, P. Ceapins inhibit ATF6α signaling by selectively preventing transport of ATF6α to the Golgi apparatus during ER stress. eLife 5, e11880 (2016). This work reports the discovery of Ceapins, which are pyrazole amides that selectively inhibit ATF6 signalling without affecting Golgi proteases involved in ATF6 processing.

    PubMed  PubMed Central  Google Scholar 

  167. Plate, L. et al. Small molecule proteostasis regulators that reprogram the ER to reduce extracellular protein aggregation. eLife 5, e15550 (2016).

    PubMed  PubMed Central  Google Scholar 

  168. Paxman, R. et al. Pharmacologic ATF6 activating compounds are metabolically activated to selectively modify endoplasmic reticulum proteins. eLife 7, e37168 (2018).

    PubMed  PubMed Central  Google Scholar 

  169. Piccolis, M. et al. Probing the global cellular responses to lipotoxicity caused by saturated fatty acids. Mol. Cell 74, 32–44.e8 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Robblee, M. M. et al. Saturated fatty acids engage an IRE1α-dependent pathway to activate the NLRP3 inflammasome in myeloid cells. Cell Rep. 14, 2611–2623 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Volmer, R., van der Ploeg, K. & Ron, D. Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. Proc. Natl Acad. Sci. USA 110, 4628–4633 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Petkevicius, K. et al. Accelerated phosphatidylcholine turnover in macrophages promotes adipose tissue inflammation in obesity. eLife 8, e47990 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Rong, X. et al. LXRs regulate ER stress and inflammation through dynamic modulation of membrane phospholipid composition. Cell Metab. 18, 685–697 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Lebeaupin, C. et al. Bax inhibitor-1 protects from nonalcoholic steatohepatitis by limiting inositol-requiring enzyme 1α signaling in mice. Hepatology 68, 515–532 (2018).

    CAS  PubMed  Google Scholar 

  175. Patel, V. et al. Inactivation of PPP1R15A minimises weight gain and insulin resistance during caloric excess in female mice. Sci. Rep. 9, 2903 (2019).

    PubMed  PubMed Central  Google Scholar 

  176. Shan, B. et al. The metabolic ER stress sensor IRE1α suppresses alternative activation of macrophages and impairs energy expenditure in obesity. Nat. Immunol. 18, 519–529 (2017).

    CAS  PubMed  Google Scholar 

  177. Horwath, J. A. et al. Obesity-induced hepatic steatosis is mediated by endoplasmic reticulum stress in the subfornical organ of the brain. JCI Insight 2, e90170 (2017).

    PubMed Central  Google Scholar 

  178. Hernandez-Alvarez, M. I. et al. Deficient endoplasmic reticulum–mitochondrial phosphatidylserine transfer causes liver disease. Cell 177, 881–895.e17 (2019).

    CAS  PubMed  Google Scholar 

  179. Kim, J. Y. et al. ER stress drives lipogenesis and steatohepatitis via caspase-2 activation of S1P. Cell 175, 133–145.e15 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Munro, S. & Pelham, H. R. An Hsp70-like protein in the ER: identity with the 78 kD glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 46, 291–300 (1986).

    CAS  PubMed  Google Scholar 

  181. Lee, A. S. Coordinate regulation of a set of genes by glucose and calcium ionophores in mammalian cells. Trends Biochem. Sci. 12, 20–23 (1987).

    CAS  Google Scholar 

  182. Balsa, E. et al. ER and nutrient stress promote assembly of respiratory chain supercomplexes through the PERK-eIF2α axis. Mol. Cell 74, 877–890.e6 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Mackey, D. A. & Trounce, I. Genetics: optic nerve genetics—more than meets the eye. Nat. Rev. Neurol. 6, 357–358 (2010).

    PubMed  Google Scholar 

  184. Bi, M. et al. ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO J. 24, 3470–3481 (2005). This paper demonstrates the importance of the ER stress-responsive kinase PERK in the ability of solid tumours to withstand hypoxia, and so served to promote the development of PERK inhibitors as potential anticancer therapies.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Rouschop, K. M. et al. PERK/eIF2α signaling protects therapy resistant hypoxic cells through induction of glutathione synthesis and protection against ROS. Proc. Natl Acad. Sci. USA 110, 4622–4627 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Harding, H. P. et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11, 619–633 (2003). This work shows that the PERK–ATF4 axis regulates amino acid import and glutathione biosynthesis, thus enabling cells to withstand oxidative stress.

    CAS  PubMed  Google Scholar 

  187. Han, J. et al. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat. Cell Biol. 15, 481–490 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Zhang, P. et al. The PERK eukaryotic initiation factor 2α kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol. Cell Biol. 22, 3864–3874 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Gupta, S., McGrath, B. & Cavener, D. R. PERK regulates the proliferation and development of insulin-secreting β-cell tumors in the endocrine pancreas of mice. PLoS ONE 4, e8008 (2009).

    PubMed  PubMed Central  Google Scholar 

  190. Gao, Y. et al. PERK is required in the adult pancreas and is essential for maintenance of glucose homeostasis. Mol. Cell Biol. 32, 5129–5139 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Sheng, X. et al. IRE1α–XBP1s pathway promotes prostate cancer by activating c-MYC signaling. Nat. Commun. 10, 323 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Nguyen, H. G. et al. Development of a stress response therapy targeting aggressive prostate cancer. Sci. Transl Med. 10, eaar2036 (2018).

    PubMed  PubMed Central  Google Scholar 

  193. Rabouw, H. H. et al. Small molecule ISRIB suppresses the integrated stress response within a defined window of activation. Proc. Natl Acad. Sci. USA 116, 2097–2102 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Kane, R. C., Bross, P. F., Farrell, A. T. & Pazdur, R. Velcade: U.S. FDA approval for the treatment of multiple myeloma progressing on prior therapy. Oncologist 8, 508–513 (2003).

    PubMed  Google Scholar 

  195. Lee, A. H., Iwakoshi, N. N., Anderson, K. C. & Glimcher, L. H. Proteasome inhibitors disrupt the unfolded protein response in myeloma cells. Proc. Natl Acad. Sci. USA 100, 9946–9951 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Bross, P. F. et al. Approval summary for bortezomib for injection in the treatment of multiple myeloma. Clin. Cancer Res. 10, 3954–3964 (2004).

    CAS  PubMed  Google Scholar 

  197. Obeng, E. A. et al. Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 107, 4907–4916 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Meister, S. et al. Extensive immunoglobulin production sensitizes myeloma cells for proteasome inhibition. Cancer Res. 67, 1783–1792 (2007).

    CAS  PubMed  Google Scholar 

  199. Wang, Q. et al. ERAD inhibitors integrate ER stress with an epigenetic mechanism to activate BH3-only protein NOXA in cancer cells. Proc. Natl Acad. Sci. USA 106, 2200–2205 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Auner, H. W. et al. Combined inhibition of p97 and the proteasome causes lethal disruption of the secretory apparatus in multiple myeloma cells. PLoS ONE 8, e74415 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Oerlemans, R. et al. Molecular basis of bortezomib resistance: proteasome subunit β5 (PSMB5) gene mutation and overexpression of PSMB5 protein. Blood 112, 2489–2499 (2008).

    CAS  PubMed  Google Scholar 

  202. Balsas, P., Galan-Malo, P., Marzo, I. & Naval, J. Bortezomib resistance in a myeloma cell line is associated to PSMβ5 overexpression and polyploidy. Leuk. Res. 36, 212–218 (2012).

    CAS  PubMed  Google Scholar 

  203. Oliva, L. et al. The amyloidogenic light chain is a stressor that sensitizes plasma cells to proteasome inhibitor toxicity. Blood 129, 2132–2142 (2017).

    CAS  PubMed  Google Scholar 

  204. Yoo, Y. D. et al. Glioma-derived cancer stem cells are hypersensitive to proteasomal inhibition. EMBO Rep. 18, 150–168 (2017).

    CAS  PubMed  Google Scholar 

  205. Zhang, H. et al. Targeting VCP enhances anticancer activity of oncolytic virus M1 in hepatocellular carcinoma. Sci. Transl Med. 9, eaam7996 (2017).

    PubMed  Google Scholar 

  206. Chen, X. et al. XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway. Nature 508, 103–107 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Pommier, A. et al. Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science 360, eaao4908 (2018).

    PubMed  PubMed Central  Google Scholar 

  208. Logue, S. E. et al. Inhibition of IRE1 RNase activity modulates the tumor cell secretome and enhances response to chemotherapy. Nat. Commun. 9, 3267 (2018).

    PubMed  PubMed Central  Google Scholar 

  209. Ma, X. et al. Cholesterol Induces CD8+ T cell exhaustion in the tumor microenvironment. Cell Metab. 30, 143–156.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Obacz, J. et al. Regulation of tumor–stroma interactions by the unfolded protein response. FEBS J. 286, 279–296 (2017).

    PubMed  Google Scholar 

  211. Cao, Y. et al. ER stress-induced mediator C/EBP homologous protein thwarts effector T cell activity in tumors through T-bet repression. Nat. Commun. 10, 1280 (2019).

    PubMed  PubMed Central  Google Scholar 

  212. Hossain, D. M. S. et al. Dinaciclib induces immunogenic cell death and enhances anti-PD1-mediated tumor suppression. J. Clin. Invest. 128, 644–654 (2018).

    PubMed  PubMed Central  Google Scholar 

  213. Obeid, M. ERP57 membrane translocation dictates the immunogenicity of tumor cell death by controlling the membrane translocation of calreticulin. J. Immunol. 181, 2533–2543 (2008).

    CAS  PubMed  Google Scholar 

  214. Chao, M. P. et al. Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci. Transl Med. 2, 63ra94 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Obeid, M. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 13, 54–61 (2007).

    CAS  PubMed  Google Scholar 

  216. Pozzi, C. et al. The EGFR-specific antibody cetuximab combined with chemotherapy triggers immunogenic cell death. Nat. Med. 22, 624–631 (2016).

    CAS  PubMed  Google Scholar 

  217. Togashi, Y., Shitara, K. & Nishikawa, H. Regulatory T cells in cancer immunosuppression — implications for anticancer therapy. Nat. Rev. Clin. Oncol. 16, 356–371 (2019).

    CAS  PubMed  Google Scholar 

  218. Pauken, K. E. & Wherry, E. J. Overcoming T cell exhaustion in infection and cancer. Trends Immunol. 36, 265–276 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Havel, J. J., Chowell, D. & Chan, T. A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 19, 133–150 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Hetz, C. & Saxena, S. ER stress and the unfolded protein response in neurodegeneration. Nat. Rev. Neurol. 13, 477–491 (2017).

    CAS  PubMed  Google Scholar 

  221. Roussel, B. D. et al. Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol. 12, 105–118 (2013).

    CAS  PubMed  Google Scholar 

  222. Zaltzman, R., Elyoseph, Z., Lev, N. & Gordon, C. R. Trehalose in Machado–Joseph disease: safety, tolerability, and efficacy. Cerebellum 19, 672–679 (2020).

    CAS  PubMed  Google Scholar 

  223. Rusmini, P. et al. Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration. Autophagy 15, 631–651 (2019).

    CAS  PubMed  Google Scholar 

  224. Kakoty, V., K, C. S., Dubey, S. K., Yang, C. H. & Taliyan, R. Neuroprotective effects of trehalose and sodium butyrate on preformed fibrillar form of α-synuclein-induced rat model of Parkinson’s disease. ACS Chem. Neurosci. 12, 2643–2660 (2021).

    CAS  PubMed  Google Scholar 

  225. Di Prisco, G. V. et al. Translational control of mGluR-dependent long-term depression and object-place learning by eIF2α. Nat. Neurosci. 17, 1073–1082 (2014).

    PubMed  Google Scholar 

  226. Costa-Mattioli, M. et al. Translational control of hippocampal synaptic plasticity and memory by the eIF2α kinase GCN2. Nature 436, 1166–1173 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Costa-Mattioli, M. et al. eIF2α phosphorylation bidirectionally regulates the switch from short- to long-term synaptic plasticity and memory. Cell 129, 195–206 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Halliday, M. et al. Partial restoration of protein synthesis rates by the small molecule ISRIB prevents neurodegeneration without pancreatic toxicity. Cell Death Dis. 6, e1672 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Zhu, P. J. et al. Activation of the ISR mediates the behavioral and neurophysiological abnormalities in Down syndrome. Science 366, 843–849 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Chou, A. et al. Inhibition of the integrated stress response reverses cognitive deficits after traumatic brain injury. Proc. Natl Acad. Sci. USA 114, E6420–E6426 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Johnson, E. C. & Kang, J. A small molecule targeting protein translation does not rescue spatial learning and memory deficits in the hAPP-J20 mouse model of Alzheimer’s disease. PeerJ 4, e2565 (2016).

    PubMed  PubMed Central  Google Scholar 

  232. Borck, G. et al. eIF2γ mutation that disrupts eIF2 complex integrity links intellectual disability to impaired translation initiation. Mol. Cell 48, 641–646 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Young-Baird, S. K., Shin, B. S. & Dever, T. E. MEHMO syndrome mutation EIF2S3-I259M impairs initiator Met–tRNAiMet binding to eukaryotic translation initiation factor eIF2. Nucleic Acids Res. 47, 855–867 (2019).

    CAS  PubMed  Google Scholar 

  234. Panvert, M. et al. Cdc123, a cell cycle regulator needed for eIF2 assembly, is an ATP-grasp protein with unique features. Structure 23, 1596–1608 (2015).

    CAS  PubMed  Google Scholar 

  235. Perzlmaier, A. F., Richter, F. & Seufert, W. Translation initiation requires cell division cycle 123 (Cdc123) to facilitate biogenesis of the eukaryotic initiation factor 2 (eIF2). J. Biol. Chem. 288, 21537–21546 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Young-Baird, S. K. et al. Suppression of MEHMO syndrome mutation in eIF2 by small molecule ISRIB. Mol. Cell 77, 875–886.e7 (2020).

    CAS  PubMed  Google Scholar 

  237. Gregory, L. C. et al. Impaired EIF2S3 function associated with a novel phenotype of X-linked hypopituitarism with glucose dysregulation. EBioMedicine 42, 470–480 (2019).

    PubMed  PubMed Central  Google Scholar 

  238. Skopkova, M. et al. EIF2S3 mutations associated with severe X-linked intellectual disability syndrome MEHMO. Hum. Mutat. 38, 409–425 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Chen, A. et al. Inducible enhancement of memory storage and synaptic plasticity in transgenic mice expressing an inhibitor of ATF4 (CREB-2) and C/EBP proteins. Neuron 39, 655–669 (2003).

    CAS  PubMed  Google Scholar 

  240. Pasini, S., Corona, C., Liu, J., Greene, L. A. & Shelanski, M. L. Specific downregulation of hippocampal ATF4 reveals a necessary role in synaptic plasticity and memory. Cell Rep. 11, 183–191 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Huang, W. et al. Translational control by eIF2α phosphorylation regulates vulnerability to the synaptic and behavioral effects of cocaine. eLife 5, e12052 (2016).

    PubMed  PubMed Central  Google Scholar 

  242. Placzek, A. N. et al. eIF2α-mediated translational control regulates the persistence of cocaine-induced LTP in midbrain dopamine neurons. eLife 5, e17517 (2016).

    PubMed  PubMed Central  Google Scholar 

  243. Moreno, J. A. et al. Sustained translational repression by eIF2α-P mediates prion neurodegeneration. Nature 485, 507–511 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Moreno, J. A. et al. Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci. Transl Med. 5, 206ra138 (2013).

    PubMed  Google Scholar 

  245. Halliday, M. et al. Repurposed drugs targeting eIF2α-P-mediated translational repression prevent neurodegeneration in mice. Brain 140, 1768–1783 (2017).

    PubMed  PubMed Central  Google Scholar 

  246. Radford, H., Moreno, J. A., Verity, N., Halliday, M. & Mallucci, G. R. PERK inhibition prevents tau-mediated neurodegeneration in a mouse model of frontotemporal dementia. Acta Neuropathol. 130, 633–642 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Mercado, G. et al. Targeting PERK signaling with the small molecule GSK2606414 prevents neurodegeneration in a model of Parkinson’s disease. Neurobiol. Dis. 112, 136–148 (2018).

    CAS  PubMed  Google Scholar 

  248. Grande, V. et al. PERK inhibition delays neurodegeneration and improves motor function in a mouse model of Marinesco–Sjogren syndrome. Hum. Mol. Genet. 27, 2477–2489 (2018).

    CAS  PubMed  Google Scholar 

  249. Bruch, J. et al. Early neurodegeneration in the brain of a child without functional PKR-like endoplasmic reticulum kinase. J. Neuropathol. Exp. Neurol. 74, 850–857 (2015).

    PubMed  Google Scholar 

  250. Bruch, J. et al. PERK activation mitigates tau pathology in vitro and in vivo. EMBO Mol. Med. 9, 371–384 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Way, S. W. et al. Pharmaceutical integrated stress response enhancement protects oligodendrocytes and provides a potential multiple sclerosis therapeutic. Nat. Commun. 6, 6532 (2015).

    CAS  PubMed  Google Scholar 

  252. Wang, L., Popko, B., Tixier, E. & Roos, R. P. Guanabenz, which enhances the unfolded protein response, ameliorates mutant SOD1-induced amyotrophic lateral sclerosis. Neurobiol. Dis. 71, 317–324 (2014).

    CAS  PubMed  Google Scholar 

  253. Jiang, H. Q. et al. Guanabenz delays the onset of disease symptoms, extends lifespan, improves motor performance and attenuates motor neuron loss in the SOD1 G93A mouse model of amyotrophic lateral sclerosis. Neuroscience 277, 132–138 (2014).

    CAS  PubMed  Google Scholar 

  254. Vieira, F. G. et al. Guanabenz treatment accelerates disease in a mutant SOD1 mouse model of ALS. PLoS ONE 10, e0135570 (2015).

    PubMed  PubMed Central  Google Scholar 

  255. Scheuner, D. et al. Translational control is required for the unfolded protein response and in-vivo glucose homeostasis. Mol. Cell 7, 1165–1176 (2001).

    CAS  PubMed  Google Scholar 

  256. Mohamed, E. et al. The unfolded protein response mediator PERK governs myeloid cell-driven immunosuppression in tumors through inhibition of STING signaling. Immunity 52, 668–682.e7 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Iwawaki, T., Akai, R. & Kohno, K. IRE1α disruption causes histological abnormality of exocrine tissues, increase of blood glucose level, and decrease of serum immunoglobulin level. PLoS ONE 5, e13052 (2010).

    PubMed  PubMed Central  Google Scholar 

  258. Iwawaki, T., Akai, R., Yamanaka, S. & Kohno, K. Function of IRE1α in the placenta is essential for placental development and embryonic viability. Proc. Natl Acad. Sci. USA 106, 16657–16662 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Sun, X. et al. Hepatic conditional knockout of ATF6 exacerbates liver metabolic damage by repressing autophage through MTOR pathway. Biochem. Biophys. Res. Commun. 505, 45–50 (2018).

    CAS  PubMed  Google Scholar 

  260. Blackwood, E. A. et al. Pharmacologic ATF6 activation confers global protection in widespread disease models by reprograming cellular proteostasis. Nat. Commun. 10, 187 (2019).

    PubMed  PubMed Central  Google Scholar 

  261. Makhija, L. et al. Chemical chaperones mitigate experimental asthma by attenuating endoplasmic reticulum stress. Am. J. Respir. Cell Mol. Biol. 50, 923–931 (2014).

    PubMed  Google Scholar 

  262. Velasquez, M. T., Ramezani, A., Manal, A. & Raj, D. S. Trimethylamine N-oxide: the good, the bad and the unknown. Toxins 8, 326 (2016).

    PubMed Central  Google Scholar 

  263. Gioia, R. et al. The chaperone activity of 4PBA ameliorates the skeletal phenotype of Chihuahua, a zebrafish model for dominant osteogenesis imperfecta. Hum. Mol. Genet. 26, 2897–2911 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Mimori, S. et al. 4-Phenylbutyric acid protects against neuronal cell death by primarily acting as a chemical chaperone rather than histone deacetylase inhibitor. Bioorg. Med. Chem. Lett. 23, 6015–6018 (2013).

    CAS  PubMed  Google Scholar 

  265. Veit, G. et al. Allosteric folding correction of F508del and rare CFTR mutants by elexacaftor–tezacaftor–ivacaftor (Trikafta) combination. JCI Insight 5, e139983 (2020).

    PubMed Central  Google Scholar 

  266. Fan, J. Q., Ishii, S., Asano, N. & Suzuki, Y. Accelerated transport and maturation of lysosomal alpha-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nat. Med. 5, 112–115 (1999).

    CAS  PubMed  Google Scholar 

  267. Yam, G. H., Zuber, C. & Roth, J. A synthetic chaperone corrects the trafficking defect and disease phenotype in a protein misfolding disorder. FASEB J. 19, 12–18 (2005).

    CAS  PubMed  Google Scholar 

  268. Asano, N. et al. In vitro inhibition and intracellular enhancement of lysosomal α-galactosidase A activity in Fabry lymphoblasts by 1-deoxygalactonojirimycin and its derivatives. Eur. J. Biochem. 267, 4179–4186 (2000).

    CAS  PubMed  Google Scholar 

  269. Chapman, E., Maksim, N., de la Cruz, F. & La Clair, J. J. Inhibitors of the AAA+ chaperone p97. Molecules 20, 3027–3049 (2015).

    PubMed  PubMed Central  Google Scholar 

  270. Adams, J. et al. Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Bioorg. Med. Chem. Lett. 8, 333–338 (1998).

    CAS  PubMed  Google Scholar 

  271. Richardson, P. G. et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N. Engl. J. Med. 352, 2487–2498 (2005).

    CAS  PubMed  Google Scholar 

  272. Shirley, C. M. et al. Bortezomib induction of C/EBPβ mediates Epstein–Barr virus lytic activation in Burkitt lymphoma. Blood 117, 6297–6303 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Bai, H. et al. Dual activators of protein kinase R (PKR) and protein kinase R-like kinase PERK identify common and divergent catalytic targets. Chembiochem 14, 1255–1262 (2013).

    CAS  PubMed  Google Scholar 

  274. Mahameed, M. et al. The unfolded protein response modulators GSK2606414 and KIRA6 are potent KIT inhibitors. Cell Death Dis. 10, 300 (2019).

    PubMed  PubMed Central  Google Scholar 

  275. Wong, Y. L. et al. eIF2B activator prevents neurological defects caused by a chronic integrated stress response. eLife 8, e42940 (2019).

    PubMed  PubMed Central  Google Scholar 

  276. Korennykh, A. V. et al. The unfolded protein response signals through high-order assembly of Ire1. Nature 457, 687–693 (2009).

    CAS  PubMed  Google Scholar 

  277. Park, H., Shin, D. H., Sim, J. R., Aum, S. & Lee, M. G. IRE1α kinase-mediated unconventional protein secretion rescues misfolded CFTR and pendrin. Sci. Adv. 6, eaax9914 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  278. Joshi, A. et al. Molecular mechanisms of human IRE1 activation through dimerization and ligand binding. Oncotarget 6, 13019–13035 (2015).

    PubMed  PubMed Central  Google Scholar 

  279. Ferri, E. et al. Activation of the IRE1 RNase through remodeling of the kinase front pocket by ATP-competitive ligands. Nat. Commun. 11, 6387 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  280. Thamsen, M. et al. Small molecule inhibition of IRE1α kinase/RNase has anti-fibrotic effects in the lung. PLoS ONE 14, e0209824 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  281. Feldman, H. C. et al. Structural and functional analysis of the allosteric inhibition of IRE1α with ATP-competitive ligands. ACS Chem. Biol. 11, 2195–2205 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  282. Harrington, P. E. et al. Unfolded protein response in cancer: IRE1α inhibition by selective kinase ligands does not impair tumor cell viability. ACS Med. Chem. Lett. 6, 68–72 (2015).

    CAS  PubMed  Google Scholar 

  283. Tang, C. H. et al. Inhibition of ER stress-associated IRE-1/XBP-1 pathway reduces leukemic cell survival. J. Clin. Invest. 124, 2585–2598 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  284. Kim, I. et al. Chemical biology investigation of cell death pathways activated by endoplasmic reticulum stress reveals cytoprotective modulators of ASK1. J. Biol. Chem. 284, 1593–1603 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  285. Lebeau, P., Byun, J. H., Yousof, T. & Austin, R. C. Pharmacologic inhibition of S1P attenuates ATF6 expression, causes ER stress and contributes to apoptotic cell death. Toxicol. Appl. Pharmacol. 349, 1–7 (2018).

    CAS  PubMed  Google Scholar 

  286. D’Arcangelo, J. G. et al. Traffic of p24 proteins and COPII coat composition mutually influence membrane scaffolding. Curr. Biol. 25, 1296–1305 (2015).

    PubMed  PubMed Central  Google Scholar 

  287. Harnoss, J. M. et al. Disruption of IRE1α through its kinase domain attenuates multiple myeloma. Proc. Natl Acad. Sci. USA 116, 16420–16429 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  288. Kosmaczewski, S. G. et al. The RtcB RNA ligase is an essential component of the metazoan unfolded protein response. EMBO Rep. 15, 1278–1285 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  289. Lu, Y., Liang, F. X. & Wang, X. A synthetic biology approach identifies the mammalian UPR RNA ligase RtcB. Mol. Cell 55, 758–770 (2014).

    PubMed  PubMed Central  Google Scholar 

  290. Hollien, J. & Weissman, J. S. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 313, 104–107 (2006).

    CAS  PubMed  Google Scholar 

  291. Lu, P. D., Harding, H. P. & Ron, D. Translation re-initiation at alternative open reading frames regulates gene expression in an integrated stress response. J. Cell Biol. 167, 27–33 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  292. Marciniak, S. J., Garcia-Bonilla, L., Hu, J., Harding, H. P. & Ron, D. Activation-dependent substrate recruitment by the eukaryotic translation initiation factor 2 kinase PERK. J. Cell Biol. 172, 201–209 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  293. Emanuelli, G., Nassehzadeh-Tabriz, N., Morrell, N. W. & Marciniak, S. J. The integrated stress response in pulmonary disease. Eur. Respir. Rev. 29, 200184 (2020).

    PubMed  PubMed Central  Google Scholar 

  294. Dickens, J. A., Malzer, E., Chambers, J. E. & Marciniak, S. J. Pulmonary endoplasmic reticulum stress-scars, smoke, and suffocation. FEBS J. 286, 322–341 (2018).

    PubMed  Google Scholar 

  295. Martinon, F., Chen, X., Lee, A. H. & Glimcher, L. H. TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat. Immunol. 11, 411–418 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  296. Nogee, L. M. et al. A mutation in the surfactant protein C gene associated with familial interstitial lung disease. N. Engl. J. Med. 344, 573–579 (2001).

    CAS  PubMed  Google Scholar 

  297. Thomas, A. Q. et al. Heterozygosity for a surfactant protein C gene mutation associated with usual interstitial pneumonitis and cellular nonspecific interstitial pneumonitis in one kindred. Am. J. Respir. Crit. Care Med. 165, 1322–1328 (2002).

    PubMed  Google Scholar 

  298. Katzen, J. et al. An SFTPC BRICHOS mutant links epithelial ER stress and spontaneous lung fibrosis. JCI Insight 4, e126125 (2019).

    PubMed Central  Google Scholar 

  299. Johansson, H., Nordling, K., Weaver, T. E. & Johansson, J. The Brichos domain-containing C-terminal part of pro-surfactant protein C binds to an unfolded poly-val transmembrane segment. J. Biol. Chem. 281, 21032–21039 (2006).

    CAS  PubMed  Google Scholar 

  300. Wang, W. J., Mulugeta, S., Russo, S. J. & Beers, M. F. Deletion of exon 4 from human surfactant protein C results in aggresome formation and generation of a dominant negative. J. Cell Sci. 116, 683–692 (2003).

    CAS  PubMed  Google Scholar 

  301. Bridges, J. P., Wert, S. E., Nogee, L. M. & Weaver, T. E. Expression of a human surfactant protein C mutation associated with interstitial lung disease disrupts lung development in transgenic mice. J. Biol. Chem. 278, 52739–52746 (2003).

    CAS  PubMed  Google Scholar 

  302. Mulugeta, S., Nguyen, V., Russo, S. J., Muniswamy, M. & Beers, M. F. A surfactant protein C precursor protein BRICHOS domain mutation causes endoplasmic reticulum stress, proteasome dysfunction, and caspase 3 activation. Am. J. Respir. Cell Mol. Biol. 32, 521–530 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  303. Lawson, W. E. et al. Endoplasmic reticulum stress in alveolar epithelial cells is prominent in IPF: association with altered surfactant protein processing and herpesvirus infection. Am. J. Physiol. Lung Cell Mol. Physiol. 294, L1119–L1126 (2008).

    CAS  PubMed  Google Scholar 

  304. Maguire, J. A., Mulugeta, S. & Beers, M. F. Multiple ways to die: delineation of the unfolded protein response and apoptosis induced by surfactant protein C BRICHOS mutants. Int. J. Biochem. Cell Biol. 44, 101–112 (2012).

    CAS  PubMed  Google Scholar 

  305. Lawson, W. E. et al. Endoplasmic reticulum stress enhances fibrotic remodeling in the lungs. Proc. Natl Acad. Sci. USA 108, 10562–10567 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  306. Korfei, M. et al. Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 178, 838–846 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  307. Cha, S. I. et al. Cleaved cytokeratin-18 is a mechanistically informative biomarker in idiopathic pulmonary fibrosis. Respir. Res. 13, 105 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  308. Korfei, M. et al. Comparative proteome analysis of lung tissue from patients with idiopathic pulmonary fibrosis (IPF), non-specific interstitial pneumonia (NSIP) and organ donors. J. Proteom. 85, 109–128 (2013).

    CAS  Google Scholar 

  309. Moore, B. B. & Moore, T. A. Viruses in Idiopathic pulmonary fibrosis. Etiology and exacerbation. Ann. Am. Thorac. Soc. 12 (Suppl. 2), S186–S192 (2015).

    PubMed  PubMed Central  Google Scholar 

  310. Winterbottom, C. J. et al. Exposure to ambient particulate matter is associated with accelerated functional decline in idiopathic pulmonary fibrosis. Chest 153, 1221–1228 (2017).

    PubMed  PubMed Central  Google Scholar 

  311. Watterson, T. L., Hamilton, B., Martin, R. & Coulombe, R. A. Jr. Urban particulate matter causes ER stress and the unfolded protein response in human lung cells. Toxicol. Sci. 112, 111–122 (2009).

    CAS  PubMed  Google Scholar 

  312. Laing, S. et al. Airborne particulate matter selectively activates endoplasmic reticulum stress response in the lung and liver tissues. Am. J. Physiol. Cell Physiol. 299, C736–C749 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  313. Kamp, D. W. et al. Asbestos-induced alveolar epithelial cell apoptosis. The role of endoplasmic reticulum stress response. Am. J. Respir. Cell Mol. Biol. 49, 892–901 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  314. Ryan, A. J., Larson-Casey, J. L., He, C., Murthy, S. & Carter, A. B. Asbestos-induced disruption of calcium homeostasis induces endoplasmic reticulum stress in macrophages. J. Biol. Chem. 289, 33391–33403 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  315. Tanjore, H. et al. Alveolar epithelial cells undergo epithelial-to-mesenchymal transition in response to endoplasmic reticulum stress. J. Biol. Chem. 286, 30972–30980 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  316. Zhong, Q. et al. Role of endoplasmic reticulum stress in epithelial–mesenchymal transition of alveolar epithelial cells: effects of misfolded surfactant protein. Am. J. Respir. Cell Mol. Biol. 45, 498–509 (2011).

    CAS  PubMed  Google Scholar 

  317. Kim, K. K. et al. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc. Natl Acad. Sci. USA 103, 13180–13185 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  318. Tanjore, H. et al. Contribution of epithelial-derived fibroblasts to bleomycin-induced lung fibrosis. Am. J. Respir. Crit. Care Med. 180, 657–665 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  319. Zhao, H. et al. Phenylbutyric acid inhibits epithelial–mesenchymal transition during bleomycin-induced lung fibrosis. Toxicol. Lett. 232, 213–220 (2015).

    CAS  PubMed  Google Scholar 

  320. Grootjans, J., Kaser, A., Kaufman, R. J. & Blumberg, R. S. The unfolded protein response in immunity and inflammation. Nat. Rev. Immunol. 16, 469–484 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  321. Kaser, A., Adolph, T. E. & Blumberg, R. S. The unfolded protein response and gastrointestinal disease. Semin. Immunopathol. 35, 307–319 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  322. Zhao, F. et al. Disruption of Paneth and goblet cell homeostasis and increased endoplasmic reticulum stress in Agr2–/– mice. Dev. Biol. 338, 270–279 (2010).

    CAS  PubMed  Google Scholar 

  323. Maurel, M. et al. Control of anterior GRadient 2 (AGR2) dimerization links endoplasmic reticulum proteostasis to inflammation. EMBO Mol. Med. 11, e10120 (2019).

    PubMed  PubMed Central  Google Scholar 

  324. Zheng, W. et al. Evaluation of AGR2 and AGR3 as candidate genes for inflammatory bowel disease. Genes. Immun. 7, 11–18 (2006).

    CAS  PubMed  Google Scholar 

  325. Aden, K. et al. ATG16L1 orchestrates interleukin-22 signaling in the intestinal epithelium via cGAS–STING. J. Exp. Med. 215, 2868–2886 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  326. Tschurtschenthaler, M. et al. Defective ATG16L1-mediated removal of IRE1α drives Crohn’s disease-like ileitis. J. Exp. Med. 214, 401–422 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  327. Bertolotti, A. et al. Increased sensitivity to dextran sodium sulfate colitis in IRE1β-deficient mice. J. Clin. Invest. 107, 585–593 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  328. Cao, S. S. et al. The unfolded protein response and chemical chaperones reduce protein misfolding and colitis in mice. Gastroenterology 144, 989–1000.e6 (2013).

    CAS  PubMed  Google Scholar 

  329. Keestra-Gounder, A. M. et al. NOD1 and NOD2 signalling links ER stress with inflammation. Nature 532, 394–397 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  330. Murakami, T. et al. Signalling mediated by the endoplasmic reticulum stress transducer OASIS is involved in bone formation. Nat. Cell Biol. 11, 1205–1211 (2009).

    CAS  PubMed  Google Scholar 

  331. Saito, A. et al. Endoplasmic reticulum stress response mediated by the PERK–eIF2(α)–ATF4 pathway is involved in osteoblast differentiation induced by BMP2. J. Biol. Chem. 286, 4809–4818 (2011).

    CAS  PubMed  Google Scholar 

  332. Wei, J., Sheng, X., Feng, D., McGrath, B. & Cavener, D. R. PERK is essential for neonatal skeletal development to regulate osteoblast proliferation and differentiation. J. Cell. Physiol. 217, 693–707 (2008).

    CAS  PubMed  Google Scholar 

  333. Malzer, E. et al. The integrated stress response regulates BMP signalling through effects on translation. BMC Biol. 16, 34 (2018).

    PubMed  PubMed Central  Google Scholar 

  334. Kang, K., Ryoo, H. D., Park, J. E., Yoon, J. H. & Kang, M. J. A Drosophila reporter for the translational activation of ATF4 marks stressed cells during development. PLoS ONE 10, e0126795 (2015).

    PubMed  PubMed Central  Google Scholar 

  335. Hewes, R. S., Schaefer, A. M. & Taghert, P. H. The cryptocephal gene (ATF4) encodes multiple basic-leucine zipper proteins controlling molting and metamorphosis in Drosophila. Genetics 155, 1711–1723 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  336. Wang, C. et al. Inhibiting the integrated stress response pathway prevents aberrant chondrocyte differentiation thereby alleviating chondrodysplasia. eLife 7, e37673 (2018).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.J.M. and J.E.C. are supported by the Medical Research Council (MRC) (MR/V028669/1, MR/R009120/1), the Engineering and Physical Sciences Research Council (EPSRC) (EP/R03558X/1), the British Lung Foundation (BLF) (MEDPG21F\4), the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre (BRC-1215-20014), Royal Papworth Hospital and the Alpha1-Foundation (pC ID: 830153, pC ID: 614939). D.R. is supported by a Wellcome Trust Principal Research Fellowship (Wellcome 200848/Z/16/Z). All authors benefit from a Wellcome Trust Strategic Award to the Cambridge Institute for Medical Research (Wellcome 100140).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the article.

Corresponding author

Correspondence to Stefan J. Marciniak.

Ethics declarations

Competing interests

The authors declare no competing interests

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

ER stress

A toxic state that occurs when unfolded or incompletely folded proteins accumulate in the endoplasmic reticulum (ER).

Unfolded protein response

(UPR). A cellular signalling pathway triggered by endoplasmic reticulum (ER) dysfunction and comprising three distinct arms downstream of the ER stress sensors inositol-requiring enzyme 1 (IRE1), activating transcription factor 6 (ATF6) and protein kinase RNA-like endoplasmic reticulum kinase (PERK).

Inositol-requiring enzyme 1

(IRE1). An endoplasmic reticulum (ER) stress sensor possessing auto-kinase and endonuclease activities that participates in splicing XBP1 mRNA and in the degradation of mRNAs via regulated IRE1-dependent decay (RIDD).

Activating transcription factor 6

(ATF6). An endoplasmic reticulum (ER) stress sensor that is proteolytically cleaved to generate a soluble transcription factor.

Protein kinase RNA-like endoplasmic reticulum kinase

(PERK). An endoplasmic reticulum (ER) stress sensor that selectively phosphorylates eukaryotic initiation factor 2α (eIF2α) to trigger the integrated stress response (ISR).

PPP1R15A

A protein phosphatase 1 (PP1) regulatory subunit that selectively dephosphorylates eukaryotic initiation factor 2α (eIF2α): PPP1R15A is induced during the integrated stress response (ISR), whereas PPP1R15B is constitutively expressed.

XBP1

A transcription factor induced when inositol-requiring enzyme 1 (IRE1) initiates splicing of XBP1 mRNA.

Pharmacological chaperones

Chemical chaperones that facilitate the correct folding of a specific target protein.

Chemical chaperone

A small molecule that facilitates correct protein folding.

Molecular chaperone

A protein that facilitates the correct folding of other proteins.

ER-associated degradation

(ERAD). Selective degradation of proteins originating in the endoplasmic reticulum (ER) that are recognized as poorly folding and delivered to the ubiquitin proteasome system in the cytosol.

Ubiquitin proteasome system

A cellular system that coordinates the selective degradation of proteins through tagging with ubiquitin, which leads to the target’s degradation by the proteasome.

Integrated stress response

(ISR). A cellular signalling pathway involving the phosphorylation of eukaryotic initiation factor 2α (eIF2α) by one of four stress-sensing kinases: protein kinase RNA-like endoplasmic reticulum kinase (PERK) during endoplasmic reticulum (ER) stress, PKR during some viral infections, HRI during iron deficiency and GCN2 when amino acids are limiting.

eIF2B

The guanine nucleotide exchange factor of eukaryotic initiation factor 2α (eIF2α) that maintains translation initiation, but is inhibited when bound by phosphorylated eIF2α.

eIF2α

A component of the eukaryotic initiation factor 2 (eIF2) complex involved in translation initiation that can be phosphorylated during stress to initiate the integrated stress response (ISR).

Type I kinase inhibitors

Small molecules that bind a kinase’s ATP pocket in its active conformation; inositol-requiring enzyme 1 (IRE1) type I kinase inhibitors promote IRE1’s endonuclease activity.

Type II kinase inhibitors

Small molecules that engage a kinase’s ATP pocket in the inactive configuration; inositol-requiring enzyme 1 (IRE1) type II kinase inhibitors inhibit IRE1’s endonuclease activity, for example the kinase inhibiting RNase attenuator (KIRA) compounds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marciniak, S.J., Chambers, J.E. & Ron, D. Pharmacological targeting of endoplasmic reticulum stress in disease. Nat Rev Drug Discov 21, 115–140 (2022). https://doi.org/10.1038/s41573-021-00320-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-021-00320-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing