Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Harnessing the predictive power of preclinical models for oncology drug development

Abstract

Recent progress in understanding the molecular basis of cellular processes, identification of promising therapeutic targets and evolution of the regulatory landscape makes this an exciting and unprecedented time to be in the field of oncology drug development. However, high costs, long development timelines and steep rates of attrition continue to afflict the drug development process. Lack of predictive preclinical models is considered one of the key reasons for the high rate of attrition in oncology. Generating meaningful and predictive results preclinically requires a firm grasp of the relevant biological questions and alignment of the model systems that mirror the patient context. In doing so, the ability to conduct both forward translation, the process of implementing basic research discoveries into practice, as well as reverse translation, the process of elucidating the mechanistic basis of clinical observations, greatly enhances our ability to develop effective anticancer treatments. In this Review, we outline issues in preclinical-to-clinical translatability of molecularly targeted cancer therapies, present concepts and examples of successful reverse translation, and highlight the need to better align tumour biology in patients with preclinical model systems including tracking of strengths and weaknesses of preclinical models throughout programme development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reverse translation is an iterative process.
Fig. 2: Varying model features affect reproducibility and fidelity to patient context.
Fig. 3: Forward and reverse translation are complementary strategies.

Similar content being viewed by others

References

  1. Bedair, A. & Mansour, F. R. Insights into the FDA 2018 new drug approvals. Curr. Drug Discov. Technol. 18, 293–306 (2019).

    Google Scholar 

  2. New Drug Therapy Approvals 2019 (FDA, 2019); https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/new-drug-therapy-approvals-2019.

  3. Scannell, J. W., Blanckley, A., Boldon, H. & Warrington, B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev. Drug Discov. 11, 191–200 (2012).

    CAS  PubMed  Google Scholar 

  4. Kunnumakkara, A. B. et al. Cancer drug development: the missing links. Exp. Biol. Med. 244, 663–689 (2019).

    CAS  Google Scholar 

  5. Wong, C. H., Siah, K. W. & Lo, A. W. Estimation of clinical trial success rates and related parameters. Biostatistics 20, 273–286 (2019).

    PubMed  Google Scholar 

  6. Jardim, D. L., Groves, E. S., Breitfeld, P. P. & Kurzrock, R. Factors associated with failure of oncology drugs in late-stage clinical development: a systematic review. Cancer Treat. Rev. 52, 12–21 (2017).

    PubMed  Google Scholar 

  7. Lightfoot, J. T., Bamman, M. M. & Booth, F. W. Translation goes both ways: the power of reverse translation from human trials into animal models. Transl. J. Am. Coll. Sports Med. 2, 29–31 (2017).

    Google Scholar 

  8. Kurzrock, R., Kantarjian, H. M., Kesselheim, A. S. & Sigal, E. V. New drug approvals in oncology. Nat. Rev. Clin. Oncol. 17, 140–146 (2020).

    PubMed  Google Scholar 

  9. Herbst, R. S. et al. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial — INTACT 2. J. Clin. Oncol. 22, 785–794 (2004).

    CAS  PubMed  Google Scholar 

  10. Giaccone, G. et al. Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial — INTACT 1. J. Clin. Oncol. 22, 777–784 (2004).

    CAS  PubMed  Google Scholar 

  11. Pao, W. et al. EGF receptor gene mutations are common in lung cancers from ‘never smokers’ and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl Acad. Sci. USA 101, 13306–13311 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Politi, K. et al. Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors. Genes Dev. 20, 1496–1510 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Greulich, C. et al. Oncogenic transformation by inhibitor-sensitive and-resistant EGFR mutants. PLoS Med. 2, 1167–1176 (2005).

    CAS  Google Scholar 

  14. Ji, H. et al. The impact of human EGFR kinase domain mutations on lung tumorigenesis and in vivo sensitivity to EGFR-targeted therapies. Cancer Cell 9, 485–495 (2006).

    CAS  PubMed  Google Scholar 

  15. Starrett, J. H. et al. Drug sensitivity and allele specificity of first-line osimertinib resistance EGFR mutations. Cancer Res. 80, 2017–2030 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Politi, K., Fan, P. D., Shen, R., Zakowski, M. & Varmus, H. Erlotinib resistance in mouse models of epidermal growth factor receptor-induced lung adenocarcinoma. Dis. Model Mech. 3, 111–119 (2010).

    CAS  PubMed  Google Scholar 

  17. Hata, A. N. et al. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat. Med. 22, 262–269 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Dungo, R. T. & Keating, G. M. Afatinib: first global approval. Drugs 73, 1503–1515 (2013).

    CAS  PubMed  Google Scholar 

  19. Wu, Y. L. et al. Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): a randomised, open-label. Lancet Oncol. 18, 1454–1466 (2017).

    CAS  PubMed  Google Scholar 

  20. Pao, W. et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2, e73 (2005).

    PubMed  PubMed Central  Google Scholar 

  21. Crystal, A. S. et al. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science 346, 1480–1486 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ogino, A. et al. Emergence of epidermal growth factor receptor T790M mutation during chronic exposure to gefitinib in a non-small cell lung cancer cell line. Cancer Res. 67, 7807–7814 (2007).

    CAS  PubMed  Google Scholar 

  23. Regales, L. et al. Development of new mouse lung tumor models expressing EGFR T790M mutants associated with clinical resistance to kinase inhibitors. PLoS ONE 2, e810 (2007).

    PubMed  PubMed Central  Google Scholar 

  24. Soria, J. C. et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N. Engl. J. Med. 378, 113–125 (2018).

    CAS  PubMed  Google Scholar 

  25. Leonetti, A. et al. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br. J. Cancer 121, 725–737 (2019).

    PubMed  PubMed Central  Google Scholar 

  26. Schoenfeld, A. J. et al. Tumor analyses reveal squamous transformation and off-target alterations as early resistance mechanisms to first-line osimertinib in EGFR-mutant lung cancer. Clin. Cancer Res. 26, 2654–2663 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Marranci, A. et al. The landscape of BRAF transcript and protein variants in human cancer. Mol. Cancer 16, 85 (2017).

    PubMed  PubMed Central  Google Scholar 

  28. Wan, P. T. C. et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116, 855–867 (2004).

    CAS  PubMed  Google Scholar 

  29. Hoeflich, K. P. et al. Oncogenic BRAF is required for tumor growth and maintenance in melanoma models. Cancer Res. 66, 999–1006 (2006).

    CAS  PubMed  Google Scholar 

  30. Dankort, D. et al. A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. Genes Dev. 21, 379–384 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Dhomen, N. et al. Oncogenic braf induces melanocyte senescence and melanoma in mice. Cancer Cell 15, 294–303 (2009).

    CAS  PubMed  Google Scholar 

  32. Charles, R. P., Silva, J., Iezza, G., Phillips, W. A. & McMahon, M. Activating BRAF and PIK3CA mutations cooperate to promote anaplastic thyroid carcinogenesis. Mol. Cancer Res. 12, 979–986 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Flaherty, K. T. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809–819 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Heidorn, S. J. et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140, 209–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Poulikakos, P. I., Zhang, C., Bollag, G., Shokat, K. M. & Rosen, N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464, 427–430 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hatzivassiliou, G. et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464, 431–435 (2010).

    CAS  PubMed  Google Scholar 

  37. Cox, A. D. & Der, C. J. The raf inhibitor paradox: unexpected consequences of targeted drugs. Cancer Cell 17, 221–223 (2010).

    CAS  PubMed  Google Scholar 

  38. Oberholzer, P. A. et al. RAS mutations are associated with the development of cutaneous squamous cell tumors in patients treated with RAF inhibitors. J. Clin. Oncol. 30, 316–321 (2012).

    CAS  PubMed  Google Scholar 

  39. Quintanilla, M., Brown, K., Ramsden, M. & Balmain, A. Carcinogen-specific mutation and amplification of Ha-ras during mouse skin carcinogenesis. Nature 322, 78–80 (1986).

    CAS  PubMed  Google Scholar 

  40. Su, F. et al. RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N. Engl. J. Med. 366, 207–215 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sosman, J. A. et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N. Engl. J. Med. 366, 707–714 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Nazarian, R. et al. Melanomas acquire resistance to B-RAF (V600E) inhibition by RTK or N-RAS upregulation. Nature 468, 973–977 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Moriceau, G. et al. Tunable-combinatorial mechanisms of acquired resistance limit the efficacy of BRAF/MEK cotargeting but result in melanoma drug addiction. Cancer Cell 27, 240–256 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Shi, H. et al. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov. 4, 80–93 (2014).

    CAS  PubMed  Google Scholar 

  46. Poulikakos, P. I. et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF (V600E). Nature 480, 387–390 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wagle, N. et al. Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J. Clin. Oncol. 29, 3085–3096 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Sullivan, R. J. & Flaherty, K. T. Resistance to BRAF-targeted therapy in melanoma. Eur. J. Cancer 49, 1297–1304 (2013).

    CAS  PubMed  Google Scholar 

  49. Johnson, D. B. et al. Acquired BRAF inhibitor resistance: a multicenter meta-analysis of the spectrum and frequencies, clinical behaviour, and phenotypic associations of. Eur. J. Cancer 51, 2792–2799 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Amaral, T. et al. MAPK pathway in melanoma part II — secondary and adaptive resistance mechanisms to BRAF inhibition. Eur. J. Cancer 73, 93–101 (2017).

    CAS  PubMed  Google Scholar 

  51. Ji, H. et al. Mutations in BRAF and KRAS converge on activation of the mitogen-activated protein kinase pathway in lung cancer mouse models. Cancer Res. 10, 4933–4939 (2007).

    Google Scholar 

  52. Emery, C. M. et al. MEK1 mutations confer resistance to MEK and B-RAF inhibition. Proc. Natl Acad. Sci. USA 106, 20411–20416 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Villanueva, J. et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 18, 683–695 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Larkin, J. et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N. Engl. J. Med. 371, 1867–1876 (2014).

    PubMed  Google Scholar 

  55. Long, G. V. et al. Adjuvant dabrafenib plus trametinib in stage III BRAF-mutated melanoma. N. Engl. J. Med. 377, 1813–1823 (2017).

    CAS  PubMed  Google Scholar 

  56. Dummer, R. et al. Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF-mutant melanoma (COLUMBUS): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 19, 603–615 (2018).

    CAS  PubMed  Google Scholar 

  57. Heinzerling, L. et al. Tolerability of BRAF/MEK inhibitor combinations: adverse event evaluation and management. ESMO Open 4, 491 (2019).

    Google Scholar 

  58. Su, F. et al. Resistance to selective BRAF inhibition can be mediated by modest upstream pathway activation. Cancer Res. 72, 969–978 (2012).

    CAS  PubMed  Google Scholar 

  59. Kopetz, S. et al. Phase II pilot study of vemurafenib in patients with metastatic BRAF-mutated colorectal cancer. J. Clin. Oncol. 33, 4032–4038 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hyman, D. M. et al. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N. Engl. J. Med. 373, 726–736 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Prahallad, A. et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483, 100–104 (2012).

    CAS  PubMed  Google Scholar 

  62. Corcoran, R. B. et al. EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition. Cancer Discov. 23, 227–235 (2012).

    Google Scholar 

  63. Corcoran, R. B. et al. Combined BRAF, EGFR, and MEK inhibition in patients with BRAFV600E-mutant colorectal cancer. Cancer Discov. 8, 428–443 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Mauri, G. et al. The evolutionary landscape of treatment for BRAFV600E mutant metastatic colorectal cancer. Cancers 13, 137 (2021).

    CAS  PubMed Central  Google Scholar 

  65. Drilon, A. et al. Efficacy of larotrectinib in TRK fusion–positive cancers in adults and children. N. Engl. J. Med. 378, 731–739 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kummar, S. & Lassen, U. N. TRK inhibition: a new tumor-agnostic treatment strategy. Target. Oncol. 13, 545–556 (2018).

    PubMed  Google Scholar 

  67. Marquart, J., Chen, E. Y. & Prasad, V. Estimation of the percentage of US patients with cancer who benefit from genome-driven oncology. JAMA Oncol. 4, 1093–1098 (2018).

    PubMed  PubMed Central  Google Scholar 

  68. Lee, W. C. et al. Multiregion gene expression profiling reveals heterogeneity in molecular subtypes and immunotherapy response signatures in lung cancer. Mod. Pathol. 31, 947–955 (2018).

    CAS  PubMed  Google Scholar 

  69. Wu, D. et al. Roles of tumor heterogeneity in the development of drug resistance: a call for precision therapy. Semin. Cancer Biol. 42, 13–19 (2017).

    CAS  PubMed  Google Scholar 

  70. Jarnuczak, A. F. et al. An integrated landscape of protein expression in human cancer. Preprint at biorxiv https://doi.org/10.1101/665968v1.abstract (2019).

    Article  Google Scholar 

  71. Ben-David, U. et al. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat. Genet. 49, 1567–1575 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ling, A., Gruener, R. F., Fessler, J. & Huang, R. S. More than fishing for a cure: The promises and pitfalls of high throughput cancer cell line screens. Pharmacol. Ther. 191, 178–189 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. McDonald, E. R. et al. Project DRIVE: a compendium of cancer dependencies and synthetic lethal relationships uncovered by large-scale, deep RNAi screening. Cell 170, 577–592.e10 (2017).

    CAS  PubMed  Google Scholar 

  74. Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576.e16 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Domcke, S., Sinha, R., Levine, D. A., Sander, C. & Schultz, N. Evaluating cell lines as tumour models by comparison of genomic profiles. Nat. Commun. 4, 1–10 (2013).

    Google Scholar 

  76. Yu, K. et al. Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types. Nat. Commun. 10, 1–11 (2019).

    Google Scholar 

  77. Chen, B., Sirota, M., Fan-Minogue, H., Hadley, D. & Butte, A. J. Relating hepatocellular carcinoma tumor samples and cell lines using gene expression data in translational research. BMC Med. Genomics 8, S5 (2015).

    PubMed  PubMed Central  Google Scholar 

  78. Lin, A., Giuliano, C. J., Sayles, N. M. & Sheltzer, J. M. CRISPR/Cas9 mutagenesis invalidates a putative cancer dependency targeted in on-going clinical trials. eLife 6, e24179 (2017).

    PubMed  PubMed Central  Google Scholar 

  79. Lin, A. & Sheltzer, J. M. Discovering and validating cancer genetic dependencies: approaches and pitfalls. Nat. Rev. Genet. 21, 671–682 (2020).

    CAS  PubMed  Google Scholar 

  80. Ben-David, U., Beroukhim, R. & Golub, T. R. Genomic evolution of cancer models: perils and opportunities. Nat. Rev. Cancer 19, 97–109 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Buqué, A. & Galluzzi, L. Modeling tumor immunology and immunotherapy in mice. Trends Cancer 4, 599–601 (2018).

    PubMed  Google Scholar 

  82. Combest, A. J. et al. Genetically engineered cancer models, but not xenografts, faithfully predict anticancer drug exposure in melanoma tumors. Oncologist 17, 1303–1316 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Westcott, P. M. K. et al. The mutational landscapes of genetic and chemical models of Kras-driven lung cancer. Nature 517, 489–492 (2015).

    CAS  PubMed  Google Scholar 

  84. Mcfadden, D. G. et al. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma. Proc. Natl Acad. Sci. USA 113, 6409–6417 (2016).

    Google Scholar 

  85. Chung, W.-J. et al. Kras mutant genetically engineered mouse models of human cancers are genomically heterogeneous. Proc. Natl Acad. Sci. USA 114, 10947–10955 (2017).

    Google Scholar 

  86. Weber, J. & Rad, R. Engineering CRISPR mouse models of cancer. Curr. Opin. Genet. Dev. 54, 88–96 (2019).

    CAS  PubMed  Google Scholar 

  87. Rogers, Z. N. et al. Mapping the in vivo fitness landscape of lung adenocarcinoma tumor suppression in mice. Nat. Genet. 50, 483–486 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Weber, J. et al. CRISPR/Cas9 somatic multiplex-mutagenesis for high-Throughput functional cancer genomics in mice. Proc. Natl Acad. Sci. USA 112, 13982–13987 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Winters, I. P., Murray, C. W. & Winslow, M. M. Towards quantitative and multiplexed in vivo functional cancer genomics. Nat. Rev. Genet. 19, 741–755 (2018).

    CAS  PubMed  Google Scholar 

  90. Köhler, C. et al. Mouse cutaneous melanoma induced by mutant BRaf arises from expansion and dedifferentiation of mature pigmented melanocytes. Cell Stem Cell 21, 679–693.e6 (2017).

    PubMed  Google Scholar 

  91. Schittek, B., Jel, M. D. & Tüting, T. in Melanoma Development: Molecular Biology, Genetics and Clinical Application (ed. Bosserhoff, A. K.) 369–398 (Springer International Publishing, 2017).

  92. Evangelista, M., Tian, H. & de Sauvage, F. J. The Hedgehog signaling pathway in cancer. Clin. Cancer Res. 12, 5924–5928 (2006).

    CAS  PubMed  Google Scholar 

  93. Olive, K. P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Infinity reports update from phase 2 study of saridegib plus gemcitabine in patients with metastatic pancreatic cancer (Businesswire, 2021); https://www.businesswire.com/news/home/20120127005146/en/Infinity-Reports-Update-Phase-2-Study-Saridegib.

  95. Catenacci, D. V. T. et al. Randomized phase Ib/II study of gemcitabine plus placebo or vismodegib, a hedgehog pathway inhibitor, in patients with metastatic pancreatic cancer. J. Clin. Oncol. 33, 4284–4292 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Jesus-Acosta, A. D. et al. Phase 2 study of vismodegib, a hedgehog inhibitor, combined with gemcitabine and Nab-paclitaxel in patients with untreated metastatic pancreatic adenocarcinoma. Br. J. Cancer 122, 498–505 (2020).

    PubMed  Google Scholar 

  97. Rhim, A. D. et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25, 735–747 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Hidalgo, M. et al. Patient-derived Xenograft models: an emerging platform for translational cancer research. Cancer Discov. 4, 998–1013 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Jung, J., Seol, H. S. & Chang, S. The generation and application of patient-derived xenograft model for cancer research. Cancer Res. Treat. 50, 1–10 (2018).

    PubMed  Google Scholar 

  100. Shi, J., Tong, S. J., Li, Y., Jia, R. & Fan, X. The fidelity of cancer cells in PDX models: characteristics, mechanism and clinical significance. Int. J. Cancer 146, 2078–2088 (2020).

    CAS  PubMed  Google Scholar 

  101. Derose, Y. S. et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat. Med. 17, 1514–1520 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Bertotti, A. et al. A molecularly annotated platform of patient- derived xenografts (‘xenopatients’) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov. 1, 508–523 (2011).

    CAS  PubMed  Google Scholar 

  103. Long, J. E. et al. Therapeutic resistance and susceptibility is shaped by cooperative multi-compartment tumor adaptation. Cell Death Differ. 26, 2416–2429 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Wegner, C. S. et al. Increasing aggressiveness of patient-derived xenograft models of cervix carcinoma during serial transplantation. Oncotarget 9, 21036–21051 (2018).

    PubMed  PubMed Central  Google Scholar 

  105. Sato, K. et al. Multiregion genomic analysis of serially transplanted patient-derived xenograft tumors. Cancer Genomics Proteom. 16, 21–27 (2019).

    CAS  Google Scholar 

  106. Fan, H., Demirci, U. & Chen, P. Emerging organoid models: leaping forward in cancer research. J. Hematol. Oncol. 12, 142 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Tuveson, D. & Clevers, H. Cancer modeling meets human organoid technology. Science 364, 952–955 (2019).

    CAS  PubMed  Google Scholar 

  108. Cantrell, M. A. & Kuo, C. J. Organoid modeling for cancer precision medicine. Genome Med. 7, 32 (2015).

    PubMed  PubMed Central  Google Scholar 

  109. Maru, Y., Tanaka, N., Itami, M. & Hippo, Y. Efficient use of patient-derived organoids as a preclinical model for gynecologic tumors. Gnyecol. Oncol. 154, 189–198 (2019).

    CAS  Google Scholar 

  110. Takeda, H. et al. CRISPR-Cas9-mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes. Proc. Natl Acad. Sci. USA 116, 15635–15644 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Vlachogiannis, G. et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 359, 920–926 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Kolahi, K. S., Nakano, M. & Kuo, C. J. Organoids as oracles for precision medicine in rectal cancer. Cell Stem Cell 26, 4–6 (2020).

    CAS  PubMed  Google Scholar 

  113. Neal, J. T. et al. Organoid modeling of the tumor immune microenvironment. Cell 175, 1972–1988 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Tran, F. et al. Stem cells and organoid technology in precision medicine in inflammation: Are we there yet? Front. Immunol. 11, 573562 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Powley, I. R. et al. Patient-derived explants (PDEs) as a powerful preclinical platform for anti-cancer drug and biomarker discovery. Br. J. Cancer 122, 735–744 (2020).

    PubMed  PubMed Central  Google Scholar 

  116. Stebbing, J. et al. Patient-derived xenografts for individualized care in advanced sarcoma. Cancer 120, 2006–2015 (2014).

    PubMed  Google Scholar 

  117. Katayama, R. et al. The new-generation selective ROS1/NTRK inhibitor DS-6051b overcomes crizotinib resistant ROS1-G2032R mutation in preclinical models. Nat. Commun. 10, 1–12 (2019).

    Google Scholar 

  118. Krepler, C. et al. A comprehensive patient-derived xenograft collection representing the heterogeneity of melanoma. Cell Rep. 21, 1953–1967 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Bock, C. et al. The organoid cell atlas. Nat. Biotechnol. 39, 13–17 (2020).

    PubMed Central  Google Scholar 

  120. Gao, H. et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat. Med. 21, 1318–1325 (2015).

    CAS  PubMed  Google Scholar 

  121. Sartore-Bianchi, A. et al. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): a proof-of-concept, multicentre, open-label, phase 2 trial. Lancet Oncol. 17, 738–746 (2016).

    CAS  PubMed  Google Scholar 

  122. Parikh, A., Atreya, C., Korn, W. M. & Venook, A. P. Prolonged response to HER2-directed therapy in a patient With HER2-amplified, rapidly progressive metastatic colorectal cancer. J. Natl Compr. Canc. Netw. 15, 3–8 (2017).

    PubMed  PubMed Central  Google Scholar 

  123. Schwaederle, M. et al. Impact of precision medicine in diverse cancers: a meta-analysis of phase II clinical trials. J. Clin. Oncol. 33, 3817–3825 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Daemen, A. et al. Transcriptional subtypes resolve tumor heterogeneity and identify vulnerabilities to MEK inhibition in lung adenocarcinoma. Clin. Cancer Res. 27, 1162–1173 (2021).

    CAS  PubMed  Google Scholar 

  125. Gould, S. E., Junttila, M. R. & Sauvage, F. J. D. Translational value of mouse models in oncology drug development. Nat. Med. 21, 431–439 (2015).

    CAS  PubMed  Google Scholar 

  126. Wong, H. et al. Antitumor activity of targeted and cytotoxic agents in murine subcutaneous tumor models correlates with clinical response. Clin. Cancer Res. 18, 3846–3855 (2012).

    CAS  PubMed  Google Scholar 

  127. Peters, S. A., Petersson, C., Blaukat, A., Halle, J. P. & Dolgos, H. Prediction of active human dose: learnings from 20 years of Merck KGaA experience, illustrated by case studies. Drug Discov. Today 25, 909–919 (2020).

    CAS  PubMed  Google Scholar 

  128. Miller, N. A., Reddy, M. B., Heikkinen, A. T., Lukacova, V. & Parrott, N. Physiologically based pharmacokinetic modelling for first-in-human predictions: an updated model building strategy illustrated with challenging industry case studies. Clin. Pharmacokinet. 58, 727–746 (2019).

    CAS  PubMed  Google Scholar 

  129. Garnett, M. J. et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483, 570–575 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Yang, W. et al. Genomics of Drug Sensitivity in Cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 41, D955–D961 (2013).

    CAS  PubMed  Google Scholar 

  131. Acar, A. et al. Exploiting evolutionary steering to induce collateral drug sensitivity in cancer. Nat. Commun. 11, 1–14 (2020).

    Google Scholar 

  132. Punzi, S. et al. Development of personalized therapeutic strategies by targeting actionable vulnerabilities in metastatic and chemotherapy-resistant breast cancer PDXs. Cells 8, 605 (2019).

    CAS  PubMed Central  Google Scholar 

  133. Holohan, C., Schaeybroeck, S. V., Longley, D. B. & Johnston, P. G. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer 13, 714–726 (2013).

    CAS  PubMed  Google Scholar 

  134. Boumahdi, S. & de Sauvage, F. J. The great escape: tumour cell plasticity in resistance to targeted therapy. Nat. Rev. Drug Discov. 19, 39–56 (2020).

    CAS  PubMed  Google Scholar 

  135. Massagué, J., Batlle, E. & Gomis, R. R. Understanding the molecular mechanisms driving metastasis. Mol. Oncol. 11, 3–4 (2017).

    PubMed  PubMed Central  Google Scholar 

  136. Ben-David, U. et al. Genetic and transcriptional evolution alters cancer cell line drug response. Nature 560, 325–330 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhong, W. et al. Comparison of the molecular and cellular phenotypes of common mouse syngeneic models with human tumors. BMC Genomics 21, 2 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Pénzváltó, Z. et al. A syngeneic ErbB2 mammary cancer model for preclinical immunotherapy trials. J. Mammary Gland. Biol. Neoplasia 24, 149–162 (2019).

    PubMed  PubMed Central  Google Scholar 

  139. Larsson, S. et al. Cell line-based xenograft mouse model of paediatric glioma stem cells mirrors the clinical course of the patient. Carcinogenesis 39, 1304–1309 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Borowsky, A. D. et al. Syngeneic mouse mammary carcinoma cell lines: Two closely related cell lines with divergent metastatic behavior. Clin. Exp. Metastasis 22, 47–59 (2005).

    CAS  PubMed  Google Scholar 

  141. Radhakrishnan, P. et al. Predicting tumor-immune response to checkpoint inhibitors using a novel patient-derived live tumor explant model. J. Clin. Oncol. 35, e20035–e20035 (2017).

    Google Scholar 

  142. Broutier, L. et al. Human primary liver cancer–derived organoid cultures for disease modeling and drug screening. Nat. Med. 23, 1424–1435 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Rosenbluth, J. M. et al. Organoid cultures from normal and cancer-prone human breast tissues preserve complex epithelial lineages. Nat. Commun. 11, 1–14 (2020).

    Google Scholar 

  144. Tsai, S. et al. Development of primary human pancreatic cancer organoids, matched stromal and immune cells and 3D tumor microenvironment models. BMC Cancer 18, 335 (2018).

    PubMed  PubMed Central  Google Scholar 

  145. O’Rourke, K. P. et al. Transplantation of engineered organoids enables rapid generation of metastatic mouse models of colorectal cancer. Nat. Biotechnol. 35, 577–582 (2017).

    PubMed  PubMed Central  Google Scholar 

  146. Melo, F. D. S. E. et al. A distinct role for Lgr5+ stem cells in primary and metastatic colon cancer. Nature 543, 676–680 (2017).

    Google Scholar 

  147. Murphy, J. F. Patient-derived xenograft (PDX) models: an emerging platform for cancer drug development and translational research. MOJ Immunol. 3, 00094 (2016).

    Google Scholar 

  148. Okada, S., Vaeteewoottacharn, K. & Kariya, R. Application of highly immunocompromised mice for the establishment of patient-derived xenograft (PDX) models. Cells 8, 889 (2019).

    CAS  PubMed Central  Google Scholar 

  149. Stecklum, M., Wulf-Goldenberg, A., Brzezicha, B. & Fichtner, I., Hoffmann, J. Humanized immune-oncology mouse models. AACR 1697, abstr. (2017).

  150. Aparicio, S., Hidalgo, M. & Kung, A. L. Examining the utility of patient-derived xenograft mouse models. Nat. Rev. Cancer 15, 311–316 (2015).

    CAS  PubMed  Google Scholar 

  151. Arriaga, J. M. & Abate-Shin, C. Genetically engineered mouse models of prostate cancer in the postgenomic era. Cold Spring Harb. Perspect. Med. 9, a030528 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Stuckelberger, S. & Drapkin, R. Precious GEMMs: emergence of faithful models for ovarian cancer research. J. Pathol. 245, 129–131 (2018).

    PubMed  Google Scholar 

  153. DuPage, M. & Jacks, T. Genetically engineered mouse models of cancer reveal new insights about the antitumor immune response. Curr. Opin. Immunol. 25, 192–199 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Kersten, K., Visser, K. E., Miltenburg, M. H. & Jonkers, J. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol. Med. 9, 137–153 (2017).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors dedicate this work to the memory of Dr Georgia Hatzivassiliou. They also express gratitude to clinical trial patients and their families for their selfless contributions to research that is crucial for translation research and paves the way for improved patient treatments.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data, wrote, contributed to discussions of the content and edited and reviewed the article before submission.

Corresponding authors

Correspondence to Shivaani Kummar or Melissa R. Junttila.

Ethics declarations

Competing interests

S.K. is a consultant and member of the advisory boards of Boehringer Ingelheim, Springworks Therapeutics, Bayer, Genome & Company, HarbourBiomed, Seattle Genetics, Mundibiopharma and Gilead. She is also cofounder of PathomIQ, and her spouse is a member of the advisory board of Cadila Pharmaceuticals and cofounder of Arxeon. A.H. is a founder and shareholder of Arxeon. S.V.M. is founder and shareholder of Arxeon and scientific adviser for Cadila Pharmaceutical. M.R.J. is an employee of and owns stocks from ORIC Pharmaceuticals.

Additional information

Peer review information

Nature Reviews Drug Discovery thanks Uri Ben-David, Sara Colombetti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Cancer Therapeutics Response Portal: A CTD2 Network Resource for Mining Candidate Cancer Dependencies: https://ocg.cancer.gov/e-newsletter-issue/issue-11/cancer-therapeutics-response-portal-ctd%C2%B2-network

DepMap: The Cancer Dependency Map Project at Broad Institute: https://depmap.org/portal/ccle/

Office of Cancer Genomics: https://ocg.cancer.gov/node/300

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Honkala, A., Malhotra, S.V., Kummar, S. et al. Harnessing the predictive power of preclinical models for oncology drug development. Nat Rev Drug Discov 21, 99–114 (2022). https://doi.org/10.1038/s41573-021-00301-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-021-00301-6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer