Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Engineering living therapeutics with synthetic biology

Abstract

The steadfast advance of the synthetic biology field has enabled scientists to use genetically engineered cells, instead of small molecules or biologics, as the basis for the development of novel therapeutics. Cells endowed with synthetic gene circuits can control the localization, timing and dosage of therapeutic activities in response to specific disease biomarkers and thus represent a powerful new weapon in the fight against disease. Here, we conceptualize how synthetic biology approaches can be applied to programme living cells with therapeutic functions and discuss the advantages that they offer over conventional therapies in terms of flexibility, specificity and predictability, as well as challenges for their development. We present notable advances in the creation of engineered cells that harbour synthetic gene circuits capable of biological sensing and computation of signals derived from intracellular or extracellular biomarkers. We categorize and describe these developments based on the cell scaffold (human or microbial) and the site at which the engineered cell exerts its therapeutic function within its human host. The design of cell-based therapeutics with synthetic biology is a rapidly growing strategy in medicine that holds great promise for the development of effective treatments for a wide variety of human diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Endowing biological scaffolds with therapeutic capabilities.
Fig. 2: Development of living therapeutics with engineered genetic circuits.
Fig. 3: Human cell therapies with engineered genetic circuits.
Fig. 4: Human circulating CAR-T cell therapies with engineered genetic circuits.
Fig. 5: Bacterial cell therapies with engineered genetic circuits.

Similar content being viewed by others

References

  1. Campos, K. R. et al. The importance of synthetic chemistry in the pharmaceutical industry. Science 363, eaat0805 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Fischbach, M. A., Bluestone, J. A. & Lim, W. A. Cell-based therapeutics: the next pillar of medicine. Sci. Transl Med. 5, 179ps177 (2013).

    Article  Google Scholar 

  3. Cameron, D. E., Bashor, C. J. & Collins, J. J. A brief history of synthetic biology. Nat. Rev. Microbiol. 12, 381–390 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Nandagopal, N. & Elowitz, M. B. Synthetic biology: integrated gene circuits. Science 333, 1244–1248 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McAdams, H. H. & Arkin, A. Towards a circuit engineering discipline. Curr. Biol. 10, R318–R320 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Ellis, T., Wang, X. & Collins, J. J. Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nat. Biotechnol. 27, 465–471 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kobayashi, H. et al. Programmable cells: interfacing natural and engineered gene networks. Proc. Natl Acad. Sci. USA 101, 8414–8419 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kitada, T., DiAndreth, B., Teague, B. & Weiss, R. Programming gene and engineered-cell therapies with synthetic biology. Science 359, eaad1067 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Xie, M. & Fussenegger, M. Designing cell function: assembly of synthetic gene circuits for cell biology applications. Nat. Rev. Mol. Cell Biol. 19, 507–525 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Pedrolli, D. B. et al. Engineering microbial living therapeutics: the synthetic biology toolbox. Trends Biotechnol. 37, 100–115 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Nissim, L. & Bar-Ziv, R. H. A tunable dual-promoter integrator for targeting of cancer cells. Mol. Syst. Biol. 6, 444 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R. & Benenson, Y. Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science 333, 1307–1311 (2011). The first paper to describe a circuit that could distinguish malignant and non-malignant cells based on intracellular miRNA expression profiles to specific activity in diseased cells.

    Article  CAS  PubMed  Google Scholar 

  15. Culler, S. J., Hoff, K. G. & Smolke, C. D. Reprogramming cellular behavior with RNA controllers responsive to endogenous proteins. Science 330, 1251–1255 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nejman, D. et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368, 973–980 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer–immunity cycle. Immunity 39, 1–10 (2013).

    Article  PubMed  Google Scholar 

  18. Nissim, L. et al. Synthetic RNA-based immunomodulatory gene circuits for cancer immunotherapy. Cell 171, 1138–1150.e15 (2017). This paper describes an AND logic-gated circuit to sense cancer-associated transcription factors for specific delivery of anticancer immunotherapeutics in tumours.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu, M. R. et al. A high-throughput screening and computation platform for identifying synthetic promoters with enhanced cell-state specificity (SPECS). Nat. Commun. 10, 2880 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yin, H., Kauffman, K. J. & Anderson, D. G. Delivery technologies for genome editing. Nat. Rev. Drug Discov. 16, 387–399 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Kotterman, M. A. & Schaffer, D. V. Engineering adeno-associated viruses for clinical gene therapy. Nat. Rev. Genet. 15, 445–451 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Milone, M. C. & O’Doherty, U. Clinical use of lentiviral vectors. Leukemia 32, 1529–1541 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mishra, R., Hanker, A. B. & Garrett, J. T. Genomic alterations of ERBB receptors in cancer: clinical implications. Oncotarget 8, 114371–114392 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chung, H. K. et al. A compact synthetic pathway rewires cancer signaling to therapeutic effector release. Science 364, eaat6982 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fink, T. et al. Design of fast proteolysis-based signaling and logic circuits in mammalian cells. Nat. Chem. Biol. 15, 115–122 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Gao, X. J., Chong, L. S., Kim, M. S. & Elowitz, M. B. Programmable protein circuits in living cells. Science 361, 1252–1258 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Heng, B. C., Aubel, D. & Fussenegger, M. Prosthetic gene networks as an alternative to standard pharmacotherapies for metabolic disorders. Curr. Opin. Biotechnol. 35, 37–45 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Terkeltaub, R. A. Clinical practice. Gout. N. Engl. J. Med. 349, 1647–1655 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Ames, B. N., Cathcart, R., Schwiers, E. & Hochstein, P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc. Natl Acad. Sci. USA 78, 6858–6862 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kemmer, C. et al. Self-sufficient control of urate homeostasis in mice by a synthetic circuit. Nat. Biotechnol. 28, 355–360 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Saxena, P., Charpin-El Hamri, G., Folcher, M., Zulewski, H. & Fussenegger, M. Synthetic gene network restoring endogenous pituitary–thyroid feedback control in experimental Graves’ disease. Proc. Natl Acad. Sci. USA 113, 1244–1249 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xie, M. et al. β-cell-mimetic designer cells provide closed-loop glycemic control. Science 354, 1296–1301 (2016). Together with Kemmer et al. and Saxena et al., this study describes feedback-controlled circuits for self-regulated production of therapeutic molecules based on sensing of serum biomarkers.

    Article  CAS  PubMed  Google Scholar 

  33. Cooper, D. S. Antithyroid drugs. N. Engl. J. Med. 352, 905–917 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Cryer, P. E. The barrier of hypoglycemia in diabetes. Diabetes 57, 3169–3176 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ashcroft, F. M. & Rorsman, P. K(ATP) channels and islet hormone secretion: new insights and controversies. Nat. Rev. Endocrinol. 9, 660–669 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Graveel, C. R., Tolbert, D. & Vande Woude, G. F. MET: a critical player in tumorigenesis and therapeutic target. Cold Spring Harb. Perspect. Biol. 5, a009209 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bai, P. et al. A synthetic biology-based device prevents liver injury in mice. J. Hepatol. 65, 84–94 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Eyerich, S. et al. IL-22 and TNF-α represent a key cytokine combination for epidermal integrity during infection with Candida albicans. Eur. J. Immunol. 41, 1894–1901 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Guilloteau, K. et al. Skin Inflammation Induced by the synergistic action of IL-17A, IL-22, oncostatin M, IL-1α, and TNF-α recapitulates some features of psoriasis. J. Immunol. 184, 5263–5270 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Schukur, L., Geering, B., Charpin-El Hamri, G. & Fussenegger, M. Implantable synthetic cytokine converter cells with AND-gate logic treat experimental psoriasis. Sci. Transl Med. 7, 318ra201 (2015).

    Article  PubMed  Google Scholar 

  41. Doloff, J. C. et al. Colony stimulating factor-1 receptor is a central component of the foreign body response to biomaterial implants in rodents and non-human primates. Nat. Mater. 16, 671–680 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dondossola, E. et al. Examination of the foreign body response to biomaterials by nonlinear intravital microscopy. Nat. Biomed. Eng. 1, 0007 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Veiseh, O. et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 14, 643–651 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vegas, A. J. et al. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat. Biotechnol. 34, 345–352 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bochenek, M. A. et al. Alginate encapsulation as long-term immune protection of allogeneic pancreatic islet cells transplanted into the omental bursa of macaques. Nat. Biomed. Eng. 2, 810–821 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chmielewski, M. & Abken, H. TRUCKs: the fourth generation of CARs. Expert Opin. Biol. Ther. 15, 1145–1154 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Yeku, O. O. & Brentjens, R. J. Armored CAR T-cells: utilizing cytokines and pro-inflammatory ligands to enhance CAR T-cell anti-tumour efficacy. Biochem. Soc. Trans. 44, 412–418 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Roybal, K. T. & Lim, W. A. Synthetic immunology: hacking immune cells to expand their therapeutic capabilities. Annu. Rev. Immunol. 35, 229–253 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Frigault, M. J. & Maus, M. V. State of the art in CAR T cell therapy for CD19+ B cell malignancies. J. Clin. Invest. 130, 1586–1594 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lim, W. A. & June, C. H. The principles of engineering immune cells to treat cancer. Cell 168, 724–740 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sadelain, M., Riviere, I. & Riddell, S. Therapeutic T cell engineering. Nature 545, 423–431 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. van der Stegen, S. J., Hamieh, M. & Sadelain, M. The pharmacology of second-generation chimeric antigen receptors. Nat. Rev. Drug Discov. 14, 499–509 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Banaszynski, L. A., Chen, L. C., Maynard-Smith, L. A., Ooi, A. G. & Wandless, T. J. A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126, 995–1004 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Banaszynski, L. A., Sellmyer, M. A., Contag, C. H., Wandless, T. J. & Thorne, S. H. Chemical control of protein stability and function in living mice. Nat. Med. 14, 1123–1127 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cho, U. et al. Rapid and tunable control of protein stability in Caenorhabditis elegans using a small molecule. PLoS ONE 8, e72393 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Juillerat, A. et al. Modulation of chimeric antigen receptor surface expression by a small molecule switch. BMC Biotechnol. 19, 44 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Richman, S. A. et al. Ligand-induced degradation of a CAR permits reversible remote control of CAR T cell activity in vitro and in vivo. Mol. Ther. 28, 1600–1613 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sando, R. III et al. Inducible control of gene expression with destabilized Cre. Nat. Methods 10, 1085–1088 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Leung, W. H. et al. Sensitive and adaptable pharmacological control of CAR T cells through extracellular receptor dimerization. JCI Insight 5, e124430 (2019).

    Article  Google Scholar 

  60. Wu, C. Y., Roybal, K. T., Puchner, E. M., Onuffer, J. & Lim, W. A. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science 350, aab4077 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Di Stasi, A. et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N. Engl. J. Med. 365, 1673–1683 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Fan, L., Freeman, K. W., Khan, T., Pham, E. & Spencer, D. M. Improved artificial death switches based on caspases and FADD. Hum. Gene Ther. 10, 2273–2285 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Abedi, M. H., Lee, J., Piraner, D. I. & Shapiro, M. G. Thermal control of engineered T-cells. ACS Synth. Biol. 9, 1941–1950 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Pan, Y. et al. Mechanogenetics for the remote and noninvasive control of cancer immunotherapy. Proc. Natl Acad. Sci. USA 115, 992–997 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Huang, Z. et al. Engineering light-controllable CAR T cells for cancer immunotherapy. Sci. Adv. 6, eaay9209 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ede, C., Chen, X., Lin, M. Y. & Chen, Y. Y. Quantitative analyses of core promoters enable precise engineering of regulated gene expression in mammalian cells. ACS Synth. Biol. 5, 395–404 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Juillerat, A. et al. An oxygen sensitive self-decision making engineered CAR T-cell. Sci. Rep. 7, 39833 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hegde, M. et al. Combinational targeting offsets antigen escape and enhances effector functions of adoptively transferred T cells in glioblastoma. Mol. Ther. 21, 2087–2101 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hegde, M. et al. Tandem CAR T cells targeting HER2 and IL13Ralpha2 mitigate tumor antigen escape. J. Clin. Invest. 126, 3036–3052 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Qin, H. et al. Preclinical development of bivalent chimeric antigen receptors targeting both CD19 and CD22. Mol. Ther. Oncolytics 11, 127–137 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ruella, M. et al. Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies. J. Clin. Invest. 126, 3814–3826 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zah, E., Lin, M. Y., Silva-Benedict, A., Jensen, M. C. & Chen, Y. Y. T cells expressing CD19/CD20 bispecific chimeric antigen receptors prevent antigen escape by malignant B cells. Cancer Immunol. Res. 4, 498–508 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zah, E. et al. Systematically optimized BCMA/CS1 bispecific CAR-T cells robustly control heterogeneous multiple myeloma. Nat. Commun. 11, 2283 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cartellieri, M. et al. Switching CAR T cells on and off: a novel modular platform for retargeting of T cells to AML blasts. Blood Cancer J. 6, e458 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kudo, K. et al. T lymphocytes expressing a CD16 signaling receptor exert antibody-dependent cancer cell killing. Cancer Res. 74, 93–103 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Landgraf, K. E. et al. convertibleCARs: a chimeric antigen receptor system for flexible control of activity and antigen targeting. Commun. Biol. 3, 296 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Minutolo, N. G. et al. Quantitative control of gene-engineered T-cell activity through the covalent attachment of targeting ligands to a universal immune receptor. J. Am. Chem. Soc. 142, 6554–6568 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rodgers, D. T. et al. Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies. Proc. Natl Acad. Sci. USA 113, E459–E468 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tamada, K. et al. Redirecting gene-modified T cells toward various cancer types using tagged antibodies. Clin. Cancer Res. 18, 6436–6445 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Cheever, M. A. et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin. Cancer Res. 15, 5323–5337 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Martinez, M. & Moon, E. K. CAR T cells for solid tumors: new strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front. Immunol. 10, 128 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lamers, C. H. et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol. Ther. 21, 904–912 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Morgan, R. A. et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 18, 843–851 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Parkhurst, M. R. et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol. Ther. 19, 620–626 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Fedorov, V. D., Themeli, M. & Sadelain, M. PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci. Transl Med. 5, 215ra172 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kloss, C. C., Condomines, M., Cartellieri, M., Bachmann, M. & Sadelain, M. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat. Biotechnol. 31, 71–75 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Lanitis, E. et al. Chimeric antigen receptor T Cells with dissociated signaling domains exhibit focused antitumor activity with reduced potential for toxicity in vivo. Cancer Immunol. Res. 1, 43–53 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Roybal, K. T. et al. Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell 164, 770–779 (2016). Together with Fedorov et al., Loss et al. and Lanitis et al., the authors demonstrate improved tumour specificity of CAR T cells through logic-gated antigen recognition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Srivastava, S. et al. Logic-gated ROR1 chimeric antigen receptor expression rescues T cell-mediated toxicity to normal tissues and enables selective tumor targeting. Cancer Cell 35, 489–503.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sukumaran, S. et al. Enhancing the potency and specificity of engineered T cells for cancer treatment. Cancer Discov. 8, 972–987 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wilkie, S. et al. Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. J. Clin. Immunol. 32, 1059–1070 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Williams, J. Z. et al. Precise T cell recognition programs designed by transcriptionally linking multiple receptors. Science 370, 1099–1104 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chang, Z. L. & Chen, Y. Y. CARs: synthetic immunoreceptors for cancer therapy and beyond. Trends Mol. Med. 23, 430–450 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ebert, L. M., Yu, W., Gargett, T. & Brown, M. P. Logic-gated approaches to extend the utility of chimeric antigen receptor T-cell technology. Biochem. Soc. Trans. 46, 391–401 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Han, X., Wang, Y., Wei, J. & Han, W. Multi-antigen-targeted chimeric antigen receptor T cells for cancer therapy. J. Hematol. Oncol. 12, 128 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Perna, F. et al. Integrating proteomics and transcriptomics for systematic combinatorial chimeric antigen receptor therapy of AML. Cancer Cell 32, 506–519.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. MacKay, M. et al. The therapeutic landscape for cells engineered with chimeric antigen receptors. Nat. Biotechnol. 38, 233–244 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Dannenfelser, R. et al. Discriminatory power of combinatorial antigen recognition in cancer T cell therapies. Cell Syst. 11, 215–228.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Raffin, C., Vo, L. T. & Bluestone, J. A. Treg cell-based therapies: challenges and perspectives. Nat. Rev. Immunol. 20, 158–172 (2020).

    Article  CAS  PubMed  Google Scholar 

  100. Cho, J. H., Collins, J. J. & Wong, W. W. Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell 173, 1426–1438.e11 (2018). This paper describes an integrated CAR platform to control antigen specificity and fine-tune functional responses in T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bokulich, N. A. et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci. Transl Med. 8, 343ra382 (2016).

    Article  Google Scholar 

  102. Tamburini, S., Shen, N., Wu, H. C. & Clemente, J. C. The microbiome in early life: implications for health outcomes. Nat. Med. 22, 713–722 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Stewart, C. J. et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 562, 583–588 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Charbonneau, M. R., Isabella, V. M., Li, N. & Kurtz, C. B. Developing a new class of engineered live bacterial therapeutics to treat human diseases. Nat. Commun. 11, 1738 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Brophy, J. A. & Voigt, C. A. Principles of genetic circuit design. Nat. Methods 11, 508–520 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sommer, M. O., Church, G. M. & Dantas, G. A functional metagenomic approach for expanding the synthetic biology toolbox for biomass conversion. Mol. Syst. Biol. 6, 360 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Johns, N. I. et al. Metagenomic mining of regulatory elements enables programmable species-selective gene expression. Nat. Methods 15, 323–329 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Amarelle, V., Sanches-Medeiros, A., Silva-Rocha, R. & Guazzaroni, M. E. Expanding the toolbox of broad host-range transcriptional terminators for proteobacteria through metagenomics. ACS Synth. Biol. 8, 647–654 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Plavec, T. V. & Berlec, A. Engineering of lactic acid bacteria for delivery of therapeutic proteins and peptides. Appl. Microbiol. Biotechnol. 103, 2053–2066 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Plavec, T. V. & Berlec, A. Safety aspects of genetically modified lactic acid bacteria. Microorganisms 8, 297 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  111. Landete, J. M. A review of food-grade vectors in lactic acid bacteria: from the laboratory to their application. Crit. Rev. Biotechnol. 37, 296–308 (2017).

    Article  CAS  PubMed  Google Scholar 

  112. Sonnenborn, U. Escherichia coli strain Nissle 1917 — from bench to bedside and back: history of a special Escherichia coli strain with probiotic properties. FEMS Microbiol. Lett. 363, fnw212 (2016).

    Article  PubMed  Google Scholar 

  113. Schultz, M. Clinical use of E. coli Nissle 1917 in inflammatory bowel disease. Inflamm. Bowel Dis. 14, 1012–1018 (2008).

    Article  PubMed  Google Scholar 

  114. Fabrega, M. J. et al. Intestinal anti-inflammatory effects of outer membrane vesicles from Escherichia coli Nissle 1917 in DSS-experimental colitis in mice. Front. Microbiol. 8, 1274 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Pedersen, B. & Iversen, B. [Comparison between depot terbutaline tablets and ordinary terbutaline tablets]. Ugeskr. Laege. 149, 162–165 (1987).

    CAS  Google Scholar 

  116. Deriu, E. et al. Probiotic bacteria reduce Salmonella typhimurium intestinal colonization by competing for iron. Cell Host Microbe 14, 26–37 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gunn, G. R. et al. Two Listeria monocytogenes vaccine vectors that express different molecular forms of human papilloma virus-16 (HPV-16) E7 induce qualitatively different T cell immunity that correlates with their ability to induce regression of established tumors immortalized by HPV-16. J. Immunol. 167, 6471–6479 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Brockstedt, D. G. et al. Listeria-based cancer vaccines that segregate immunogenicity from toxicity. Proc. Natl Acad. Sci. USA 101, 13832–13837 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wallecha, A., Maciag, P. C., Rivera, S., Paterson, Y. & Shahabi, V. Construction and characterization of an attenuated Listeria monocytogenes strain for clinical use in cancer immunotherapy. Clin. Vaccine Immunol. 16, 96–103 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Pawelek, J. M., Low, K. B. & Bermudes, D. Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res. 57, 4537–4544 (1997).

    CAS  PubMed  Google Scholar 

  121. Curtiss, R. 3rd & Kelly, S. M. Salmonella typhimurium deletion mutants lacking adenylate cyclase and cyclic AMP receptor protein are avirulent and immunogenic. Infect. Immun. 55, 3035–3043 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Krautkramer, K. A., Fan, J. & Backhed, F. Gut microbial metabolites as multi-kingdom intermediates. Nat. Rev. Microbiol. 19, 77–94 (2020).

    Article  PubMed  Google Scholar 

  123. Yamamoto, S. et al. Genetically modified Bifidobacterium displaying Salmonella-antigen protects mice from lethal challenge of Salmonella Typhimurium in a murine typhoid fever model. Vaccine 28, 6684–6691 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Zhang, R. et al. An engineered Lactococcus lactis strain exerts significant immune responses through efficient expression and delivery of Helicobacter pylori Lpp20 antigen. Biotechnol. Lett. 38, 2169–2175 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Guo, S. et al. The recombinant Lactococcus lactis oral vaccine induces protection against C. difficile spore challenge in a mouse model. Vaccine 33, 1586–1595 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Shaw, D. M. et al. Engineering the microflora to vaccinate the mucosa: serum immunoglobulin G responses and activated draining cervical lymph nodes following mucosal application of tetanus toxin fragment C-expressing lactobacilli. Immunology 100, 510–518 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chamcha, V., Jones, A., Quigley, B. R., Scott, J. R. & Amara, R. R. Oral immunization with a recombinant Lactococcus lactis-expressing HIV-1 antigen on group a Streptococcus pilus induces strong mucosal immunity in the gut. J. Immunol. 195, 5025–5034 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Forkus, B., Ritter, S., Vlysidis, M., Geldart, K. & Kaznessis, Y. N. Antimicrobial probiotics reduce Salmonella enterica in turkey gastrointestinal tracts. Sci. Rep. 7, 40695 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Duan, F. & March, J. C. Engineered bacterial communication prevents Vibrio cholerae virulence in an infant mouse model. Proc. Natl Acad. Sci. USA 107, 11260–11264 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kaser, A., Zeissig, S. & Blumberg, R. S. Inflammatory bowel disease. Annu. Rev. Immunol. 28, 573–621 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Vandenbroucke, K. et al. Orally administered L. lactis secreting an anti-TNF nanobody demonstrate efficacy in chronic colitis. Mucosal Immunol. 3, 49–56 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Praveschotinunt, P. et al. Engineered E. coli Nissle 1917 for the delivery of matrix-tethered therapeutic domains to the gut. Nat. Commun. 10, 5580 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Taupin, D. & Podolsky, D. K. Trefoil factors: initiators of mucosal healing. Nat. Rev. Mol. Cell Biol. 4, 721–732 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Braat, H. et al. A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin. Gastroenterol. Hepatol. 4, 754–759 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Le, D. T. et al. A live-attenuated Listeria vaccine (ANZ-100) and a live-attenuated Listeria vaccine expressing mesothelin (CRS-207) for advanced cancers: phase I studies of safety and immune induction. Clin. Cancer Res. 18, 858–868 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Le, D. T. et al. Safety and survival with GVAX pancreas prime and Listeria monocytogenes-expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. J. Clin. Oncol. 33, 1325–1333 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Johnson, P. V., Blair, B. M., Zeller, S., Kotton, C. N. & Hohmann, E. L. Attenuated Listeria monocytogenes vaccine vectors expressing influenza A nucleoprotein: preclinical evaluation and oral inoculation of volunteers. Microbiol. Immunol. 55, 304–317 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Angelakopoulos, H. et al. Safety and shedding of an attenuated strain of Listeria monocytogenes with a deletion of actA/plcB in adult volunteers: a dose escalation study of oral inoculation. Infect. Immun. 70, 3592–3601 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Limaye, S. A. et al. Phase 1b, multicenter, single blinded, placebo-controlled, sequential dose escalation study to assess the safety and tolerability of topically applied AG013 in subjects with locally advanced head and neck cancer receiving induction chemotherapy. Cancer 119, 4268–4276 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. Courbet, A., Endy, D., Renard, E., Molina, F. & Bonnet, J. Detection of pathological biomarkers in human clinical samples via amplifying genetic switches and logic gates. Sci. Transl Med. 7, 289ra283 (2015).

    Article  Google Scholar 

  141. Kotula, J. W. et al. Programmable bacteria detect and record an environmental signal in the mammalian gut. Proc. Natl Acad. Sci. USA 111, 4838–4843 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Riglar, D. T. et al. Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation. Nat. Biotechnol. 35, 653–658 (2017). This study validates the use of coupled detection and signal recording modules for the identification of a relevant inflammatory biomarker.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Daeffler, K. N. et al. Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation. Mol. Syst. Biol. 13, 923 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Mao, N., Cubillos-Ruiz, A., Cameron, D. E. & Collins, J. J. Probiotic strains detect and suppress cholera in mice. Sci. Transl Med. 10, eaao2586 (2018). This study describes the design and use of a hybrid sensing module for the in vivo detection of an acute infectious process in a murine model.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Mimee, M. et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 360, 915–918 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. de Groot, M. J., Hoeksma, M., Blau, N., Reijngoud, D. J. & van Spronsen, F. J. Pathogenesis of cognitive dysfunction in phenylketonuria: review of hypotheses. Mol. Genet. Metab. 99, S86–S89 (2010).

    Article  PubMed  Google Scholar 

  147. Isabella, V. M. et al. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat. Biotechnol. 36, 857–864 (2018). This paper reports the preclinical characterization of a synthetic biotic engineered to consume Phe in patients with PKU, currently in clinical trials.

    Article  CAS  PubMed  Google Scholar 

  148. Leonard, J. V. & Morris, A. A. Urea cycle disorders. Semin. Neonatol. 7, 27–35 (2002).

    Article  CAS  PubMed  Google Scholar 

  149. Aldridge, D. R., Tranah, E. J. & Shawcross, D. L. Pathogenesis of hepatic encephalopathy: role of ammonia and systemic inflammation. J. Clin. Exp. Hepatol. 5, S7–S20 (2015).

    Article  PubMed  Google Scholar 

  150. Kurtz, C. B. et al. An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Sci. Transl Med. 11, eaau7975 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Mimee, M., Tucker, A. C., Voigt, C. A. & Lu, T. K. Programming a human commensal bacterium, Bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota. Cell Syst. 1, 62–71 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Lim, B., Zimmermann, M., Barry, N. A. & Goodman, A. L. Engineered regulatory systems modulate gene expression of human commensals in the gut. Cell 169, 547–558.e15 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Garcia-Bayona, L. & Comstock, L. E. Streamlined genetic manipulation of diverse Bacteroides and Parabacteroides isolates from the human gut microbiota. mBio 10, e01762-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Taketani, M. et al. Genetic circuit design automation for the gut resident species Bacteroides thetaiotaomicron. Nat. Biotechnol. 38, 962–969 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Coley, W. B. The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893. Clin. Orthop. Relat. Res. 262, 3–11 (1991).

    Google Scholar 

  156. Forbes, N. S. Engineering the perfect (bacterial) cancer therapy. Nat. Rev. Cancer 10, 785–794 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yu, Y. A. et al. Visualization of tumors and metastases in live animals with bacteria and vaccinia virus encoding light-emitting proteins. Nat. Biotechnol. 22, 313–320 (2004).

    Article  CAS  PubMed  Google Scholar 

  158. Danino, T., Lo, J., Prindle, A., Hasty, J. & Bhatia, S. N. In vivo gene expression dynamics of tumor-targeted bacteria. ACS Synth. Biol. 1, 465–470 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Pinero-Lambea, C. et al. Programming controlled adhesion of E. coli to target surfaces, cells, and tumors with synthetic adhesins. ACS Synth. Biol. 4, 463–473 (2015).

    Article  CAS  PubMed  Google Scholar 

  160. Danino, T. et al. Programmable probiotics for detection of cancer in urine. Sci. Transl Med. 7, 289ra284 (2015). This article demonstrates that bacteria can be programmed to safely and selectively deliver synthetic gene circuits to diseased tissue microenvironments in mice.

    Article  Google Scholar 

  161. Zou, W., Wolchok, J. D. & Chen, L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci. Transl Med. 8, 328rv324 (2016).

    Article  Google Scholar 

  162. Bonaventura, P. et al. Cold tumors: a therapeutic challenge for immunotherapy. Front. Immunol. 10, 168 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Barber, G. N. STING: infection, inflammation and cancer. Nat. Rev. Immunol. 15, 760–770 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Leventhal, D. S. et al. Immunotherapy with engineered bacteria by targeting the STING pathway for anti-tumor immunity. Nat. Commun. 11, 2739 (2020). This article reports the preclinical characterization of a synthetic biotic, an engineered bacterium that selectively induces STING activation in tumour antigen-presenting cells, that is currently in clinical trials in oncology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Stricker, J. et al. A fast, robust and tunable synthetic gene oscillator. Nature 456, 516–519 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Anderson, J. C., Clarke, E. J., Arkin, A. P. & Voigt, C. A. Environmentally controlled invasion of cancer cells by engineered bacteria. J. Mol. Biol. 355, 619–627 (2006).

    Article  CAS  PubMed  Google Scholar 

  167. Tamsir, A., Tabor, J. J. & Voigt, C. A. Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’. Nature 469, 212–215 (2011).

    Article  CAS  PubMed  Google Scholar 

  168. Prindle, A. et al. Genetic circuits in Salmonella Typhimurium. ACS Synth. Biol. 1, 458–464 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Din, M. O. et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature 536, 81–85 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Chowdhury, S. et al. Programmable bacteria induce durable tumor regression and systemic antitumor immunity. Nat. Med. 25, 1057–1063 (2019). This article shows that synchonized cell lysis circuits can be used for safe and local delivery of immunotherapeutic payloads leading to systemic antitumor immunity in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Gurbatri, C. R. et al. Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies. Sci. Transl Med. 12, eaax0876 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Farasat, I. et al. Efficient search, mapping, and optimization of multi-protein genetic systems in diverse bacteria. Mol. Syst. Biol. 10, 731 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Mohammadi, P., Beerenwinkel, N. & Benenson, Y. Automated design of synthetic cell classifier circuits using a two-step optimization strategy. Cell Syst. 4, 207–218.e14 (2017).

    Article  CAS  PubMed  Google Scholar 

  174. Nielsen, A. A. et al. Genetic circuit design automation. Science 352, aac7341 (2016).

    Article  PubMed  Google Scholar 

  175. Reis, A. C. & Salis, H. M. An automated model test system for systematic development and improvement of gene expression models. ACS Synth. Biol. 9, 3145–3156 (2020).

    Article  CAS  PubMed  Google Scholar 

  176. Mannan, A. A., Liu, D., Zhang, F. & Oyarzún, D. A. Fundamental design principles for transcription-factor-based metabolite biosensors. ACS Synth. Biol. 6, 1851–1859 (2017).

    Article  CAS  PubMed  Google Scholar 

  177. Slusarczyk, A. L., Lin, A. & Weiss, R. Foundations for the design and implementation of synthetic genetic circuits. Nat. Rev. Genet. 13, 406–420 (2012).

    Article  CAS  PubMed  Google Scholar 

  178. Shaywitz, A. J. & Greenberg, M. E. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu. Rev. Biochem. 68, 821–861 (1999).

    Article  CAS  PubMed  Google Scholar 

  179. Hogan, P. G., Chen, L., Nardone, J. & Rao, A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes. Dev. 17, 2205–2232 (2003).

    Article  CAS  PubMed  Google Scholar 

  180. Maze, A. & Benenson, Y. Artificial signaling in mammalian cells enabled by prokaryotic two-component system. Nat. Chem. Biol. 16, 179–187 (2020).

    Article  CAS  PubMed  Google Scholar 

  181. Bojar, D. & Fussenegger, M. The role of protein engineering in biomedical applications of mammalian synthetic biology. Small 16, e1903093 (2020).

    Article  PubMed  Google Scholar 

  182. Khalil, A. S. et al. A synthetic biology framework for programming eukaryotic transcription functions. Cell 150, 647–658 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Teixeira, A. P. & Fussenegger, M. Engineering mammalian cells for disease diagnosis and treatment. Curr. Opin. Biotechnol. 55, 87–94 (2019).

    Article  Google Scholar 

  184. Gordley, R. M., Bugaj, L. J. & Lim, W. A. Modular engineering of cellular signaling proteins and networks. Curr. Opin. Struct. Biol. 39, 106–114 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Hossain, A. et al. Automated design of thousands of nonrepetitive parts for engineering stable genetic systems. Nat. Biotechnol. 38, 1466–1475 (2020).

    Article  CAS  PubMed  Google Scholar 

  186. Wu, G. et al. Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications. Trends Biotechnol. 34, 652–664 (2016).

    Article  CAS  PubMed  Google Scholar 

  187. Rugbjerg, P. & Sommer, M. O. A. Overcoming genetic heterogeneity in industrial fermentations. Nat. Biotechnol. 37, 869–876 (2019).

    Article  CAS  PubMed  Google Scholar 

  188. US Food and Drug Administration. Early clinical trials with live biotherapeutic products: chemistry, manufacturing, and control information; guidance for industry (FDA, 2016).

  189. Venema, K. & van den Abbeele, P. Experimental models of the gut microbiome. Best Pract. Res. Clin. Gastroenterol. 27, 115–126 (2013).

    Article  CAS  PubMed  Google Scholar 

  190. Kim, H. J., Li, H., Collins, J. J. & Ingber, D. E. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc. Natl Acad. Sci. USA 113, E7–E15 (2016).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T.K.L. was supported by the US Department of Defense (W81XWH-17-1-0159, W81XWH-16-1-0565) and National Institutes of Health (5-R33-AI121669-04). T.G. was supported by a postdoctoral fellowship from the Natural Sciences and Engineering Research Council of Canada. J.J.C. was supported by the National Institutes of Health grant 1RC2DK120535-01A1 and the Defense Threat Reduction Agency grant HDTRA1-14-1-0006. The authors apologize to those authors whose work was not cited directly owing to space limitations.

Author information

Authors and Affiliations

Authors

Contributions

A.C.-R. and T.G. wrote and edited sections of the manuscript, generated artwork and researched references. A.C.-R. and T.G. are equal contributors. A.S. edited the manuscript, generated artwork and researched references. J.J.C., T.K.L. and P.F.M. contributed to the writing and editing of the manuscript. J.M.L. conceived and coordinated the project, wrote several sections, edited the manuscript and researched references.

Corresponding author

Correspondence to Jose M. Lora.

Ethics declarations

Competing interests

A.S. is an employee at Synlogic. J.J.C. is a co-founder and adviser of Synlogic and Senti Bio. T.K.L is an employee at Senti Bio, and co-founder and adviser of Synlogic and Senti Bio. P.M is a member of the advisory board of Synlogic. J.M.L. is a former employee at Synlogic. T.G. and A.C.-R. declare no competing interests.

Additional information

Peer review information

Nature Reviews Drug Discovery thanks Howard Salis, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Boolean gates

A system or device that performs a logical operation on one or more binary inputs, which results in a single binary output.

AND gate

Output is actuated only if all of the specified inputs are received.

Synthetic promoters

Recombinant DNA elements that enable the binding of transcription factors and RNA polymerase enzyme to initiate transcription of RNA molecules.

Prosthetic gene network

Synthetic gene circuit that senses the bioavailability of a metabolite or hormone and autonomously corrects the physiological level of the molecule when it deviates from a targeted set point.

Payloads

Exogenous therapeutic molecules delivered by engineered cells.

OR-gate

Output is actuated if any of the specified inputs are received.

NOT-gated

Output is negated if a specific input is received.

Toggle switch

A synthetic, two-gene regulatory network in which either of two gene products represses the expression of the other gene, resulting in bistable equilibrium states.

Repressilator

Regulatory cycle of multiple genes whereby each gene represses its successor in the cycle, which is used to build an oscillating biological network.

Curli nanofibres

The amyloid fibre component of Escherichia coli biofilms.

Trefoil factors

(TFFs). Disulfide-rich mucosal peptides that promote epithelium protection by stimulating cell migration and increasing the viscoelasticity of the mucosa.

Curli operon

Gene cluster that encodes and regulates curli proteins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cubillos-Ruiz, A., Guo, T., Sokolovska, A. et al. Engineering living therapeutics with synthetic biology. Nat Rev Drug Discov 20, 941–960 (2021). https://doi.org/10.1038/s41573-021-00285-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-021-00285-3

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer