Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The PROTACtable genome

Abstract

Proteolysis-targeting chimeras (PROTACs) are an emerging drug modality that may offer new opportunities to circumvent some of the limitations associated with traditional small-molecule therapeutics. By analogy with the concept of the ‘druggable genome’, the question arises as to which potential drug targets might PROTAC-mediated protein degradation be most applicable. Here, we present a systematic approach to the assessment of the PROTAC tractability (PROTACtability) of protein targets using a series of criteria based on data and information from a diverse range of relevant publicly available resources. Our approach could support decision-making on whether or not a particular target may be amenable to modulation using a PROTAC. Using our approach, we identified 1,067 proteins of the human proteome that have not yet been described in the literature as PROTAC targets that offer potential opportunities for future PROTAC-based efforts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Targeted protein degradation by PROTACs.
Fig. 2: Overview of the data sources and assignment rules for the workflow to assess target PROTACtability.
Fig. 3: Exploring the PROTACtable genome.
Fig. 4: Comparison of the PROTACtable genome with the druggable genome.

Similar content being viewed by others

Data availability

The full output of the PROTACtability assessment pipeline is provided as an Excel spreadsheet (Supplementary Table 1); each row corresponds to a protein-coding gene and the columns represent the various bucket assessment results or data types. A more detailed description of the column headings can be found in Supplementary Box 1 and in the main text.

References

  1. Chamberlain, P. P. & Hamann, L. G. Development of targeted protein degradation therapeutics. Nat. Chem. Biol. 15, 937–944 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Sun, X. et al. PROTACs: great opportunities for academia and industry. Signal Transduct. Target. Ther. 4, 64 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ding, Y., Fei, Y. & Lu, B. Emerging new concepts of degrader technologies. Trends Pharmacol. Sci. 41, 464–474 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pettersson, M. & Crews, C. M. PROteolysis TArgeting chimeras (PROTACs) — past, present and future. Drug Discov. Today Technol. 31, 15–27 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. An, S. & Fu, L. Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine 36, 553–562 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nalawansha, D. A. & Crews, C. M. PROTACs: an emerging therapeutic modality in precision medicine. Cell Chem. Biol. 27, 998–1014 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Toure, M. & Crews, C. M. Small-molecule PROTACS: new approaches to protein degradation. Angew. Chem. Int. Ed. 55, 1966–1973 (2016).

    Article  CAS  Google Scholar 

  8. Sakamoto, K. M. et al. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl Acad. Sci. USA 98, 8554–8559 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nakayama, K. I. & Nakayama, K. Ubiquitin ligases: cell-cycle control and cancer. Nat. Rev. Cancer 6, 369–381 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Behrends, C. & Harper, J. W. Constructing and decoding unconventional ubiquitin chains. Nat. Struct. Mol. Biol. 18, 520–528 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Zheng, N. & Shabek, N. Ubiquitin ligases: structure, function, and regulation. Annu. Rev. Biochem. 86, 129–157 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Cromm, P. M., Samarasinghe, K. T. G., Hines, J. & Crews, C. M. Addressing kinase-independent functions of Fak via PROTAC-mediated degradation. J. Am. Chem. Soc. 140, 17019–17026 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Popow, J. et al. Highly selective PTK2 proteolysis targeting chimeras to probe focal adhesion kinase scaffolding functions. J. Med. Chem. 62, 2508–2520 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Song, Y. et al. Development and preclinical validation of a novel covalent ubiquitin receptor Rpn13 degrader in multiple myeloma. Leukemia 33, 2685–2694 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bai, L. et al. A potent and selective small-molecule degrader of STAT3 achieves complete tumor regression in vivo. Cancer Cell 36, 498–511.e17 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kaur, T., Menon, A. & Garner, A. L. Synthesis of 7-benzylguanosine cap-analogue conjugates for eIF4E targeted degradation. Eur. J. Med. Chem. 166, 339–350 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bondeson, D. P. et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol. 11, 611–617 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Winter, G. E. et al. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348, 1376–1381 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zengerle, M., Chan, K.-H. & Ciulli, A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem. Biol. 10, 1770–1777 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Konstantinidou, M. et al. PROTACs – a game-changing technology. Expert Opin. Drug Discov. 14, 1255–1268 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, Y., Jiang, X., Feng, F., Liu, W. & Sun, H. Degradation of proteins by PROTACs and other strategies. Acta Pharm. Sin. B 10, 207–238 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Burslem, G. M. et al. The advantages of targeted protein degradation over inhibition: an RTK case study. Cell Chem. Biol. 25, 67–77.e3 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Mares, A. et al. Extended pharmacodynamic responses observed upon PROTAC-mediated degradation of RIPK2. Commun. Biol. 3, 140 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. De Vita, E., Maneiro, M. & Tate, E. W. The missing link between (un)druggable and degradable KRAS. ACS Cent. Sci. 6, 1281–1284 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Snyder, L. B. et al. In Proc. 112th Annual Meeting Am. Assoc. Cancer Res. 10–15 Abstr. 43 (AACR, 2021).

  26. Snyder, L. B. et al. In Proc. 112th Annual Meeting Am. Assoc. Cancer Res. 10–15 Abstr. 44 (AACR, 2021).

  27. Gleeson, M. P., Hersey, A., Montanari, D. & Overington, J. Probing the links between in vitro potency, ADMET and physicochemical parameters. Nat. Rev. Drug Discov. 10, 197–208 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Keserü, G. M. & Makara, G. M. The influence of lead discovery strategies on the properties of drug candidates. Nat. Rev. Drug Discov. 8, 203–212 (2009).

    Article  PubMed  CAS  Google Scholar 

  29. Meanwell, N. A. Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety. Chem. Res. Toxicol. 24, 1420–1456 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Leeson, P. D. & Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discov. 6, 881–890 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Manallack, D. T., Prankerd, R. J., Yuriev, E., Oprea, T. I. & Chalmers, D. K. The significance of acid/base properties in drug discovery. Chem. Soc. Rev. 42, 485–496 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pike, A., Williamson, B., Harlfinger, S., Martin, S. & McGinnity, D. F. Optimising proteolysis-targeting chimeras (PROTACs) for oral drug delivery: a drug metabolism and pharmacokinetics perspective. Drug Discov. Today 25, 1793–1800 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Hopkins, A. L. & Groom, C. R. The druggable genome. Nat. Rev. Drug Discov. 1, 727–730 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Gerry, C. J. & Schreiber, S. L. Unifying principles of bifunctional, proximity-inducing small molecules. Nat. Chem. Biol. 16, 369–378 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. El-Ahmad, Y. et al. Discovery of 6-(2,4-dichlorophenyl)-5-[4-[(3S)-1-(3-fluoropropyl)pyrrolidin-3-yl]oxyphenyl]-8,9-dihydro-7H-benzo[7]annulene-2-carboxylic acid (SAR439859), a potent and selective estrogen receptor degrader (SERD) for the treatment of estrogen-receptor-positive breast cancer.J. Med. Chem. 63, 512–518 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Dauvois, S., Danielian, P. S., White, R. & Parker, M. G. Antiestrogen ICI 164,384 reduces cellular estrogen receptor content by increasing its turnover. Proc. Natl Acad. Sci. Usa. 89, 4037–4041 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu, Y.-L. et al. Structural basis for an unexpected mode of SERM-mediated ER antagonism. Mol. Cell 18, 413–424 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Lai, A. C. & Crews, C. M. Induced protein degradation: an emerging drug discovery paradigm. Nat. Rev. Drug Discov. 16, 101–114 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Naito, M., Ohoka, N., Shibata, N. & Tsukumo, Y. Targeted protein degradation by chimeric small molecules, PROTACs and SNIPERs. Front. Chem. 7, 849 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Neklesa, T. K. et al. Small-molecule hydrophobic tagging-induced degradation of HaloTag fusion proteins. Nat. Chem. Biol. 7, 538–543 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Słabicki, M. et al. The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K. Nature 585, 293–297 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Ito, T. et al. Identification of a primary target of thalidomide teratogenicity. Science 327, 1345–1350 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Fischer, E. S. et al. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature 512, 49–53 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Krönke, J. et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343, 301–305 (2014).

    Article  PubMed  CAS  Google Scholar 

  45. Lu, G. et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343, 305–309 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Krönke, J. et al. Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS. Nature 523, 183–188 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Banik, S. M. et al. Lysosome-targeting chimeras for degradation of extraceullar proteins. Nature 584, 291–297 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Takahashi, D. et al. AUTACs: cargo-specific degraders using selective autophagy. Mol. Cell 76, 797–810.e10 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Li, Z., Zhu, C., Ding, Y., Fei, Y. & Lu, B. ATTEC: a potential new approach to target proteinopathies. Autophagy 16, 185–187 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Nabet, B. et al. The dTAG system for immediate and target-specific protein degradation. Nat. Chem. Biol. 14, 431–441 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fauman, E. B., Rai, B. K. & Huang, E. S. Structure-based druggability assessment — identifying suitable targets for small molecule therapeutics. Curr. Opin. Chem. Biol. 15, 463–468 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Griffith, M. et al. DGIdb: mining the druggable genome. Nat. Methods 10, 1209–1210 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kumar, R. D., Chang, L.-W., Ellis, M. J. & Bose, R. Prioritizing potentially druggable mutations with dGene: an annotation tool for cancer genome sequencing data. PLoS ONE 8, e67980 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang, X., Wang, R., Zhang, Y. & Zhang, H. Evolutionary survey of druggable protein targets with respect to their subcellular localizations. Genome Biol. Evol. 5, 1291–1297 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Finan, C. et al. The druggable genome and support for target identification and validation in drug development. Sci. Transl Med. 9, eaag1166 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Rodgers, G. et al. Glimmers in illuminating the druggable genome. Nat. Rev. Drug Discov. 17, 301–302 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang, J., Yazdani, S., Han, A. & Schapira, M. Structure-based view of the druggable genome. Drug Discov. Today 25, 561–567 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Brown, K. K. et al. Approaches to target tractability assessment – a practical perspective. MedChemComm 9, 606–613 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Oprea, T. I. et al. Unexplored therapeutic opportunities in the human genome. Nat. Rev. Drug Discov. 17, 317–332 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Carvalho-Silva, D. et al. Open Targets Platform: new developments and updates two years on. Nucleic Acids Res. 47, D1056–D1065 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Ochoa, D. et al. Open Targets Platform: supporting systematic drug-target identification and prioritisation. Nucleic Acids Res. 49, D1302–D1310 (2021).

    Article  PubMed  Google Scholar 

  62. Mullard, A. Targeted protein degraders crowd into the clinic. Nat. Rev. Drug Discov. 20, 247–250 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Weng, G. et al. PROTAC-DB: an online database of PROTACs. Nucleic Acids Res. 49, D1381–D1387 (2021).

    Article  PubMed  Google Scholar 

  64. Yang, J. et al. Covalent modification of Cys-239 in β-tubulin by small molecules as a strategy to promote tubulin heterodimer degradation. J. Biol. Chem. 294, 8161–8170 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gasic, I. et al. Tubulin resists degradation by cereblon-recruiting PROTACs. Cells 9, 1083 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  66. Donovan, K. A. et al. Mapping the degradable kinome provides a resource for expedited degrader development. Cell 183, 1714–1731.e10 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Arrowsmith, C. H. et al. The promise and peril of chemical probes. Nat. Chem. Biol. 11, 536–541 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515 (2019).

    Article  CAS  Google Scholar 

  69. Hornbeck, P. V. et al. 15 years of PhosphoSitePlus®: integrating post-translationally modified sites, disease variants and isoforms. Nucleic Acids Res. 47, D433–D441 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Chen, T. et al. mUbiSiDa: a comprehensive database for protein ubiquitination sites in mammals. PLoS ONE 9, e85744 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Kim, W. et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell 44, 325–340 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mathieson, T. et al. Systematic analysis of protein turnover in primary cells. Nat. Commun. 9, 689 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Mendez, D. et al. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res. 47, D930–D940 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Bondeson, D. P. et al. Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem. Biol. 25, 78–87.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Testa, A. et al. 3-Fluoro-4-hydroxyprolines: synthesis, conformational analysis, and stereoselective recognition by the VHL E3 ubiquitin ligase for targeted protein degradation. J. Am. Chem. Soc. 140, 9299–9313 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Han, X. et al. Discovery of highly potent and efficient PROTAC degraders of androgen receptor (AR) by employing weak binding affinity VHL E3 ligase ligands. J. Med. Chem. 62, 11218–11231 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Bassi, Z. I. et al. Modulating PCAF/GCN5 immune cell function through a PROTAC approach. ACS Chem. Biol. 13, 2862–2867 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Gechijian, L. N. et al. Functional TRIM24 degrader via conjugation of ineffectual bromodomain and VHL ligands. Nat. Chem. Biol. 14, 405–412 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Farnaby, W. et al. BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design. Nat. Chem. Biol. 15, 672–680 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. The Gene Ontology Consortium. The gene ontology resource: 20 years and still going strong. Nucleic Acids Res. 47, D330–D338 (2019).

    Article  CAS  Google Scholar 

  81. Lin, L., Yee, S. W., Kim, R. B. & Giacomini, K. M. SLC transporters as therapeutic targets: emerging opportunities. Nat. Rev. Drug Discov. 14, 543–560 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang, W. W., Gallo, L., Jadhav, A., Hawkins, R. & Parker, C. G. The druggability of solute carriers. J. Med. Chem. 63, 3834–3867 (2020).

    Article  CAS  PubMed  Google Scholar 

  83. Bensimon, A. et al. Targeted degradation of SLC transporters reveals amenability of multi-pass transmembrane proteins to ligand-induced proteolysis. Cell Chem. Biol. 27, 728–739.e9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Koscielny, G. et al. Open Targets: a platform for therapeutic target identification and validation. Nucleic Acids Res. 45, D985–D994 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Christiano, R. et al. A systematic protein turnover map for decoding protein degradation. Cell Rep. 33, 108378 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Komander, D. & Rape, M. The ubiquitin code. Annu. Rev. Biochem. 81, 203–229 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Yau, R. & Rape, M. The increasing complexity of the ubiquitin code. Nat. Cell Biol. 18, 579–586 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Kwon, Y. T. & Ciechanover, A. The ubiquitin code in the ubiquitin-proteasome system and autophagy. Trends Biochem. Sci. 42, 873–886 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Mattern, M., Sutherland, J., Kadimisetty, K., Barrio, R. & Rodriguez, M. S. Using ubiquitin binders to decipher the ubiquitin code. Trends Biochem. Sci. 44, 599–615 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank A. Ciulli, E. Fischer and M. Calabrese for their constructive feedback on our original manuscript. This work was funded by the Open Targets consortium and the Member States of the European Molecular Biology Laboratory (EMBL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew R. Leach.

Ethics declarations

Competing interests

G.H., S.R., V.S., M.M.H., P.J.T., M.A.Q., A.B.B. and K.B. work for companies involved in the discovery of PROTAC compounds as part of their overall drug discovery efforts. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Drug Discovery thanks A. Ciulli, E. Fischer and M. Calabrese for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related Links

Open Targets Platform: https://platform.opentargets.org/

Open Targets scoring scheme: https://platform-docs.opentargets.org/associations

Pharos API: https://pharos.nih.gov/api

PROTACpedia: http://protacdb.weizmann.ac.il/ptcb/main

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, M., Radoux, C.J., Hercules, A. et al. The PROTACtable genome. Nat Rev Drug Discov 20, 789–797 (2021). https://doi.org/10.1038/s41573-021-00245-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-021-00245-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research