Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Zebrafish disease models in drug discovery: from preclinical modelling to clinical trials

Abstract

Numerous drug treatments that have recently entered the clinic or clinical trials have their genesis in zebrafish. Zebrafish are well established for their contribution to developmental biology and have now emerged as a powerful preclinical model for human disease, as their disease characteristics, aetiology and progression, and molecular mechanisms are clinically relevant and highly conserved. Zebrafish respond to small molecules and drug treatments at physiologically relevant dose ranges and, when combined with cell-specific or tissue-specific reporters and gene editing technologies, drug activity can be studied at single-cell resolution within the complexity of a whole animal, across tissues and over an extended timescale. These features enable high-throughput and high-content phenotypic drug screening, repurposing of available drugs for personalized and compassionate use, and even the development of new drug classes. Often, drugs and drug leads explored in zebrafish have an inter-organ mechanism of action and would otherwise not be identified through targeted screening approaches. Here, we discuss how zebrafish is an important model for drug discovery, the process of how these discoveries emerge and future opportunities for maximizing zebrafish potential in medical discoveries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The power of zebrafish to model disease and therapy.
Fig. 2: Examples of phenotypes that can be assessed using drug screening.
Fig. 3: Zebrafish drug discovery and optimization for clinical development.
Fig. 4: Compassionate drug treatment: from zebrafish to child.
Fig. 5: Adult zebrafish xenograft transplantation approaches using FDA-approved drugs to clinical trials.

Similar content being viewed by others

References

  1. Howe, K. et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498–503 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Phillips, J. B. & Westerfield, M. Zebrafish models in translational research: tipping the scales toward advancements in human health. Dis. Model. Mech. 7, 739–743 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Bradford, Y. M. et al. Zebrafish models of human disease: gaining insight into human disease at ZFIN. ILAR J. 58, 4–16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Prykhozhij, S. V. & Berman, J. N. Zebrafish knock-ins swim into the mainstream. Dis. Model. Mech. 11, dmm037515 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu, K., Petree, C., Requena, T., Varshney, P. & Varshney, G. K. Expanding the CRISPR toolbox in zebrafish for studying development and disease. Front. Cell Dev. Biol. 7, 13 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Baron, M. et al. The stress-like cancer cell state is a consistent component of tumorigenesis. Cell Syst. 11, 536–546 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Travnickova, J. et al. Zebrafish MITF-low melanoma subtype models reveal transcriptional subclusters and MITF-independent residual disease. Cancer Res. 79, 5769–5784 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cagan, R. L., Zon, L. I. & White, R. M. Modeling cancer with flies and fish. Dev. Cell 49, 317–324 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goessling, W. & Sadler, K. C. Zebrafish: an important tool for liver disease research. Gastroenterology 149, 1361–1377 (2015).

    Article  PubMed  Google Scholar 

  10. Rissone, A. & Burgess, S. M. Rare genetic blood disease modeling in zebrafish. Front. Genet. 9, 348 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Zhao, Y., Zhang, K., Sips, P. & MacRae, C. A. Screening drugs for myocardial disease in vivo with zebrafish: an expert update. Expert Opin. Drug Discov. 14, 343–353 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Kalueff, A. V. et al. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish 10, 70–86 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Griffin, A. et al. Preclinical animal models for dravet syndrome: seizure phenotypes, comorbidities and drug screening. Front. Pharmacol. 9, 573 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Li, D. et al. ARAF recurrent mutation causes central conducting lymphatic anomaly treatable with a MEK inhibitor. Nat. Med. 25, 1116–1122 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. North, T. E. et al. PGE2-regulated wnt signaling and N-acetylcysteine are synergistically hepatoprotective in zebrafish acetaminophen injury. Proc. Natl Acad. Sci. USA 107, 17315–17320 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Griffin, A. et al. Clemizole and modulators of serotonin signalling suppress seizures in Dravet syndrome. Brain 140, 669–683 (2017).

    PubMed  PubMed Central  Google Scholar 

  17. MacRae, C. A. & Peterson, R. T. Zebrafish as tools for drug discovery. Nat. Rev. Drug Discov. 14, 721–731 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Cully, M. Zebrafish earn their drug discovery stripes. Nat. Rev. Drug Discov. 18, 811–813 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Morita, K. et al. Allosteric activators of protein phosphatase 2A display broad antitumor activity mediated by dephosphorylation of MYBL2. Cell 181, 702–715.e20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Peterson, R. T., Link, B. A., Dowling, J. E. & Schreiber, S. L. Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc. Natl Acad. Sci. USA 97, 12965–12969 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Peterson, R. T. et al. Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Nat. Biotechnol. 22, 595–599 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Swinney, D. C. & Anthony, J. How were new medicines discovered? Nat. Rev. Drug Discov. 10, 507–519 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Sonoshita, M. et al. A whole-animal platform to advance a clinical kinase inhibitor into new disease space. Nat. Chem. Biol. 14, 291–298 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dang, M., Henderson, R. E., Garraway, L. A. & Zon, L. I. Long-term drug administration in the adult zebrafish using oral gavage for cancer preclinical studies. Dis. Model. Mech. 9, 811–820 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Moya-Garcia, A. et al. Structural and functional view of polypharmacology. Sci. Rep. 7, 10102 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Antolin, A. A., Workman, P., Mestres, J. & Al-Lazikani, B. Polypharmacology in precision oncology: current applications and future prospects. Curr. Pharm. Des. 22, 6935–6945 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dar, A. C., Das, T. K., Shokat, K. M. & Cagan, R. L. Chemical genetic discovery of targets and anti-targets for cancer polypharmacology. Nature 486, 80–84 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ishizaki, H. et al. Combined zebrafish-yeast chemical-genetic screens reveal gene-copper-nutrition interactions that modulate melanocyte pigmentation. Dis. Model. Mech. 3, 639–651 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McCarroll, M. N., Gendelev, L., Keiser, M. J. & Kokel, D. Leveraging large-scale behavioral profiling in zebrafish to explore neuroactive polypharmacology. ACS Chem. Biol. 11, 842–849 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bruni, G. et al. Zebrafish behavioral profiling identifies multitarget antipsychotic-like compounds. Nat. Chem. Biol. 12, 559–566 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ito, T. et al. Identification of a primary target of thalidomide teratogenicity. Science 327, 1345–1350 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Lu, G. et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343, 305–309 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Kronke, J. et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343, 301–305 (2014).

    Article  PubMed  CAS  Google Scholar 

  34. Sperling, A. S. et al. Patterns of substrate affinity, competition, and degradation kinetics underlie biological activity of thalidomide analogs. Blood 134, 160–170 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. van Wijk, R. C. et al. Impact of post-hatching maturation on the pharmacokinetics of paracetamol in zebrafish larvae. Sci. Rep. 9, 2149 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Fraser, C. et al. Rapid discovery and structure-activity relationships of pyrazolopyrimidines that potently suppress breast cancer cell growth via SRC kinase inhibition with exceptional selectivity over ABL kinase. J. Med. Chem. 59, 4697–4710 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, Y. et al. Visnagin protects against doxorubicin-induced cardiomyopathy through modulation of mitochondrial malate dehydrogenase. Sci. Transl Med. 6, 266ra170 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Wertman, J. N. et al. The identification of dual protective agents against cisplatin-induced oto- and nephrotoxicity using the zebrafish model. eLife 9, e56235 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cassar, S. et al. Use of zebrafish in drug discovery toxicology. Chem. Res. Toxicol. 33, 95–118 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Gorelick, D. A., Pinto, C. L., Hao, R. & Bondesson, M. Use of reporter genes to analyze estrogen response: the transgenic zebrafish model. Methods Mol. Biol. 1366, 315–325 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Pinto, C. et al. Selectivity of natural, synthetic and environmental estrogens for zebrafish estrogen receptors. Toxicol. Appl. Pharmacol. 280, 60–69 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gorelick, D. A., Iwanowicz, L. R., Hung, A. L., Blazer, V. S. & Halpern, M. E. Transgenic zebrafish reveal tissue-specific differences in estrogen signaling in response to environmental water samples. Env. Health Perspect. 122, 356–362 (2014).

    Article  Google Scholar 

  43. Yu, P. B. et al. Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat. Chem. Biol. 4, 33–41 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Richter, S., Schulze, U., Tomancak, P. & Oates, A. C. Small molecule screen in embryonic zebrafish using modular variations to target segmentation. Nat. Commun. 8, 1901 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Stern, H. M. et al. Small molecules that delay S phase suppress a zebrafish bmyb mutant. Nat. Chem. Biol. 1, 366–370 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Santoriello, C. et al. RNA helicase DDX21 mediates nucleotide stress responses in neural crest and melanoma cells. Nat. Cell Biol. 22, 372–379 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Namdaran, P., Reinhart, K. E., Owens, K. N., Raible, D. W. & Rubel, E. W. Identification of modulators of hair cell regeneration in the zebrafish lateral line. J. Neurosci. 32, 3516–3528 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Allen, J. R., Skeath, J. B. & Johnson, S. L. Maintenance of melanocyte stem cell quiescence by gaba-a signaling in larval zebrafish. Genetics 213, 555–566 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Johansson, J. A. et al. PRL3-DDX21 transcriptional control of endolysosomal genes restricts melanocyte stem cell differentiation. Dev. Cell 54, 317–332.e9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bergen, D. J. M., Kague, E. & Hammond, C. L. Zebrafish as an emerging model for osteoporosis: a primary testing platform for screening new osteo-active compounds. Front. Endocrinol. 10, 6 (2019).

    Article  Google Scholar 

  51. Reimer, M. M. et al. Dopamine from the brain promotes spinal motor neuron generation during development and adult regeneration. Dev. Cell 25, 478–491 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Helker, C. S. M. et al. A whole organism small molecule screen identifies novel regulators of pancreatic endocrine development. Development 146, dev172569 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Early, J. J. et al. An automated high-resolution in vivo screen in zebrafish to identify chemical regulators of myelination. eLife 7, e35136 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Burns, C. G. et al. High-throughput assay for small molecules that modulate zebrafish embryonic heart rate. Nat. Chem. Biol. 1, 263–264 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Martin, W. K. et al. High-throughput video processing of heart rate responses in multiple wild-type embryonic zebrafish per imaging field. Sci. Rep. 9, 145 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Akerberg, A. A., Burns, C. E., Burns, C. G. & Nguyen, C. Deep learning enables automated volumetric assessments of cardiac function in zebrafish. Dis. Model. Mech. 12, dmm040188 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Miyares, R. L., de Rezende, V. B. & Farber, S. A. Zebrafish yolk lipid processing: a tractable tool for the study of vertebrate lipid transport and metabolism. Dis. Model. Mech. 7, 915–927 (2014).

    PubMed  PubMed Central  Google Scholar 

  58. Salmi, T. M., Tan, V. W. T. & Cox, A. G. Dissecting metabolism using zebrafish models of disease. Biochem. Soc. Trans. 47, 305–315 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Wrighton, P. J., Oderberg, I. M. & Goessling, W. There is something fishy about liver cancer: zebrafish models of hepatocellular carcinoma. Cell Mol. Gastroenterol. Hepatol. 8, 347–363 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gut, P. et al. Whole-organism screening for gluconeogenesis identifies activators of fasting metabolism. Nat. Chem. Biol. 9, 97–104 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Gut, P. & Stainier, D. Y. Whole-organism screening for modulators of fasting metabolism using transgenic zebrafish. Methods Mol. Biol. 1263, 157–165 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Garnaas, M. K. et al. Rargb regulates organ laterality in a zebrafish model of right atrial isomerism. Dev. Biol. 372, 178–189 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cox, A. G. et al. S-nitrosothiol signaling regulates liver development and improves outcome following toxic liver injury. Cell Rep. 6, 56–69 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bambino, K. et al. Inorganic arsenic causes fatty liver and interacts with ethanol to cause alcoholic liver disease in zebrafish. Dis. Model. Mech. 11, dmm031575 (2018).

    PubMed  PubMed Central  Google Scholar 

  65. Marques, J. C., Li, M., Schaak, D., Robson, D. N. & Li, J. M. Internal state dynamics shape brainwide activity and foraging behaviour. Nature 577, 239–243 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Khan, K. M. et al. Zebrafish models in neuropsychopharmacology and CNS drug discovery. Br. J. Pharmacol. 174, 1925–1944 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. McCammon, J. M. & Sive, H. Challenges in understanding psychiatric disorders and developing therapeutics: a role for zebrafish. Dis. Model. Mech. 8, 647–656 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. McCarroll, M. N. et al. Zebrafish behavioural profiling identifies GABA and serotonin receptor ligands related to sedation and paradoxical excitation. Nat. Commun. 10, 4078 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Mosser, E. A. et al. Identification of pathways that regulate circadian rhythms using a larval zebrafish small molecule screen. Sci. Rep. 9, 12405 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Moffat, J. G., Vincent, F., Lee, J. A., Eder, J. & Prunotto, M. Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat. Rev. Drug Discov. 16, 531–543 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Rihel, J. et al. Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science 327, 348–351 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Burczyk, M. S. et al. Muscarinic receptors promote pacemaker fate at the expense of secondary conduction system tissue in zebrafish. JCI Insight 4, e121971 (2019).

    Article  PubMed Central  Google Scholar 

  73. Laggner, C. et al. Chemical informatics and target identification in a zebrafish phenotypic screen. Nat. Chem. Biol. 8, 144–146 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. White, R. M. et al. DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature 471, 518–522 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wagner, B. K. & Schreiber, S. L. The power of sophisticated phenotypic screening and modern mechanism-of-action methods. Cell Chem. Biol. 23, 3–9 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhou, L. et al. ALDH2 mediates 5-nitrofuran activity in multiple species. Chem. Biol. 19, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fellmann, C., Gowen, B. G., Lin, P. C., Doudna, J. A. & Corn, J. E. Cornerstones of CRISPR–Cas in drug discovery and therapy. Nat. Rev. Drug Discov. 16, 89–100 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Minikel, E. V. et al. Evaluating drug targets through human loss-of-function genetic variation. Nature 581, 459–464 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Neggers, J. E. et al. Target identification of small molecules using large-scale CRISPR-Cas mutagenesis scanning of essential genes. Nat. Commun. 9, 502 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Matty, M. A. et al. Potentiation of P2RX7 as a host-directed strategy for control of mycobacterial infection. eLife 8, e39123 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Muller, S. et al. Donated chemical probes for open science. eLife 7, e34311 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Gerry, C. J. & Schreiber, S. L. Chemical probes and drug leads from advances in synthetic planning and methodology. Nat. Rev. Drug Discov. 17, 333–352 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Canham, S. M. et al. Systematic chemogenetic library assembly. Cell Chem. Biol. 27, 1124–1129 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 79, 629–661 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Harvey, A. L., Edrada-Ebel, R. & Quinn, R. J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 14, 111–129 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Dancik, V., Seiler, K. P., Young, D. W., Schreiber, S. L. & Clemons, P. A. Distinct biological network properties between the targets of natural products and disease genes. J. Am. Chem. Soc. 132, 9259–9261 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hoeksma, J. et al. A new perspective on fungal metabolites: identification of bioactive compounds from fungi using zebrafish embryogenesis as read-out. Sci. Rep. 9, 17546 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Hoeksma, J., van der Zon, G. C. M., Ten Dijke, P. & den Hertog, J. Cercosporamide inhibits bone morphogenetic protein receptor type I kinase activity in zebrafish. Dis. Model Mech. 13, dmm045971 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pickett, S. B. & Raible, D. W. Water waves to sound waves: using zebrafish to explore hair cell biology. J. Assoc. Res. Otolaryngol. 20, 1–19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Blanco-Sanchez, B. et al. Grxcr1 promotes hair bundle development by destabilizing the physical interaction between harmonin and sans Usher syndrome proteins. Cell Rep. 25, 1281–1291.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Owens, K. N. et al. Identification of genetic and chemical modulators of zebrafish mechanosensory hair cell death. PLoS Genet. 4, e1000020 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Chowdhury, S. et al. Phenotypic optimization of urea-thiophene carboxamides to yield potent, well tolerated, and orally active protective agents against aminoglycoside-induced hearing loss. J. Med. Chem. 61, 84–97 (2018).

    Article  CAS  PubMed  Google Scholar 

  93. Kitcher, S. R. et al. ORC-13661 protects sensory hair cells from aminoglycoside and cisplatin ototoxicity. JCI Insight 4, e126764 (2019).

    Article  PubMed Central  Google Scholar 

  94. North, T. E. et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447, 1007–1011 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Goessling, W. et al. Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell 136, 1136–1147 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Goessling, W. et al. Prostaglandin E2 enhances human cord blood stem cell xenotransplants and shows long-term safety in preclinical nonhuman primate transplant models. Cell Stem Cell 8, 445–458 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hoggatt, J., Mohammad, K. S., Singh, P. & Pelus, L. M. Prostaglandin E2 enhances long-term repopulation but does not permanently alter inherent stem cell competitiveness. Blood 122, 2997–3000 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hoggatt, J., Singh, P., Sampath, J. & Pelus, L. M. Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood 113, 5444–5455 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhang, Y. et al. Inhibition of the prostaglandin-degrading enzyme 15-PGDH potentiates tissue regeneration. Science 348, aaa2340 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Cutler, C. et al. Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation. Blood 122, 3074–3081 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Baraban, S. C., Dinday, M. T. & Hortopan, G. A. Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment. Nat. Commun. 4, 2410 (2013).

    Article  PubMed  Google Scholar 

  102. Griffin, A. L. et al. Zebrafish studies identify serotonin receptors mediating antiepileptic activity in Dravet syndrome. Brain Commun. 1, fcz008 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Dinday, M. T. & Baraban, S. C. Large-scale phenotype-based antiepileptic drug screening in a zebrafish model of dravet syndrome. eNeuro 2, ENEURO.0068-15.2015 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Frantz, W. T. & Ceol, C. J. From tank to treatment: modeling melanoma in zebrafish. Cells 9, 1289 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  105. Mort, R. L., Jackson, I. J. & Patton, E. E. The melanocyte lineage in development and disease. Development 142, 620–632 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kaufman, C. K. et al. A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation. Science 351, aad2197 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Tan, J. L. et al. Stress from nucleotide depletion activates the transcriptional regulator HEXIM1 to suppress melanoma. Mol. Cell 62, 34–46 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Liang, K. et al. Targeting processive transcription elongation via SEC disruption for MYC-induced cancer therapy. Cell 175, 766–779.e17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ciarlo, C. et al. A chemical screen in zebrafish embryonic cells establishes that Akt activation is required for neural crest development. eLife 6, e29145 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Precazzini, F. et al. Automated in vivo screen in zebrafish identifies clotrimazole as targeting a metabolic vulnerability in a melanoma model. Dev. Biol. 457, 215–225 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. Sarvi, S. et al. ALDH1 bio-activates nifuroxazide to eradicate ALDHHigh melanoma-initiating cells. Cell Chem. Biol. 25, 1456–1469.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Persson, M. et al. Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. Proc. Natl Acad. Sci. USA 106, 18740–18744 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mandelbaum, J. et al. Zebrafish blastomere screen identifies retinoic acid suppression of MYB in adenoid cystic carcinoma. J. Exp. Med. 215, 2673–2685 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jindal, G. A., Goyal, Y., Burdine, R. D., Rauen, K. A. & Shvartsman, S. Y. RASopathies: unraveling mechanisms with animal models. Dis. Model. Mech. 8, 769–782 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Gripp, K. W. et al. The sixth international RASopathies symposium: precision medicine — from promise to practice. Am. J. Med. Genet. A 182, 597–606 (2020).

    Article  PubMed  Google Scholar 

  116. Gross, A. M. et al. Advancing RAS/RASopathy therapies: an NCI-sponsored intramural and extramural collaboration for the study of RASopathies. Am. J. Med. Genet. A 182, 866–876 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. MacRae, C. A. et al. A clinical trial of MEK inhibition in Noonan syndrome with hypertrophic cardiomyopathy. RASopathies Network. https://rasopathiesnet.org/clinical-trial-mek-inhibition-noonan-syndrome-hypertrophic-cardiomyopathy/

  118. Anastasaki, C., Estep, A. L., Marais, R., Rauen, K. A. & Patton, E. E. Kinase-activating and kinase-impaired cardio-facio-cutaneous syndrome alleles have activity during zebrafish development and are sensitive to small molecule inhibitors. Hum. Mol. Genet. 18, 2543–2554 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Goyal, Y. et al. Divergent effects of intrinsically active MEK variants on developmental Ras signaling. Nat. Genet. 49, 465–469 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Goyal, Y. et al. Parallel imaging of Drosophila embryos for quantitative analysis of genetic perturbations of the Ras pathway. Dis. Model. Mech. 10, 923–929 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Jindal, G. A. et al. In vivo severity ranking of Ras pathway mutations associated with developmental disorders. Proc. Natl Acad. Sci. USA 114, 510–515 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Niihori, T. et al. Germline-activating RRAS2 mutations cause Noonan syndrome. Am. J. Hum. Genet. 104, 1233–1240 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Nissim, S. et al. Mutations in RABL3 alter KRAS prenylation and are associated with hereditary pancreatic cancer. Nat. Genet. 51, 1308–1314 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Castel, P., Rauen, K. A. & McCormick, F. The duality of human oncoproteins: drivers of cancer and congenital disorders. Nat. Rev. Cancer 20, 383–397 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lundegaard, P. R. et al. MEK inhibitors reverse cAMP-mediated anxiety in zebrafish. Chem. Biol. 22, 1335–1346 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Anastasaki, C., Rauen, K. A. & Patton, E. E. Continual low-level MEK inhibition ameliorates cardio-facio-cutaneous phenotypes in zebrafish. Dis. Model. Mech. 5, 546–552 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Nikolaev, S. I. et al. Somatic activating KRAS mutations in arteriovenous malformations of the brain. N. Engl. J. Med. 378, 250–261 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Couto, J. A. et al. Somatic MAP2K1 mutations are associated with extracranial arteriovenous malformation. Am. J. Hum. Genet. 100, 546–554 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Al-Olabi, L. et al. Mosaic RAS/MAPK variants cause sporadic vascular malformations which respond to targeted therapy. J. Clin. Invest. 128, 1496–1508 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Miller, R. Mechanisms of action of antipsychotic drugs of different classes, refractoriness to therapeutic effects of classical neuroleptics, and individual variation in sensitivity to their actions: part II. Curr. Neuropharmacol. 7, 315–330 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Miller, R. Mechanisms of action of antipsychotic drugs of different classes, refractoriness to therapeutic effects of classical neuroleptics, and individual variation in sensitivity to their actions: part I. Curr. Neuropharmacol. 7, 302–314 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ridges, S. et al. Zebrafish screen identifies novel compound with selective toxicity against leukemia. Blood 119, 5621–5631 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yeh, J. R. et al. Discovering chemical modifiers of oncogene-regulated hematopoietic differentiation. Nat. Chem. Biol. 5, 236–243 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhang, Y. et al. AML1-ETO mediates hematopoietic self-renewal and leukemogenesis through a COX/beta-catenin signaling pathway. Blood 121, 4906–4916 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Falk, H. et al. An efficient high-throughput screening method for MYST family acetyltransferases, a new class of epigenetic drug targets. J. Biomol. Screen. 16, 1196–1205 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Baell, J. B. et al. Inhibitors of histone acetyltransferases KAT6A/B induce senescence and arrest tumour growth. Nature 560, 253–257 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Priebbenow, D. L. et al. Discovery of acylsulfonohydrazide-derived inhibitors of the lysine acetyltransferase, KAT6A, as potent senescence-inducing anti-cancer agents. J. Med. Chem. 63, 4655–4684 (2020).

    Article  CAS  PubMed  Google Scholar 

  138. Langenau, D. M. et al. Effects of RAS on the genesis of embryonal rhabdomyosarcoma. Genes Dev. 21, 1382–1395 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Yohe, M. E. et al. Insights into pediatric rhabdomyosarcoma research: Challenges and goals. Pediatr. Blood Cancer 66, e27869 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Le, X. et al. A novel chemical screening strategy in zebrafish identifies common pathways in embryogenesis and rhabdomyosarcoma development. Development 140, 2354–2364 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Modzelewska, K. et al. MEK inhibitors reverse growth of embryonal brain tumors derived from oligoneural precursor cells. Cell Rep. 17, 1255–1264 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. Ablain, J. et al. Human tumor genomics and zebrafish modeling identify SPRED1 loss as a driver of mucosal melanoma. Science 362, 1055–1060 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chen, E. Y. et al. Glycogen synthase kinase 3 inhibitors induce the canonical WNT/beta-catenin pathway to suppress growth and self-renewal in embryonal rhabdomyosarcoma. Proc. Natl Acad. Sci. USA 111, 5349–5354 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Blackburn, J. S. et al. Clonal evolution enhances leukemia-propagating cell frequency in T cell acute lymphoblastic leukemia through Akt/mTORC1 pathway activation. Cancer Cell 25, 366–378 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Park, G. et al. Zebrafish B cell acute lymphoblastic leukemia: new findings in an old model. Oncotarget 11, 1292–1305 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Mizgirev, I. V. & Revskoy, S. A new zebrafish model for experimental leukemia therapy. Cancer Biol. Ther. 9, 895–902 (2010).

    Article  CAS  PubMed  Google Scholar 

  147. Lee, L. M., Seftor, E. A., Bonde, G., Cornell, R. A. & Hendrix, M. J. The fate of human malignant melanoma cells transplanted into zebrafish embryos: assessment of migration and cell division in the absence of tumor formation. Dev. Dyn. 233, 1560–1570, (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Topczewska, J. M. et al. Embryonic and tumorigenic pathways converge via Nodal signaling: role in melanoma aggressiveness. Nat. Med. 12, 925–932 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Staal, F. J., Spaink, H. P. & Fibbe, W. E. Visualizing human hematopoietic stem cell trafficking in vivo using a zebrafish xenograft model. Stem Cell Dev. 25, 360–365 (2016).

    Article  CAS  Google Scholar 

  150. Strnadel, J. et al. Transplantation of human-induced pluripotent stem cell-derived neural precursors into early-stage zebrafish embryos. J. Mol. Neurosci. 65, 351–358 (2018).

    Article  CAS  PubMed  Google Scholar 

  151. Nicoli, S., Ribatti, D., Cotelli, F. & Presta, M. Mammalian tumor xenografts induce neovascularization in zebrafish embryos. Cancer Res. 67, 2927–2931 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. He, S. et al. Neutrophil-mediated experimental metastasis is enhanced by VEGFR inhibition in a zebrafish xenograft model. J. Pathol. 227, 431–445 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Chen, L., Boleslaw Olszewski, M., Kruithof-de Julio, M. & Snaar-Jagalska, B. E. Zebrafish microenvironment elevates EMT and CSC-like phenotype of engrafted prostate cancer cells. Cells 9, 797 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  154. Chen, L. et al. A NF-kB-activin A signaling axis enhances prostate cancer metastasis. Oncogene 39, 1634–1651 (2020).

    Article  PubMed  CAS  Google Scholar 

  155. Canella, A. et al. Efficacy of onalespib, a long-acting second-generation HSP90 inhibitor, as a single agent and in combination with temozolomide against malignant gliomas. Clin. Cancer Res. 23, 6215–6226 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Banasavadi-Siddegowda, Y. K. et al. PRMT5 as a druggable target for glioblastoma therapy. Neuro Oncol. 20, 753–763 (2018).

    Article  CAS  PubMed  Google Scholar 

  157. Ghotra, V. P. et al. Automated whole animal bio-imaging assay for human cancer dissemination. PLoS ONE 7, e31281 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bentley, V. L. et al. Focused chemical genomics using zebrafish xenotransplantation as a pre-clinical therapeutic platform for T-cell acute lymphoblastic leukemia. Haematologica 100, 70–76 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Fior, R. et al. Single-cell functional and chemosensitive profiling of combinatorial colorectal therapy in zebrafish xenografts. Proc. Natl Acad. Sci. USA 114, E8234–E8243 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Rebelo de Almeida, C. et al. Zebrafish xenografts as a fast screening platform for bevacizumab cancer therapy. Commun. Biol. 3, 299 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Varanda, A. B., Martins-Logrado, A., Ferreira, M. G. & Fior, R. Zebrafish xenografts unveil sensitivity to olaparib beyond BRCA status. Cancers 12, 1769 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  162. Fazio, M., Ablain, J., Chuan, Y., Langenau, D. M. & Zon, L. I. Zebrafish patient avatars in cancer biology and precision cancer therapy. Nat. Rev. Cancer 20, 263–273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Yan, C. et al. Visualizing engrafted human cancer and therapy responses in immunodeficient zebrafish. Cell 177, 1903–1914.e14 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Tang, Q. et al. Dissecting hematopoietic and renal cell heterogeneity in adult zebrafish at single-cell resolution using RNA sequencing. J. Exp. Med. 214, 2875–2887 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Moore, J. C. et al. Single-cell imaging of normal and malignant cell engraftment into optically clear prkdc-null SCID zebrafish. J. Exp. Med. 213, 2575–2589 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Rajan, V. et al. Humanized zebrafish enhance human hematopoietic stem cell survival and promote acute myeloid leukemia clonal diversity. Haematologica 105, 2391–2399 (2020).

    Article  CAS  PubMed  Google Scholar 

  167. Yu, P. B. et al. BMP type I receptor inhibition reduces heterotopic ossification. Nat. Med. 14, 1363–1369 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Weiss, J. T. et al. Extracellular palladium-catalysed dealkylation of 5-fluoro-1-propargyl-uracil as a bioorthogonally activated prodrug approach. Nat. Commun. 5, 3277 (2014).

    Article  PubMed  CAS  Google Scholar 

  169. Van Wijk, R. C. et al. Mechanistic and quantitative understanding of pharmacokinetics in zebrafish larvae through nanoscale blood sampling and metabolite modeling of paracetamol. J. Pharmacol. Exp. Ther. 371, 15–24 (2019).

    Article  PubMed  CAS  Google Scholar 

  170. Travnickova, J. & Patton, E. E. Deciphering melanoma cell states and plasticity with zebrafish models. J. Invest. Dermatol. 141, 1389–1394 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Taylor, A. M., Raiser, D. M, Humphries J. M., Ebert, J. L. & Zon, L. I. Calmodulin inhibition rescues the effects of ribosomal protein deficiency by modulating p53 activity in models of Diamond Blackfan anemia [abstract]. Blood 120, 512 (2012).

    Article  Google Scholar 

  172. Macari, E. R. et al. Calmodulin inhibition rescues DBA models with ribosomal protein deficiency through reduction of RSK signaling. Blood 128, 332 (2016).

    Article  Google Scholar 

  173. Uechi, T & Kenmochi, N. Zebrafish models of Diamond-Blackfan anemia: a tool for understanding the disease pathogenesis and drug discovery. Pharmaceuticals 12, 151 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  174. Yan, C., Yang, Q., Do, D., Brunson, D. C. & Langenau, D. M. Adult immune compromised zebrafish for xenograft cell transplantation studies. EBioMedicine 47, 24–26 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Patton, E. et al. Melanoma models for the next generation of therapies. Cancer Cell https://doi.org/10.1016/j.ccell.2021.01.011 (2021).

Download references

Acknowledgements

The authors thank R. Peterson, D. Raible, S. Baraban, C. MacRae and G. Hanna for helpful discussions, and their funders for support for this work. E.E.P. is funded by a MRC HGU Programme (MC_UU_00007/9), the European Research Council (ZF-MEL-CHEMBIO-648489) and Melanoma Research Alliance (687306). L.I.Z. is funded by Cancer Biology R01 CA103846, NIH Melanoma PPG, P01CA63222, Melanoma Research Alliance, Starr Cancer Consortium grant. D.M.L. is funded by NIH grants R01CA211734, R01CA154923, R01CA215118, RO1CA226926, R24OD016761 and the MGH Research Scholar Award.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the article.

Corresponding authors

Correspondence to E. Elizabeth Patton, Leonard I. Zon or David M. Langenau.

Ethics declarations

Competing interests

L.I.Z. is a founder and stockholder of Fate Therapeutics, CAMP4 Therapeutics, Amagma Therapeutics and Scholar Rock. He is a consultant for Celularity and Cellarity. D.M.L. has a sponsored research agreement with NextCure and patents issued/pending on immune-deficient zebrafish. E.E.P. declares no competing interests.

Additional information

Peer review information

Nature Reviews Drug Discovery thanks J. den Hertog and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Chemical Probes Portal: https://www.chemicalprobes.org

Mechanism-of-action box: https://github.com/Novartis/MoaBox

Probes & Drug: https://www.probes-drugs.org

Probe Miner: https://probeminer.icr.ac.uk

The Structural Genomics Consortium: https://www.thesgc.org

Well-defined Donated Chemical Probes: https://www.sgc-ffm.uni-frankfurt.de

Zebrafish disease models society: https://www.zdmsociety.org

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patton, E.E., Zon, L.I. & Langenau, D.M. Zebrafish disease models in drug discovery: from preclinical modelling to clinical trials. Nat Rev Drug Discov 20, 611–628 (2021). https://doi.org/10.1038/s41573-021-00210-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-021-00210-8

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer