Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Strategies for delivering therapeutics across the blood–brain barrier

Abstract

Achieving sufficient delivery across the blood–brain barrier is a key challenge in the development of drugs to treat central nervous system (CNS) disorders. This is particularly the case for biopharmaceuticals such as monoclonal antibodies and enzyme replacement therapies, which are largely excluded from the brain following systemic administration. In recent years, increasing research efforts by pharmaceutical and biotechnology companies, academic institutions and public–private consortia have resulted in the evaluation of various technologies developed to deliver therapeutics to the CNS, some of which have entered clinical testing. Here we review recent developments and challenges related to selected blood–brain barrier-crossing strategies — with a focus on non-invasive approaches such as receptor-mediated transcytosis and the use of neurotropic viruses, nanoparticles and exosomes — and analyse their potential in the treatment of CNS disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anatomy of brain vasculature.
Fig. 2: Spectrum of brain delivery technologies.
Fig. 3: Biological transport mechanisms for crossing the blood–brain barrier.
Fig. 4: Viral entry into the CNS.
Fig. 5: Nanocarriers for non-invasive brain delivery.

Similar content being viewed by others

References

  1. Banks, W. A. From blood–brain barrier to blood–brain interface: new opportunities for CNS drug delivery. Nat. Rev. Drug Discov. 15, 275–292 (2016).

    CAS  PubMed  Google Scholar 

  2. Abbott, N. J. et al. Structure and function of the blood-brain barrier. Neurobiol. Dis. 37, 13–25 (2010).

    CAS  PubMed  Google Scholar 

  3. St-Amour, I. et al. Brain bioavailability of human intravenous immunoglobulin and its transport through the murine blood-brain barrier. J. Cereb. Blood Flow. Metab. 33, 1983–1992 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Urquhart, L. Top companies and drugs by sales in 2019. Nat. Rev. Drug Discov. 19, 228 (2020).

    CAS  PubMed  Google Scholar 

  5. Agrawal, M. et al. Nose-to-brain drug delivery: an update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J. Control. Rel. 281, 139–177 (2018).

    CAS  Google Scholar 

  6. Sabir, F., Ismail, R. & Csoka, I. Nose-to-brain delivery of antiglioblastoma drugs embedded into lipid nanocarrier systems: status quo and outlook. Drug Discov. Today 25, 185–194 (2020).

    CAS  PubMed  Google Scholar 

  7. Bennett, C. F., Krainer, A. R. & Cleveland, D. W. Antisense oligonucleotide therapies for neurodegenerative diseases. Annu. Rev. Neurosci. 4, 385–406 (2019).

    Google Scholar 

  8. Haqqani, A. et al. Endosomal trafficking regulated receptor-mediated transcytosis of antibodies across the blood-brain barrier. J. Cereb. Blood Flow. Metab. 38, 727–740 (2018).

    CAS  PubMed  Google Scholar 

  9. Runcie, K. et al. Bi-specific and tri-specific antibodies- the next big thing in solid tumor therapeutics. Mol. Med. 24, 50 (2018).

    PubMed  PubMed Central  Google Scholar 

  10. Kontermann, R. E. & Brunkmann, U. Bispecific antibodies. Drug Discov. Today 20, 838–847 (2015).

    CAS  PubMed  Google Scholar 

  11. Bell, R. D. & Ehlers, M. D. Breaching the blood-brain barrier for drug delivery. Neuron 81, 1–3 (2013).

    Google Scholar 

  12. Pardridge, W. M. et al. Selective transport of an anti-transferrin receptor antibody through the blood-brain barrier vivo. J. Pharmacol. Exp. Ther. 259, 66–70 (1991). This is one of the first reports describing that an anti-TfR antibody (OX26) can penetrate the BBB in vivo via RMT.

    CAS  PubMed  Google Scholar 

  13. Niewoehner, J. et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 81, 49–60 (2014).

    CAS  PubMed  Google Scholar 

  14. Zuchero, Y. et al. Discovery of novel blood-brain barrier targets to enhance brain uptake of therapeutic antibodies. Neuron 89, 70–82 (2016). This article reports the discovery that targeting CD98hc with an antibody is more effective for cargo delivery to the brain than targeting TfR.

    CAS  PubMed  Google Scholar 

  15. Hultqvist, G. et al. Bivalent brain shuttle increases antibody uptake by monovalent binding to the transferrin receptor. Theranostics 7, 308–318 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Pardridge, W. M. et al. Blood-brain barrier transport, plasma pharmacokinetics, and neuropathology following chronic treatment of the rhesus monkey with a brain penetrating humanized monoclonal antibody against the human transferrin receptor. Mol. Pharm. 15, 5207–5216 (2018).

    CAS  PubMed  Google Scholar 

  17. Weber, F. et al. Brain shuttle antibody for Alzheimer’s disease with attenuated peripheral effector function due to an inverted binding mode. Cell Rep. 22, 149–162 (2018).

    CAS  PubMed  Google Scholar 

  18. Häsler, J. et al. VNAR single-domain antibodies for BAFF inhibit B cell development by molecular mimicry. Mol. Immunol. 75, 16–37 (2016).

    Google Scholar 

  19. Ubah, O. C. et al. Next-generation flexible formats of VNAR domains expand the drug platform’s utility and developability. Biochem. Soc. Trans. https://doi.org/10.1042/BST20180177 (2018).

    Article  PubMed  Google Scholar 

  20. Häsler, J., Rutkowski, J. L. & Wicher, K. B. TfR selective binding compounds and related methods. US Patent 15/594,632 (2017).

  21. Karaoglu Hanzatian, D. et al. Brain uptake of multivalent and multi-specific DVD-Ig proteins after systemic administration. mAbs 10, 765–777 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu, L. P. et al. Crossing the blood-brain-barrier with nanoligand drug carriers self-assembled from a phage display peptide. Nat. Commun. 10, 4635–4650 (2019).

    PubMed  PubMed Central  Google Scholar 

  23. Kariolis, M. S. et al. Brain delivery of therapeutic proteins using an Fc fragment blood-brain barrier transport vehicle in mice and monkeys. Sci. Transl Med. 12, eaay1359 (2020).

    CAS  PubMed  Google Scholar 

  24. Ullman, J. C. et al. Brain delivery and activity of a lysosomal enzyme using a blood-brain barrier transport vehicle in mice. Sci. Transl Med. 12, eaay1163 (2020).

    CAS  PubMed  Google Scholar 

  25. Yu, Y. J. et al. Therapeutic bispecific antibodies cross the blood-brain barrier in nonhuman primates. Sci. Transl Med. 6, 261ra154 (2014).

    PubMed  Google Scholar 

  26. Okuyama, T. et al. Iduronate-2-sulfatase with anti-human transferrin receptor antibody for neuropathic mucopolysaccharidosis II: A phase 1/2 trial. Mol. Ther. 27, 456–464 (2019). This is first clinical study demonstrating that a TfR antibody can deliver the enzyme IDS across the BBB into the brain for treatment of Hunter syndrome (mucopolysaccharidosis type II).

    CAS  PubMed  Google Scholar 

  27. Roberts, R. L. et al. Receptor-mediated endocytosis of transferrin at the blood-brain barrier. J. Cell Sci. 104, 521–532 (1993).

    CAS  PubMed  Google Scholar 

  28. Sheff, D. R. et al. The receptor recycling pathway contains two distinct populations of early endosomes with different sorting functions. J. Cell. Biol. 145, 123–139 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Johnsen, K. B. et al. Modulating the antibody density changes the uptake and transport at the blood-brain barrier of both transferrin receptor-targeted gold nanoparticles and liposomal cargo. J. Control. Rel. 295, 237–249 (2019).

    CAS  Google Scholar 

  30. Yu, Y. J. et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci. Transl Med. 3, 84ra44 (2011).

    PubMed  Google Scholar 

  31. Bien-Ly, N. et al. Transferrin receptor (TfR) trafficking determines brain uptake of TfR antibody affinity variants. J. Exp. Med. 211, 233–244 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gadkar, K. et al. Mathematical PKPD and safety model of bispecific TfR/BACE1 antibodies for the optimization of antibody uptake in brain. Eur. J. Pharm. Biopharm. 101, 53–61 (2016).

    CAS  PubMed  Google Scholar 

  33. Villasenor, R. et al. Sorting tubules regulate blood-brain barrier transcytosis. Cell Rep. 21, 3256–3270 (2017).

    CAS  PubMed  Google Scholar 

  34. Pardridge, W. M. et al. Human insulin receptor monoclonal antibody undergoes high affinity binding to human brain capillaries in vitro and rapid transcytosis through the blood-brain barrier in vivo in the primate. Pharm. Res. 12, 807–816 (1995).

    CAS  PubMed  Google Scholar 

  35. Ohshima-Hosoyama, S. et al. A monoclonal antibody-GDNF fusion protein is not neuroprotective and is associated with proliferative pancreatic lesions in parkinsonian monkeys. PLoS ONE 7, e39036 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Giugliani, R. et al. Neurocognitive and somatic stabilization in pediatric patients with severe mucopolysaccharidosis type I after 52 weeks of intravenous brain-penetrating insulin receptor antibody-iduronidase fusion protein (valanafusp alpha): an open label phase 1-2 trial. Orphanet J. Rare Dis. 13, 110 (2018). This is first clinical study using brain-penetrating insulin receptor antibody–iduronidase fusion proteins in the context of paediatric patients with severe Hurler syndrome (mucopolysaccharidosis type I).

    PubMed  PubMed Central  Google Scholar 

  37. Chisalita, S. I. & Arnqvist, H. J. Insulin-like growth factor I receptors are more abundant than insulin receptors in human micro- and macrovascular endothelial cells. Am. J. Physiol. Endocrinol. Metab. 286, E896–E901 (2004).

    CAS  PubMed  Google Scholar 

  38. Zhang, W. et al. Differential expression of receptors mediating receptor-mediated transcytosis (RMT) in brain microvessels, brain parenchyma and peripheral tissues of the mouse and the human. Fluids Barriers CNS 17, 47 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ribecco-Lutkiewicz, M. et al. A novel human induced pluripotent stem cell blood-brain barrier model: applicability to study antibody-triggered receptor-mediated transcytosis. Sci. Rep. 8, 1873 (2018).

    PubMed  PubMed Central  Google Scholar 

  40. Stanimirovic, D. B., Sandhu, J. K. & Costain, W. J. Emerging technologies for delivery of biotherapeutics and gene therapy across the blood-brain barrier. BioDrugs 32, 547–559 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Jinhyung, A. et al. Bispecific antibody to A-syn/IGFR1 and use thereof. WIPO patent WO2019117684 (2018).

  42. Tang, T. & Williams, B. O. Low-density lipoprotein receptor-related proteins in skeletal development and disease. Physiol. Rev. 97, 1211–1228 (2017).

    Google Scholar 

  43. Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, Y. et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89, 37–53 (2016).

    CAS  PubMed  Google Scholar 

  45. Wang, D. et al. Engineering a lysosomal enzyme with a derivative of receptor-binding domain of apoE enables delivery across the blood–brain barrier. Proc. Natl Acad. Sci. USA 110, 2999–3004 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Malcor, J. D. et al. Chemical optimization of new ligands of the low-density lipoprotein receptor as potential vectors for central nervous system targeting. J. Med. Chem. 55, 2227–2241 (2012).

    CAS  PubMed  Google Scholar 

  47. DalMagro, R. et al. ApoE-modified solid lipid nanoparticles: a feasible strategy to cross the blood-brain barrier. J. Contr. Rel. 249, 103–110 (2017).

    CAS  Google Scholar 

  48. Molino, Y. et al. Use of LDL receptor-targeting peptide vectors for in vitro and in vivo cargo transport across the blood-brain barrier. FASEB J. 31, 1807–1827 (2017).

    CAS  PubMed  Google Scholar 

  49. Masliah, E. & Spencer, B. Applications of ApoB LDLR-binding domain approach for the development of CNS-penetrating peptides for Alzheimer’s disease. Methods Mol. Biol. 1324, 331–337 (2015).

    PubMed  PubMed Central  Google Scholar 

  50. Sorrentino, N. C. et al. A highly secreted sulphamidase engineered to cross the blood-brain barrier corrects brain lesions of mice with mucopolysaccharidoses type IIIA. EMBO Mol. Med. 5, 675–690 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Neves, A. R. et al. Apo E-functionalization of solid lipid nanoparticles enhances brain drug delivery: uptake mechanism and transport pathways. Bioconjug Chem. 28, 995–1004 (2017).

    CAS  PubMed  Google Scholar 

  52. Sauer, I. et al. An apolipoprotein E-derived peptide mediates uptake of sterically stabilized liposomes into brain capillary endothelial cells. Biochemistry 44, 2021–2029 (2005).

    CAS  PubMed  Google Scholar 

  53. Re, F. et al. Functionalization of liposomes with ApoE-derived peptides at different density affects cellular uptake and drug transport across a blood-brain barrier model. Nanomedicine 7, 551–559 (2011).

    CAS  PubMed  Google Scholar 

  54. Tamaru, M. et al. An apolipoprotein E modified liposomal nanoparticle: ligand dependent efficiency as a siRNA delivery carrier for mouse-derived brain endothelial cells. Int. J. Pharmaceutics 465, 77–82 (2014).

    CAS  Google Scholar 

  55. Bana, L. et al. Liposomes bi-functionalized with phosphatidic acid and an ApoE-derived peptide affect Aβ aggregation features and cross the blood-brain-barrier: implications for therapy of Alzheimer disease. Nanomedicine 10, 1583–1590 (2014).

    CAS  PubMed  Google Scholar 

  56. Song, Q. et al. Biomimetic ApoE-reconstituted high density lipoprotein nanocarrier for blood-brain barrier penetration and amyloid beta-targeting drug delivery. Mol. Pharm. 13, 3976–3987 (2016).

    CAS  PubMed  Google Scholar 

  57. Spencer, B. et al. A neuroprotective brain-penetrating endopeptidase fusion protein ameliorates AD disease pathology and restores neurogenesis. J. Biol. Chem. 289, 17917–17931 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Jacquot, G. et al. Optimization and in vivo validation of peptide vectors targeting the LDL receptor. Mol. Pharm. 13, 4094–4105 (2016).

    CAS  PubMed  Google Scholar 

  59. David, M. et al. Identification and characterization of highly versatile peptide-vectors that bind non-competitively to the low-density lipoprotein receptor for in vivo targeting and delivery of small molecules and protein cargos. PLoS ONE 13, e0191052 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. Demeule, M. et al. Identification and design of peptides as a new drug delivery system for the brain. J. Pharmacol. Exp. Ther. 324, 1064–1072 (2008).

    CAS  PubMed  Google Scholar 

  61. Demeule, M. et al. Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector angiopep-2. J. Neurochem. 106, 1534–1544 (2008).

    CAS  PubMed  Google Scholar 

  62. Tian, X. et al. LRP-1-mediated intracellular antibody delivery to the central nervous system. Sci. Rep. 5, 11990 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Vanlandewijck, M. et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554, 475–480 (2018).

    CAS  PubMed  Google Scholar 

  64. Uchida, Y. et al. Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J. Neurochem. 117, 333–345 (2011).

    CAS  PubMed  Google Scholar 

  65. Kumthekar, P. et al. ANG1005, a novel brain-penetrant taxane derivative, for the treatment of recurrent brain metastases and leptomeningeal carcinomatosis from breast cancer [abstract]. J. Clin. Oncol.34, 2004 (2016).

  66. Daneman, R. et al. The mouse blood-brain barrier transcriptome: a new resource for understanding the development and function of brain endothelial cells. PLoS ONE 5, e13741 (2010).

    PubMed  PubMed Central  Google Scholar 

  67. Benatuil L., Deng K., Hanzatian D. K. & Argiriadi M. A. Lrp-8 binding proteins. WIPO patent WO2016094881A2 (2016).

  68. Karaoglu-Hanzatian, D. Efficient delivery of biologics across BBB for neurological diseases. Proc. 16th Annual World Preclinical Congress (2017).

  69. Benatuil, L. et al. LRP-8 binding proteins. WIPO patent WO2016094881A2 (2015).

  70. Muguranandam, A. et al. Selection of phage-displayed llama single-domain antibodies that transmigrate across human blood-brain barrier endothelium. FASEB J. 16, 240–242 (2002).

    Google Scholar 

  71. Webster, C. et al. Brain penetration, target engagement, and disposition of the blood–brain barrier-crossing bispecific antibody antagonist of metabotropic glutamate receptor type 1. FASEB J. 30, 1927–1940 (2016).

    CAS  PubMed  Google Scholar 

  72. Kato, U. et al. Role for phospholipid flippase complex of ATP8A1 and CDC50A proteins in cell migration. J. Biol. Chem. 288, 4922–4934 (2013).

    CAS  PubMed  Google Scholar 

  73. Haqqani, A. et al. Multiplexed evaluation of serum and CSF pharmacokinetics of brain-targeting single-domain antibodies using a NanoLC-SRM-ILIS method. Mol. Pharm. 10, 1542–1556 (2013).

    CAS  PubMed  Google Scholar 

  74. Farrington, G. K. et al. A novel platform for engineering blood-brain barrier-crossing bispecific biologics. FASEB J. 28, 4764–4778 (2014).

    CAS  PubMed  Google Scholar 

  75. Rose, T. M. et al. Primary structure of the human melanoma-associated antigen p97 (melanotransferrin) deduced from the mRNA sequence. Proc. Natl Acad. Sci. USA 83, 1261–1265 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Farnaud, S. et al. Biochemical and spectroscopic studies of human melanotransferrin (MTf): electron-paramagnetic resonance evidence for a difference between the iron-binding site of MTf and other transferrins. Int. J. Biochem. Cell Biol. 40, 2739–2745 (2008).

    CAS  PubMed  Google Scholar 

  77. Demeule, M. et al. High transcytosis of melanotransferrin (P97) across the blood-brain barrier. J. Neurochem. 83, 924–933 (2002).

    CAS  PubMed  Google Scholar 

  78. Karkan, D. et al. A unique carrier for delivery of therapeutic compounds beyond the blood-brain barrier. PLoS ONE 3, e2469 (2008).

    PubMed  PubMed Central  Google Scholar 

  79. Nounou, M. I. et al. Anti-cancer antibody trastuzumab-melanotransferrin conjugate (BT2111) for the treatment of metastatic HER2+ breast cancer tumors in the brain: an in-vivo study. Pharm. Res. 33, 2930–2942 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Vitalis, T. & Gabathuler, R. Fragments of p97 and uses thereof. WIPO patent WO2014160438 (2014).

  81. Matsuo, H. et al. Expression of a system L neutral amino acid transporter at the blood-brain barrier. Neuroreport. 11, 3507–3511 (2000).

    CAS  PubMed  Google Scholar 

  82. Fagerberg, L. et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell Proteom. 13, 397–406 (2014).

    CAS  Google Scholar 

  83. Feral, C. C. et al. CD98hc (SLC3A2) mediates integrin signaling. Proc. Natl Acad. Sci. USA 102, 355–360 (2005).

    CAS  PubMed  Google Scholar 

  84. Tan, C., Watts, R. J., Zuchero, J. Y., Chen, X. & Dennis, M. Blood brain barrier receptor antibodies and methods of use. ROK Patent KR20170085595A (2016).

  85. Anraku, Y. et al. Glycaemic control boosts glucosylated nanocarrier crossing the BBB into the brain. Nat. Commun. 8, 1001 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Dennis, M. et al. Delivery system for diagnostic and therapeutic agents. US Patent 13/574,584 (2013).

  87. Dahm, T. et al. Neuroinflammation and invasion in viral central nervous system infections. Mediators Inflamm. 2016, 8562805 (2016).

    PubMed  PubMed Central  Google Scholar 

  88. Friedmann, T. & Roblin, R. Gene therapy for human genetic disease. Science 175, 949–955 (1972).

    CAS  PubMed  Google Scholar 

  89. Rastall, D. P. W. & Amalfitano, A. Recent advances in gene therapy for lysosomal storage disorders. Appl. Clin. Genet. 8, 157–169 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Atchinson, R. W., Casto, B. C. & Hammon, W. M. Adenovirus-associated defective Virus particles. Science 149, 754–756 (1965).

    Google Scholar 

  91. Wu, Z., Asokan, A. & Samulski, R. J. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol. Ther. 14, 316–327 (2006).

    CAS  PubMed  Google Scholar 

  92. Alisky, J. M. et al. Transduction of murine cerebellar neurons with recombinant FIV and AAV5 vectors. Neuroreport 11, 2669–2673 (2000).

    CAS  PubMed  Google Scholar 

  93. Burger, C. et al. Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol. Ther. 10, 302–317 (2004).

    CAS  PubMed  Google Scholar 

  94. Davidson, B. L. et al. Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc. Natl Acad. Sci. USA 97, 3428–3432 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Powell, S. K. et al. Characterization of a novel adeno-associated viral vector with preferential oligodendrocyte tropism. Gene Ther. 23, 807–814 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Körbelin, J. et al. A brain microvascular endothelial cell-specific viral vector with the potential to treat neurovascular and neurological diseases. EMBO Mol. Med. 8, 609–625 (2016).

    PubMed  PubMed Central  Google Scholar 

  97. Klein, R. L. et al. Long-term actions of vector-derived nerve growth factor or brain-derived neurotrophic factor on choline acetyltransferase and Trk receptor levels in the adult rat basal forebrain. Neuroscience 90, 815–821 (1999).

    CAS  PubMed  Google Scholar 

  98. Stieger, K. et al. Detection of intact rAAV particles up to 6 years after successful gene transfer in the retina of dogs and primates. Mol. Ther. 17, 516–523 (2009).

    CAS  PubMed  Google Scholar 

  99. Dong, J. Y. et al. Quantitative analysis of the packaging capacity of recombinant adeno-associated virus. Hum. Gene Ther. 7, 2101–2112 (1996).

    CAS  PubMed  Google Scholar 

  100. Rabinowitz, J., Chan, Y. K. & Samulski, R. J. Adeno-associated virus (AAV) versus immune response. Viruses 11, E102 (2019).

    PubMed  Google Scholar 

  101. Deverman, B. E. et al. Gene therapy for neurological disorders: progress and prospects. Nat. Rev. Drug Discov. 17, 767 (2018).

    CAS  PubMed  Google Scholar 

  102. Forsayeth, J. R. et al. A dose-ranging study of AAV-hAADC therapy in Parkinsonian monkeys. Mol. Ther. 14, 571–577 (2006).

    CAS  PubMed  Google Scholar 

  103. Kordower, J. H. et al. Delivery of neurturin by AAV2 (CERE-120)-mediated gene transfer provides structural and functional neuroprotection and neurorestoration in MPTP-treated monkeys. Ann. Neurol. 60, 706–715 (2006).

    CAS  PubMed  Google Scholar 

  104. Gasmi, M. et al. AAV2-mediated delivery of human neurturin to the rat nigrostriatal system: long-term efficacy and tolerability of CERE-120 for Parkinson’s disease. Neurobiol. Dis. 27, 67–76 (2007).

    CAS  PubMed  Google Scholar 

  105. Bjorklund, T. et al. Optimized adeno-associated viral vector-mediated striatal DOPA delivery restores sensorimotor function and prevents dyskinesias in a model of advanced Parkinson’s disease. Brain 133, 496–511 (2010).

    PubMed  PubMed Central  Google Scholar 

  106. Zhang, H. et al. Several rAAV vectors efficiently cross the blood-brain barrier and transduce neurons and astrocytes in the neonatal mouse central nervous system. Mol. Ther. 19, 1440–1448 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Tanguy, Y. et al. Systemic AAVrh10 provides higher transgene expression than AAV9 in the brain and the spinal cord of neonatal mice. Front. Mol. Neurosci. 8, 36 (2015).

    PubMed  PubMed Central  Google Scholar 

  108. Muramatsu, S. et al. A phase 1 study of aromatic L-amino acid decarboxylase gene therapy for Parkinson’s Disease. Mol. Ther. 18, 1731–1735 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Christine, C. W. et al. Safety and tolerability of putaminal AADC gene therapy for Parkinson Disease. Neurology 73, 1662–1669 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Christine, C. et al. Intraputaminal AADC gene therapy (VY-AADC01) for advanced Parkinson’s disease: interim results of a phase 1b trial. Presented at the 69th American Academy of Neurology Annual Meeting (2017).

  111. Kapplitt, M. G. et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase 1 trial. Lancet 369, 2097–2105 (2007).

    Google Scholar 

  112. LeWitt, P. A. et al. AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomized trial. Lancet Neurol. 10, 309–319 (2011).

    CAS  PubMed  Google Scholar 

  113. Marks, W. J. et al. Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson’s disease: an open-label, phase 1 trial. Lancet Neurol. 7, 400–408 (2008).

    PubMed  Google Scholar 

  114. Gao, G. et al. Clades of adeno-associated viruses are widely disseminated in human tissues. J. Virol. 78, 6381–6388 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Foust, K. D. et al. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat. Biotechnol. 27, 59–65 (2009).

    CAS  PubMed  Google Scholar 

  116. Gray, S. J. et al. Global CNS gene delivery and evasion of anti-AAV neutralizing antibodies by intrathecal AAV administration in non-human primates. Gene Ther. 20, 450–459 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Kantor, B. et al. Methods for gene transfer into the central nervous system. Adv. Genet. 87, 125–197 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Saraiva, S. et al. Gene therapy for the CNS using AAVs: the impact of systemic delivery by AAV9. J. Control. Rel. 241, 94–109 (2016).

    CAS  Google Scholar 

  119. Bevan, A. K. et al. Systemic gene delivery in large species for targeting spinal cord, brain, and peripheral tissues for pediatric disorders. Mol. Ther. 19, 1971–1980 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Choudhury, S. R. et al. Widespread central nervous system gene transfer and silencing after systemic delivery of novel AAV-AS vector. Mol. Ther. 24, 726–735 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Yang, B. et al. Global CNS Transduction of adult mice by intravenously delivered rAAVrh.8 and rAAVrh.10 and nonhuman primates by rAAVrh.10. Mol. Ther. 22, 1299–1309 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Gao, G. P. et al. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc. Natl Acad. Sci. USA 99, 11854–11859 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Gao, G. P. et al. Adeno-associated viruses undergo substantial evolution in primates during natural infections. Proc. Natl Acad. Sci. USA 100, 6081–6086 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Albright, B. H. et al. Mapping the structural determinants required for AAVrh.10 transport across the blood-brain barrier. Mol. Ther. 26, 510–523 (2018).

    CAS  PubMed  Google Scholar 

  125. Huang, Q. et al. Delivering genes across the blood-brain barrier: LY6A, a novel cellular receptor for AAV-PHP.B capsids. PLoS ONE https://doi.org/10.1101/536421 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Hordeaux, J. et al. The GPI-linkedprotein LY6A drives AAV-PHP.B transport across the blood-brain barrier. Mol. Ther. 27, 912–921 (2019). This article provides the first description of a mouse protein interacting with the viral capsid and mediating transport into the brain; lack of a human homologue so far precludes therapeutic use.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Hanlon, K. S. et al. Selection of an efficient AAV vector for robust CNS transgene expression. Mol. Ther. Methods Clin. Dev. 15, 320–332 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Rahim, A. A. et al. Efficient gene delivery to the adult and fetal CNS using pseudotyped nonintegrating lentiviral vectors. Gene Ther. 16, 509–520 (2009).

    CAS  PubMed  Google Scholar 

  129. Zufferey, R. et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J. Virol. 72, 9873–9880 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Jarraya, B. et al. Dopamine gene therapy for Parkinson’s disease in a nonhuman primate without associated dyskinesia. Sci. Transl Med. 1, 2ra4 (2009).

    PubMed  Google Scholar 

  131. Palfi, S. et al. Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase ½ trial. Lancet 383, 1138–1146 (2014).

    CAS  PubMed  Google Scholar 

  132. Thompson, A. A. et al. Gene therapy in patients with transfusion-dependent ß-thalassemia. N. Engl. J. Med. 378, 1479–1483 (2018).

    CAS  PubMed  Google Scholar 

  133. Juillard, V. et al. Long-term humoral and cellular immunity by a single immunization with replication-defective adenovirus recombinant vector. Eur. J. Immunol. 25, 3467–3673 (1995).

    CAS  PubMed  Google Scholar 

  134. Xu, F. et al. Phase 1 and biodistribution study of recombinant adenovirus vector-mediated herpes simplex virus thymidine kinase gene and ganciclovir administration in patients with head and neck cancer and other malignant tumors. Cancer Gene Ther. 16, 723–730 (2009).

    CAS  PubMed  Google Scholar 

  135. Ji, N. et al. Adenovirus-mediated delivery of herpes simplex virus thymidine kinase administration improves outcome of recurrent high-grade glioma. Oncotarget 7, 4369–4378 (2015).

    PubMed Central  Google Scholar 

  136. Chiocca, E. A. et al. Phase 1B study of gene-mediated cytotoxic immunotherapy adjuvant to up-front surgery and intensive timing radiation for malignant glioma. J. Clin. Oncol. 29, 3611–3619 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Wheeler, L. A. et al. Phase 2 multicenter study of gene-mediated cytotoxic immunotherapy as adjuvant to surgical resection for newly diagnosed malignant glioma. Neuro Oncol. 18, 1137–1145 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Armanque, T. et al. Herpes simplex virus encephalitis is a trigger of brain autoimmunity. Ann. Neurol. 75, 317–323 (2014).

    Google Scholar 

  139. Wolfe, D. et al. A clinical trial of gene therapy for chronic pain. Pain Med. 10, 1325–1330 (2009).

    PubMed  Google Scholar 

  140. Fink, D. J. et al. Gene therapy for pain: results of a phase 1 clinical trial. Ann. Neurol. 70, 207–212 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Wang, J. W. & Roden, R. B. S. Virus-like particles for the prevention of human papillomavirus-associated malignancies. Expert Rev. Vaccines 12, 129–141 (2013).

    CAS  PubMed  Google Scholar 

  142. Rohovie, M. J., Nagasawa, M. & Swartz, J. R. Virus-like particles: Next generation nanoparticles for targeted therapeutic delivery. Bioeng. Translat. Med. 2, 43–57 (2017).

    CAS  Google Scholar 

  143. Zdanowicz, M. & Chroboczek, J. Virus-like particles as drug delivery vectors. Acta Biochim. Polonia 63, 469–473 (2016).

    CAS  Google Scholar 

  144. Zeltins, A. Construction and characterization of virus-like particles: a review. Mol. Biotechnol. 55, 92–107 (2013).

    Google Scholar 

  145. Ashley, C. E. et al. Cell specific delivery of diverse cargos by bacteriophage MS2 virus-like particles. ACS Nano 5, 5729–5745 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Anand, P. et al. Tailored delivery of analgesic ziconotide across a blood brain barrier model using viral nanocontainers. Sci. Rep. 5, 12497 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Hovlid, M. L. et al. Encapsidated atom-transfer radical polymerization in Qβ virus-like nanoparticles. ACS Nano 8, 8003–8014 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Yildiz, I. et al. Engineering of brome mosaic virus for biomedical applications. RSC Adv. 2, 3670–3677 (2012).

    CAS  PubMed  Google Scholar 

  149. Grasso, S. & Santi, L. Viral nanoparticles as macromolecular devices for new therapeutic and pharmaceutical approaches. Int. J. Physiol. Pathophysiol. Pharmacol. 2, 161–178 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Meyer, A. Engineered protein capsules (EPCs) for targeted brain delivery. Proc. 16th Annual World Preclinical Congress (2017).

  151. Antonsson, A. et al. Prevalence and stability of antibodies to the BK and JC polyomaviruses: a long-term longitudinal study of Australians. J. Gen. Virol. 91, 1849–1853 (2010).

    CAS  PubMed  Google Scholar 

  152. Merkel, S. F. et al. Trafficking of adeno-associated virus vectors across a model of the blood-brain barrier; a comparative study of transcytosis and transduction using primary human brain endothelial cells. J. Neurochem. 140, 216–230 (2017).

    CAS  PubMed  Google Scholar 

  153. Denby, L. et al. Adeno-associated virus (AAV)-7 and -8 poorly transduce vascular endothelial cells and are sensitive to proteasomal degradation. Gene Ther. 12, 1534–1538 (2005).

    CAS  PubMed  Google Scholar 

  154. Fouad, K. et al. Long-term viral brain-derived neurotrophic factor delivery promotes spasticity in rats with a cervical spinal cord hemisection. Front. Neurol. 4, 187 (2013).

    PubMed  PubMed Central  Google Scholar 

  155. Saunders, A. Novel recombinant adeno-associated viruses for Cre activated and inactivated transgene expression in neurons. Front. Neural Circuits 6, 47 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Rapti, K. et al. Neutralizing antibodies against AAV serotypes 1, 2, 6 and 9 in sera of commonly used animal models. Mol. Ther. 20, 73–83 (2012).

    CAS  PubMed  Google Scholar 

  157. Simon-Santamaria, J. et al. Efficient uptake of blood-borne BK and JC polyomavirus-like particles in endothelial cells of liver sinusoids and renal vasa recta. PLoS ONE 9, e111762 (2014).

    PubMed  PubMed Central  Google Scholar 

  158. Kamaly, N. et al. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev. 116, 2602–2663 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. DeMarino, C. et al. Biodegradable nanoparticles for delivery of therapeutics in CNS infection. J. Neuroimmune Pharmacol. 12, 31–50 (2017).

    PubMed  Google Scholar 

  160. Fonseca-Santos, B., Gremiao, M. P. & Chorilli, M. Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease. Int. J. Nanomed. 10, 4981–5003 (2015).

    CAS  Google Scholar 

  161. Saraiva, C. et al. Nanoparticle-mediated brain drug delivery: overcoming blood-brain barrier to treat neurodegenerative diseases. J. Contr. Rel. 235, 34–47 (2016).

    CAS  Google Scholar 

  162. Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl Med. 1, 10–29 (2016).

    PubMed  PubMed Central  Google Scholar 

  163. Chastagner, P. et al. Phase 1 study of non-pegylated liposomal doxorubicin in children with recurrent/refractory high-grade glioma. Cancer Chemother. Pharmacol. 76, 425–432 (2015).

    CAS  PubMed  Google Scholar 

  164. Clarke, J. L. et al. A phase 1 trial of intravenous liposomal irinotecan in patients with recurrent high-grade glioma. Cancer Chemother. Pharmacol. 79, 603–610 (2017).

    CAS  PubMed  Google Scholar 

  165. Lockman, P. R. et al. Heterogeneous blood-tumor-barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin. Cancer Res. 16, 5664–5678 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Morikawa, A. et al. Capecitabine and lapatinib uptake in surgically resected brain metastases from metastatic breast cancer patients: a prospective study. Neuro Oncol. 17, 289–295 (2015).

    CAS  PubMed  Google Scholar 

  167. Gaillard, P. J. et al. Abstract CT216: phase 1 dose escalating study of 2B3-101, glutathione PEGylated liposomal doxorubicin, in patients with solid tumors and brain metastases or recurrent malignant glioma. Cancer Res. https://doi.org/10.1158/1538-7445.AM2014-CT216 (2014).

    Article  Google Scholar 

  168. Gladdines, W. et al. P076 Double-blind, placebo and active comparator-controlled study in healthy males to assess the safety, pharmacokinetics and –dynamics of 2B3-201. Mult. Scler. 20, (Suppl. 1), 101 (2014).

    Google Scholar 

  169. Maussang, D. et al. Glutathione conjugation dose-dependently increases brain-specific liposomal drug delivery in vitro and in vivo. Drug Discov. Today Technol. 20, 59–69 (2016).

    PubMed  Google Scholar 

  170. Song, Q. et al. Lipoprotein-based nanoparticles rescue the memory loss of mice with Alzheimer’s disease by accelerating the clearance of amyloid-beta. ACS Nano 8, 2345–2359 (2014).

    CAS  PubMed  Google Scholar 

  171. Johnsen, K. B. et al. Targeting transferrin receptors at the blood-brain barrier improves the uptake of immunoliposomes and subsequent cargo transport into the brain parenchyma. Sci. Rep. 7, 10396–10408 (2017).

    PubMed  PubMed Central  Google Scholar 

  172. Liu, Z. et al. B6 peptide-modified PEG-PLA nanoparticles for enhanced brain delivery of neuroprotective peptide. Bioconjug. Chem. 24, 997–1007 (2013).

    CAS  PubMed  Google Scholar 

  173. Liu, Y. et al. Brain-targeted co-delivery of therapeutic gene and peptide by multifunctional nanoparticles in Alzheimer’s disease mice. Biomaterials 80, 33–45 (2016). This is a study of nanoparticle-mediated co-delivery of a nucleic acid and a peptide, with correlated biochemical and pharmacological results.

    CAS  PubMed  Google Scholar 

  174. Costatino, L. et al. Peptide-derivatized biodegradable nanoparticles able to cross the blood-brain barrier. J. Contr. Rel. 108, 84–96 (2005).

    Google Scholar 

  175. Vilella, A. et al. Reduced plaque size and inflammation in the APP23 mouse model for Alzheimer’s disease after chronic application of polymeric nanoparticles for CNS targeted zinc delivery. J. Trace Elem. Med. Biol. 49, 210–221 (2018).

    CAS  PubMed  Google Scholar 

  176. Ammar, H. O. et al. Lamotrigine loaded poly-ε-(D,L-lactide-co-caprolactone) nanoparticles as brain delivery system. Eur. J. Pharm. Sci. 115, 77–87 (2018).

    CAS  PubMed  Google Scholar 

  177. Fornaguera, C. et al. Application of an assay cascade methodology for a deep preclinical characterization of polymeric nanoparticles as a treatment for gliomas. Drug Deliv. 25, 472–483 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Madala, H. R. et al. Brain- and brain tumor-penetrating disulfiram nanoparticles: Sequence of cytotoxic events and efficacy in human glioma cell lines and intracranial xenografts. Oncotarget 9, 3459–3482 (2018).

    PubMed  Google Scholar 

  179. Li, H. et al. Lactoferrin functionalized PEG-PLGA nanoparticles of shikonin for brain targeting therapy of glioma. Int. J. Biol. Macromol. 107, 204–211 (2018).

    CAS  PubMed  Google Scholar 

  180. Pashirova, T. N. et al. Nanoparticle-delivered 2‑PAM for rat brain protection against paraoxon central toxicity. ACS Appl. Mater. Interfaces 24, 16922–16932 (2017).

    Google Scholar 

  181. Natarajan, J. et al. Enhanced brain targeting efficacy of olanzapine through solid lipid nanoparticles. Artif. Cells Nanomed. Biotechnol. https://doi.org/10.3109/21691401.2016.1160402 (2016).

    Article  PubMed  Google Scholar 

  182. Misra, S. et al. Galantamine-loaded solid-lipid nanoparticles for enhanced brain delivery: preparation, characterization, in vitro and in vivo evaluations. Drug Deliv. 23, 1434–1443 (2015).

    PubMed  Google Scholar 

  183. Ma, F. et al. Neurotransmitter-derived lipidoids (NT-lipidoids) for enhanced brain delivery through intravenous injection. Sci. Adv. 6, eabb4429 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Esposito, E. et al. Nanoformulations for dimethyl fumarate: Physicochemical characterization and in vitro/in vivo behavior. Eur. J. Phar. Biophar. 115, 285–296 (2017).

    CAS  Google Scholar 

  185. Baghirov, H. et al. Ultrasound-mediated delivery and distribution of polymeric nanoparticles in the normal brain parenchyma of a metastatic brain tumor model. PLoS ONE 13, e0191102 (2018). Although not the first, this article reports an interesting combination of two technologies, FUS and nanoparticles, for focal delivery of drugs to the brain.

    PubMed  PubMed Central  Google Scholar 

  186. Balducci, C. et al. Multifunctional liposomes reduce brain ß-amyloid burden and ameliorate memory impairment in Alzheimer’s disease mouse models. J. Neurosci. 34, 14022–14031 (2014).

    PubMed  PubMed Central  Google Scholar 

  187. Ying, M. et al. Liposome-based systemic glioma-targeted drug delivery enabled by all‑D peptides. ACS Appl. Mater. Interfaces 8, 29977–29985 (2016).

    CAS  PubMed  Google Scholar 

  188. Yang, L. et al. Development a hyaluronic acid ion-pairing liposomal nanoparticle for enhancing anti-glioma efficacy by modulating glioma microenvironment. Drug Deliv. 25, 388–397 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Dai, T. et al. Liposomes and lipid disks traverse the BBB and BBTB as intact forms as revealed by two-step Förster resonance energy transfer imaging. Acta Pharm. Sin. B 8, 261–271 (2018).

    PubMed  PubMed Central  Google Scholar 

  190. Hare, J. I. et al. Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv. Drug Deliv. Rev. 108, 25–38 (2017).

    CAS  PubMed  Google Scholar 

  191. Sercombe, L. et al. Advances and challenges of liposome assisted drug delivery. Front. Pharm. 6, 286 (2015).

    Google Scholar 

  192. Simons, M. & Raposo, G. Exosomes-vesicular carriers for intercellular communication. Curr. Opin. Cell Biol. 21, 575–581 (2009).

    CAS  PubMed  Google Scholar 

  193. ElAndaloussi, S. et al. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 12, 347–357 (2013).

    CAS  Google Scholar 

  194. Pan, B. T. & Johnstone, R. M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33, 967–976 (1983).

    CAS  PubMed  Google Scholar 

  195. Harding, C., Heuser, J. & Stahl, P. Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes: demonstration of a pathway for receptor shedding. Eur. J. Cell Biol. 35, 256–263 (1984).

    CAS  PubMed  Google Scholar 

  196. Bastida, E. et al. Tissue factor in microvesicles shed from U87MG human glioblastoma cells induces coagulation, platelet aggregation and thrombogenesis. Blood 64, 177–184 (1984).

    CAS  PubMed  Google Scholar 

  197. Lai, R. C., Chen, T. S. & Lim, K. Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regen. Med. 6, 481–492 (2011).

    PubMed  Google Scholar 

  198. Aryani, A. & Denecke, B. Exosomes as a nonodelivery system: a key to the future of neuromedicine? Mol. Neurobiol. 53, 818–834 (2016).

    CAS  PubMed  Google Scholar 

  199. Wiklander, O. P. et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J. Extracell. Vesicles 4, 26316 (2015).

    PubMed  Google Scholar 

  200. Yang, T. et al. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in danio rerio. Pharm. Res. 32, 2003–2014 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Qu, M. et al. Dopamine-loaded blood exosomes targeted to brain for better treatment of Parkinson’s disease. J. Contr. Rel. 287, 156–166 (2018).

    CAS  Google Scholar 

  202. Xin, H. et al. Secondary release of exosomes from astrocytes contributes to the increase in neural plasticity and improvement of functional recovery after stroke in rats treated with exosomes harvested from microRNA133b-overexpressed multipotent mesenchymal stromal cells. Cell Transpl. 26, 243–257 (2017).

    Google Scholar 

  203. Salinas, S., Schiavo, G. & Kremer, E. J. A hitchhiker’s guide to the nervous system: the complex journey of viruses and toxins. Nat. Rev. Microbiol. 8, 645–655 (2010).

    CAS  PubMed  Google Scholar 

  204. Kumar, P. et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature 448, 39–43 (2007).

    CAS  PubMed  Google Scholar 

  205. Alvarez-Erviti, L. et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29, 341–345 (2011). This is an exciting study demonstrating that exosomes can be engineered into an efficient brain delivery system that can elicit a pharmacodynamic effect.

    CAS  PubMed  Google Scholar 

  206. Cooper, J. M. et al. Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Mov. Disord. 29, 1476–1485 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Liu, Y. et al. Targeted exosome-mediated delivery of opioid receptor mu siRNA for the treatment of morphine relapse. Sci. Rep. 5, 17543 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Yang, J. et al. Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia. Mol. Ther. Nucleic Acids 7, 278–287 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Tian, T. et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials 150, 137–143 (2018).

    CAS  PubMed  Google Scholar 

  210. Escudier, B. et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of the first phase 1 clinical trial. J. Transl Med. 3, 10 (2005).

    PubMed  PubMed Central  Google Scholar 

  211. Morse, M. A. et al. A phase 1 study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J. Transl Med. 3, 9 (2005).

    PubMed  PubMed Central  Google Scholar 

  212. Dai, S. et al. Phase 1 clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol. Ther. 16, 782–790 (2008).

    CAS  PubMed  Google Scholar 

  213. Felicetti, F. et al. Caveolin-1 tumor-promoting role in human melanoma. Int. J. Cancer 125, 1514–1522 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Cappello, F. et al. Exosomes in human body fluids: a tumor marker by themselves? Eur. J. Pharm. Sci. 96, 93–98 (2017).

    CAS  PubMed  Google Scholar 

  215. Fais, S. et al. Evidence-based clinical use of nanoscale extracellular vesicles in nanomedicine. ACS Nano 10, 3886–3899 (2016).

    CAS  PubMed  Google Scholar 

  216. Thery, C. et al. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol. 2, 569–579 (2002).

    CAS  PubMed  Google Scholar 

  217. Campanella, C. et al. Exosomal heat shock proteins as new players in tumour cell-to-cell communication. J. Circ. Biomark 3, 4 (2014).

    Google Scholar 

  218. Whiteside, T. I. Exosomes carrying immunoinhibitory proteins and their role in cancer. Clin. Exp. Immunol. 189, 259–267 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Mendt, M. et al. Mesenchymal stem cell-derived exosomes for clinical use. Bone Marrow Transplant. 54, 789–792 (2019).

    PubMed  Google Scholar 

  220. Qu, M. et al. Dopamine-loaded blood exosomes targeted to the brain for better treatment of Parkinson’s disease. J. Control. Release 287, 156–166 (2018).

    CAS  PubMed  Google Scholar 

  221. Hyenne, V. et al. Studying the fate of tumor extracellular vesicles at high spatiotemporal resolution using the zebrafish embryo. Dev. Cell 48, 554–572 (2019).

    CAS  PubMed  Google Scholar 

  222. Chen, C. C. et al. Elucidation of exosome migration across the blood-brain barrier in vitro. Cell Mol. Bioeng. 9, 509–529 (2016).

    CAS  PubMed  Google Scholar 

  223. Yuan, D. et al. Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials 142, 1–12 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Cha, J. M. et al. Efficient scalable production of therapeutic microvesicles derived from human mesenchymal stem cells. Sci. Rep. 8, 1171–1186 (2018). This report shows a path towards large-scale production of exosomes, a major issue for broad therapeutic application, using a 3D cell culture bioprocessing method.

    PubMed  PubMed Central  Google Scholar 

  225. Petersen, K. E. et al. A review of exosome separation techniques and TEM. Anal. Bioanal. Chem. 406, 7855–7866 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Taylor, D. D. & Shah, S. Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods 87, 3–10 (2015).

    CAS  PubMed  Google Scholar 

  227. Zhuang, X. et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol. Ther. 19, 1769–1779 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Sterzenbach, U. et al. Engineered exosomes as vehicles for biologically active proteins. Mol. Ther. 25, 1269–1278 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Klyachko, N. L. et al. Macrophages offer a paradigm switch for CNS delivery of therapeutic proteins. Nanomedicine 9, 1403–1422 (2014).

    CAS  PubMed  Google Scholar 

  230. Klyachko, N. L. et al. Macrophages with cellular backpacks for targeted drug delivery to the brain. Biomaterials 140, 79–87 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Xue, J. et al. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nat. Nanotechnol. 12, 692–700 (2017).

    CAS  PubMed  Google Scholar 

  232. Tong, H. I. et al. Monocyte trafficking, engraftment, and delivery of nanoparticles and an exogenous gene into the acutely inflamed brain tissue - evaluations on monocyte-based delivery system for the central nervous system. PLoS ONE 11, e0154022 (2017).

    Google Scholar 

  233. Doeppner, T. R. et al. Transduction of neural precursor cells with TAT-heat shock protein 70 chaperone: therapeutic potential against ischemic stroke after intrastriatal and systemic transplantation. Stem Cell 30, 1297–1310 (2012).

    CAS  Google Scholar 

  234. Engelhardt, B. Regulation of immune cell entry into the central nervous system. Results Probl. Cell Differ. 43, 259–280 (2006).

    CAS  PubMed  Google Scholar 

  235. Zhao, Y. et al. GDNF-expressing macrophages restore motor functions at a severe late-stage and produce long-term neuroprotective effects at an early-stage of Parkinson’s disease in transgenic Parkin Q311X(A) mice. J. Control. Release 315, 139–149 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Dengler, R. Cancer immunotherapy company tries to explain deaths in recent trial. Sci. Mag. https://doi.org/10.1126/science.aar5192 (2017).

    Article  Google Scholar 

  237. Donegà, M. et al. Systemic injection of neural stem/progenitor cells in mice with chronic EAE. J. Vis. Exp. https://doi.org/10.3791/51154 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Bagci-Onder, T. et al. Targeting breast to brain metastatic tumours with death receptor ligand expressing therapeutic stem cells. Brain 138, 1710–1721 (2015).

    PubMed  PubMed Central  Google Scholar 

  239. Andreou, T. et al. Hematopoietic stem cell gene therapy for brain metastases using myeloid cell-specific gene promoters. J. Natl Cancer Inst. https://doi.org/10.1093/jnci/djz181 (2019).

    Article  PubMed Central  Google Scholar 

  240. Räägel, H. & Pooga, M. Peptide and protein delivery with cell-penetrating peptides. Peptide Protein Deliv. 221–246 (2011).

  241. Milletti, R. Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov. Today 17, 850–860 (2012).

    CAS  PubMed  Google Scholar 

  242. Sharma, G. et al. The role of cell-penetrating peptide and transferrin on enhanced delivery of drug to brain. Int. J. Mol. Sci. 17, 806 (2016).

    PubMed Central  Google Scholar 

  243. Green, M. & Loewenstein, P. M. Autonomous functional domains of chemically synthesized human immunodeficiency virus Tat trans-activator protein. Cell 55, 1179–1188 (1988).

    CAS  PubMed  Google Scholar 

  244. Frankel, A. D. & Pabo, C. O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55, 1189–1193 (1988).

    CAS  PubMed  Google Scholar 

  245. Hill, M. D. et al. Safety and efficacy of NA-1 in patients with iatrogenic stroke after endovascular aneurysm repair (ENACT): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 11, 942–950 (2012).

    CAS  PubMed  Google Scholar 

  246. Lim, S. et al. dNP2 is a blood-brain barrier-permeable peptide enabling ctCTLA-4 protein delivery to ameliorate experimental autoimmune encephalomyelitis. Nat. Commun. 6, 8244 (2015).

    CAS  PubMed  Google Scholar 

  247. Tu, J. et al. Cell-permeable peptide targeting the Nrf2-Keap1 interaction: a potential novel therapy for global cerebral ischemia. J. Neurosci. 35, 14727–14739 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Ando, Y. et al. Brain-specific ultrastructure of capillary endothelial glycocalyx and its possible contribution for blood brain barrier. Sci. Rep. 8, 17523 (2018).

    PubMed  PubMed Central  Google Scholar 

  249. Hervé, F., Ghinea, N. & Scherrmann, J.-M. CNS delivery via adsorptive transcytosis. AAPS J. 10, 455–472 (2008).

    PubMed  PubMed Central  Google Scholar 

  250. Xie, J. et al. Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials. 224, 119491 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Silva, S., Almeida, A. J. & Vale, N. Combination of cell-penetrating peptides with nanoparticles for therapeutic application: a review. Biomolecules 9, 22 (2019).

    PubMed Central  Google Scholar 

  252. Carman, A. J. et al. Adenosine receptor signaling modulates permeability of the blood-brain barrier. J. Neurosci. 31, 13272–13280 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Mills, J. H. et al. Human brain endothelial cells are responsive to adenosine receptor activation. Purinergic Signal. 7, 265–273 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Côté, J. et al. Induction of selective blood-tumor barrier permeability and macromolecular transport by a biostable kinin B1 receptor agonist in a glioma rat model. PLoS ONE 7, e37485 (2012).

    PubMed  PubMed Central  Google Scholar 

  255. Yanagida, K. et al. Size-selective opening of the blood–brain barrier by targeting endothelial sphingosine 1–phosphate receptor 1. Proc. Natl Acad. Sci. USA 114, 4531–4536 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Kim, D.-G. & Bynoe, M. S. A2A adenosine receptor modulates drug efflux transporter P-glycoprotein at the blood-brain barrier. J. Clin. Invest. 126, 1717–1733 (2016).

    PubMed  PubMed Central  Google Scholar 

  257. Bynoe, M. S. et al. Adenosine receptor signaling: a key to opening the blood-brain barrier. Fluids Barriers CNS 12, 20 (2015).

    PubMed  PubMed Central  Google Scholar 

  258. Kim, D.-G. & Bynoe, M. S. A2A adenosine receptor regulates the human blood brain barrier permeability. Mol. Neurobiol. 52, 664–678 (2015).

    CAS  PubMed  Google Scholar 

  259. Jackson, S. et al. The effect of regadenoson on the integrity of the human blood-brain barrier, a pilot study. J. Neurooncol. 132, 513–519 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Jackson, S. et al. The effect of an adenosine A2A agonist on intra-tumoral concentrations of temozolomide in patients with recurrent glioblastoma. Fluids Barriers CNS 15, 2 (2018).

    PubMed  PubMed Central  Google Scholar 

  261. Côté, J. et al. Selective tumor blood-brain barrier opening with the kinin B2 receptor agonist [Phe8ψ(CH2NH)Arg9]-BK in a F98 glioma rat model: an MRI study. Neuropeptides. 44, 177–185 (2010).

    PubMed  Google Scholar 

  262. Savard, M. et al. Further pharmacological evaluation of a novel synthetic peptide bradykinin B2 receptor agonist. Biol. Chem. 394, 353–360 (2013).

    CAS  PubMed  Google Scholar 

  263. Coté, J. et al. Dual kinin B1 and B2 receptor activation provides enhanced blood–brain barrier permeability and anticancer drug delivery into brain tumors. Cancer Biol. Ther. 14, 806–811 (2013).

    PubMed  PubMed Central  Google Scholar 

  264. Tadayoni, B. M. et al. Synthesis, in vitro kinetics, and in vivo studies on protein conjugates of AZT: evaluation as a transport system to increase brain delivery. Bioconjug Chem. 4, 139–145 (1993).

    CAS  PubMed  Google Scholar 

  265. Sade, H. et al. A human blood-brain barrier transcytosis assay reveals antibody transcytosis influenced by pH-dependent receptor binding. PLoS ONE 9, e96340 (2014).

    PubMed  PubMed Central  Google Scholar 

  266. Zlokovic, B. V. & Apuzzo, M. L. Strategies to circumvent vascular barriers of the central nervous system. Neurosurgery 43, 877–878 (1998).

    CAS  PubMed  Google Scholar 

  267. McGavern, D. B. & Kang, S. Illuminating viral infections in the nervous system. Nat. Rev. Immunol. 11, 318–329 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  268. Ray, A. & Mitra, K. Nanotechnology in intracellular trafficking, imaging, and delivery of therapeutic agents. Emerg. Nanotechnol. Diagnost. Drug Deliv. Med. Dev. https://doi.org/10.1016/B978-0-323-42978-8.00008-5 (2017).

    Article  Google Scholar 

  269. Jefferies, W. A. et al. Transferrin receptor on endothelium of brain capillaries. Nature 312, 162–163 (1984).

    CAS  PubMed  Google Scholar 

  270. Banks, W. A. et al. Studies of the slow bidirectional transport of iron and transferrin across the blood-brain barrier. Brain Res. Bull. 21, 881–885 (1988).

    CAS  PubMed  Google Scholar 

  271. Friden, P. M. et al. Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood-brain barrier. Proc. Natl Acad. Sci. USA 88, 4771–4775 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Bell, R. D. & Ehlers, M. D. Breaching the blood-brain barrier for drug delivery. Neuron 81, 1–3 (2014).

    CAS  PubMed  Google Scholar 

  273. Couch, J. A. et al. Addressing safety liabilities of TfR bispecific antibodies that cross the blood-brain barrier. Sci. Transl Med. https://doi.org/10.1126/scitranslmed.3005338 (2013).

    Article  PubMed  Google Scholar 

  274. Yang, A. C. et al. Physiological blood-brain transport is impaired with age by a shift in transcytosis. Nature. 583, 425–430 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  275. Poon, C., McMahon, D. & Hynynen, K. Noninvasive and targeted delivery of therapeutics to the brain using focused ultrasound. Neuropharmacology 120, 20–37 (2017).

    CAS  PubMed  Google Scholar 

  276. Wang, S. et al. Direct brain infusion can be enhanced with focused ultrasound and microbubbles. J. Cereb. Blood Flow. Metab. 37, 706–714 (2017).

    CAS  PubMed  Google Scholar 

  277. Wang, S. et al. Non-invasive, focused ultrasound-facilitated gene delivery for optogenetics. Sci. Rep. 7, 39955 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  278. Wu, S. K. et al. Characterization of different microbubbles in assisting focused ultrasound-induced blood-brain barrier opening. Sci. Rep. 7, 46689 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  279. Kinoshita, M. et al. Targeted delivery of antibodies through the blood-brain barrier by MRI-guided focused ultrasound. Biochem. Biophys. Res. Commun. 340, 1085–1090 (2006).

    CAS  PubMed  Google Scholar 

  280. Kinoshita, M. et al. Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption. Proc. Natl Acad. Sci. USA 103, 11719–11723 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  281. McDannold, N., Vykhodtseva, N. & Hynynen, K. Blood-brain barrier disruption induced by focused ultrasound and circulating preformed microbubbles appears to be characterized by the mechanical index. Ultrasound Med. Biol. 34, 834–840 (2008).

    PubMed  PubMed Central  Google Scholar 

  282. Sheikov, N. et al. Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium. Ultrasound Med. Biol. 34, 1093–1104 (2008).

    PubMed  PubMed Central  Google Scholar 

  283. Treat, L. H. et al. Improved anti-tumor effect of liposomal doxorubicin after targeted blood-brain barrier disruption by MRI-guided focused ultrasound in rat glioma. Ultrasound Med. Biol. 38, 1716–1725 (2012).

    PubMed  PubMed Central  Google Scholar 

  284. Vega, R. A., Zhang, Y., Curley, C., Price, R. L. & Abounader, R. Magnetic resonance-guided focused ultrasound delivery of polymeric brain-penetrating nanoparticle microRNA conjugates in glioblastoma. Neurosurgery. 63, 210 (2016).

    Google Scholar 

  285. Chen, H. & Konofagou, E. E. The size of blood–brain barrier opening induced by focused ultrasound is dictated by the acoustic pressure. J. Cereb. Blood Flow. Metab. 34, 1197–1204 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  286. Sheikov, N. et al. Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles. Ultrasound Med. Biol. 30, 979–989 (2004).

    PubMed  Google Scholar 

  287. Mainprize, T. et al. Blood-brain barrier opening in primary brain tumors with non-invasive MRI-guided focused ultrasound: a clinical safety and feasibility study. Sci. Rep. 9, 321 (2019). This is the first clinical study using transcranial MRI-guided FUS for site-specific BBB opening in patients with brain tumours intravenously infused with doxorubicin or temozolomide.

    PubMed  PubMed Central  Google Scholar 

  288. Abrahao, A. et al. First-in-human trial of blood-brain barrier opening in amyotrophic lateral sclerosis using MR-guided focused ultrasound. Nat. Commun. 10, 4373 (2019).

    PubMed  PubMed Central  Google Scholar 

  289. Carpentier, A. et al. Clinical trial of blood-brain barrier disruption by pulsed ultrasound. Sci. Transl Med. 8, 343re2 (2016).

    PubMed  Google Scholar 

  290. Idbaih, A. et al. Safety and feasibility of repeated and transient blood-brain barrier disruption by pulsed ultrasound in patients with recurrent glioblastoma. Clin. Cancer Res. 25, 3793–3801 (2019).

    CAS  PubMed  Google Scholar 

  291. Meng, Y. et al. Safety and efficacy of focused ultrasound induced blood-brain barrier opening, an integrative review of animal and human studies. J. Control. Release 309, 25–36 (2019).

    CAS  PubMed  Google Scholar 

  292. McMahon, D. & Hynynen, K. Acute inflammatory response following increased blood-brain barrier permeability induced by focused ultrasound is dependent on microbubble dose. Theranostics 7, 3989–4000 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  293. Kovacs, Z. I. et al. Disrupting the blood-brain barrier by focused ultrasound induces sterile inflammation. Proc. Natl Acad. Sci. USA 114, E75–E84 (2017).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

G.C.T., A.H.M. and W.Z. contributed equally to all aspects of the article. R.D.B. contributed to the concept and execution of a revised version.

Corresponding author

Correspondence to Georg C. Terstappen.

Ethics declarations

Competing interests

G.C.T. is a Cambrian Biopharma employee and owns Cambrian Biopharma stock options. A.H.M. is an AbbVie employee and owns AbbVie stock options. R.D.B. is a Pfizer employee and owns Pfizer stock options. W.Z. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Denali Therapeutics announces first human biomarker proof of concept for its Transport Vehicle (TV) technology achieved in Phase 1/2 study of ETV:IDS (DNL310) in Hunter syndrome (MPS II): https://www.denalitherapeutics.com/investors/press-release?id=7806

IM2PACT — Investigating Mechanisms and Models Predictive of Accessibility of Therapeutics into the brain: https://www.im2pact.org

JCR Pharmaceuticals — News 2020: https://ssl4.eir-parts.net/doc/4552/tdnet/1890173/00.pdf

Glossary

Parenteral administration

Drug administration by injection, infusion and implantation.

Transcytosis

A type of transcellular transport by which various types of macromolecule are transported across the interior of a cell, such as a cell monolayer or a barrier composed of a cell layer.

BBB cells

Blood–brain barrier (BBB) cells comprise the cerebral microvascular and capillary endothelial cells.

Polymersomes

Synthetic vesicular structures, analogous to liposomes, that are formed in solution by self-assembly of amphiphilic copolymers.

Ependymal cells

A type of neuroglia forming an epithelial layer that lines the ventricles and the central canal of the spinal cord.

Immunoliposomes

A new class of drug delivery system generated by coupling of antibodies to the surface of liposomes, which combines antibody-mediated tumour recognition with liposomal delivery.

Morris water maze

A behavioural test of spatial learning for rodents that is based on cues to navigate from a start location in an open swimming area to a submerged platform.

Multivesicular body

A type of late endosome that is formed following the inward budding of the outer endosomal membrane and characterized by the accumulation of vesicles in the lumen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terstappen, G.C., Meyer, A.H., Bell, R.D. et al. Strategies for delivering therapeutics across the blood–brain barrier. Nat Rev Drug Discov 20, 362–383 (2021). https://doi.org/10.1038/s41573-021-00139-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-021-00139-y

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research