Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting co-stimulatory molecules in autoimmune disease

A Publisher Correction to this article was published on 18 November 2020

This article has been updated

Abstract

Therapeutic targeting of immune checkpoints has garnered significant attention in the area of cancer immunotherapy, in which efforts have focused in particular on cytotoxic T lymphocyte antigen 4 (CTLA4) and PD1, both of which are members of the CD28 family. In autoimmunity, these same pathways can be targeted to opposite effect: to curb the over-exuberant immune response. The CTLA4 checkpoint serves as an exemplar, whereby CTLA4 activity is blocked by antibodies in cancer immunotherapy and augmented by the provision of soluble CTLA4 in autoimmunity. Here, we review the targeting of co-stimulatory molecules in autoimmune diseases, focusing in particular on agents directed at members of the CD28 or tumour necrosis factor receptor families. We present the state of the art in co-stimulatory blockade approaches, including rational combinations of immune inhibitory agents, and discuss the future opportunities and challenges in this field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hierarchy of co-stimulatory interactions.
Fig. 2: Therapeutic targeting of co-stimulatory molecules.
Fig. 3: Combining CTLA4–Ig and CD40–CD40L blockade for the treatment of autoimmunity.
Fig. 4: Combination therapy in autoimmunity using alemtuzumab and abatacept.

Similar content being viewed by others

Change history

  • 18 November 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Yu, W. et al. Clonal deletion prunes but does not eliminate self-specific αβ CD8+ T lymphocytes. Immunity 42, 929–941 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Herold, K. C. et al. An anti-CD3 antibody, teplizumab, in relatives at risk for type 1 diabetes. N. Engl. J. Med. 381, 603–613 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Mueller, D. L., Jenkins, M. K. & Schwartz, R. H. An accessory cell-derived costimulatory signal acts independently of protein kinase C activation to allow T cell proliferation and prevent the induction of unresponsiveness. J. Immunol. 142, 2617–2628 (1989).

    CAS  PubMed  Google Scholar 

  4. Lesley, R., Kelly, L. M., Xu, Y. & Cyster, J. G. Naive CD4 T cells constitutively express CD40L and augment autoreactive B cell survival. Proc. Natl Acad. Sci. USA 103, 10717–10722 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Nandi, D., Gross, J. A. & Allison, J. P. CD28-mediated costimulation is necessary for optimal proliferation of murine NK cells. J. Immunol. 152, 3361–3369 (1994).

    CAS  PubMed  Google Scholar 

  6. Stojanovic, A., Fiegler, N., Brunner-Weinzierl, M. & Cerwenka, A. CTLA-4 is expressed by activated mouse NK cells and inhibits NK cell IFN-γ production in response to mature dendritic cells. J. Immunol. 192, 4184–4191 (2014).

    CAS  PubMed  Google Scholar 

  7. Roan, F. et al. CD4+ group 1 innate lymphoid cells (ILC) form a functionally distinct ILC subset that is increased in systemic sclerosis. J. Immunol. 196, 2051–2062 (2016).

    CAS  PubMed  Google Scholar 

  8. Rozanski, C. H. et al. Sustained antibody responses depend on CD28 function in bone marrow-resident plasma cells. J. Exp. Med. 208, 1435–1446 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Venuprasad, K. et al. Immunobiology of CD28 expression on human neutrophils. I. CD28 regulates neutrophil migration by modulating CXCR-1 expression. Eur. J. Immunol. 31, 1536–1543 (2001).

    CAS  PubMed  Google Scholar 

  10. Woerly, G. et al. Human eosinophils express and release IL-13 following CD28-dependent activation. J. Leukoc. Biol. 72, 769–779 (2002).

    CAS  PubMed  Google Scholar 

  11. Boomer, J. S. & Green, J. M. An enigmatic tail of CD28 signaling. Cold Spring Harb. Perspect. Biol. 2, a002436 (2010).

    PubMed  PubMed Central  Google Scholar 

  12. Yu, C. et al. Rigid-body ligand recognition drives cytotoxic T-lymphocyte antigen 4 (CTLA-4) receptor triggering. J. Biol. Chem. 286, 6685–6696 (2011).

    CAS  PubMed  Google Scholar 

  13. Linsley, P. S. et al. Intracellular trafficking of CTLA-4 and focal localisation towards sites of TCR engagement. Immunity 4, 535–543 (1996).

    CAS  PubMed  Google Scholar 

  14. Qureshi, O. S. et al. Constitutive clathrin-mediated endocytosis of CTLA-4 persists during T cell activation. J. Biol. Chem. 287, 9429–9440 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Iida, T. et al. Regulation of cell surface expression of CTLA-4 by secretion of CTLA-4- containing lysosomes upon activation of CD4+ T cells. J. Immunol. 165, 5062–5068 (2000).

    CAS  PubMed  Google Scholar 

  16. Collins, A. V. et al. The interaction properties of costimulatory molecules revisited. Immunity 17, 201–210 (2002).

    CAS  PubMed  Google Scholar 

  17. Borriello, F. et al. B7-1 and B7-2 have overlapping, critical roles in immunoglobulin class switching and germinal center formation. Immunity 6, 303–313 (1997).

    CAS  PubMed  Google Scholar 

  18. Boussiotis, V. A. et al. Activated human B lymphocytes express three CTLA-4 counterreceptors that costimulate T-cell activation. Proc. Natl Acad. Sci. USA 90, 11059–11063 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zheng, Y. et al. CD86 and CD80 differentially modulate the suppressive function of human regulatory T cells. J. Immunol. 172, 2778–2784 (2004).

    CAS  PubMed  Google Scholar 

  20. Linsley, P. S. & Ledbetter, J. A. The role of the CD28 receptor during T cell responses to antigen. Annu. Rev. Immunol. 11, 191–212 (1993).

    CAS  PubMed  Google Scholar 

  21. Shahinian, A. et al. Differential T cell costimulatory requirements in CD28-deficient mice. Science 261, 609–612 (1993).

    CAS  PubMed  Google Scholar 

  22. Ferguson, S. E., Han, S., Kelsoe, G. & Thompson, C. B. CD28 is required for germinal center formation. J. Immunol. 156, 4576–4581 (1996).

    CAS  PubMed  Google Scholar 

  23. Walker, L. S. et al. Compromised OX40 function in CD28-deficient mice is linked with failure to develop CXCR5-positive CD4 cells and germinal centers. J. Exp. Med. 190, 1115–1122 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, C. J. et al. CTLA-4 controls follicular helper T-cell differentiation by regulating the strength of CD28 engagement. Proc. Natl Acad. Sci. USA 112, 524–529 (2015).

    CAS  PubMed  Google Scholar 

  25. Baumjohann, D. et al. The microRNA cluster miR-17 approximately 92 promotes TFH cell differentiation and represses subset-inappropriate gene expression. Nat. Immunol. 14, 840–848 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chang, T. T., Jabs, C., Sobel, R. A., Kuchroo, V. K. & Sharpe, A. H. Studies in B7-deficient mice reveal a critical role for B7 costimulation in both induction and effector phases of experimental autoimmune encephalomyelitis. J. Exp. Med. 190, 733–740 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Webb, L. M., Walmsley, M. J. & Feldmann, M. Prevention and amelioration of collagen-induced arthritis by blockade of the CD28 co-stimulatory pathway: requirement for both B7-1 and B7-2. Eur. J. Immunol. 26, 2320–2328 (1996).

    CAS  PubMed  Google Scholar 

  28. Liu, Z. et al. B7 interactions with CD28 and CTLA-4 control tolerance or induction of mucosal inflammation in chronic experimental colitis. J. Immunol. 167, 1830–1838 (2001).

    CAS  PubMed  Google Scholar 

  29. Tada, Y. et al. Role of the costimulatory molecule CD28 in the development of lupus in MRL/lpr mice. J. Immunol. 163, 3153–3159 (1999).

    CAS  PubMed  Google Scholar 

  30. Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12, 431–440 (2000).

    CAS  PubMed  Google Scholar 

  31. Tang, Q. et al. Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells. J. Immunol. 171, 3348–3352 (2003).

    CAS  PubMed  Google Scholar 

  32. Gogishvili, T. et al. Cell-intrinsic and -extrinsic control of Treg-cell homeostasis and function revealed by induced CD28 deletion. Eur. J. Immunol. 43, 188–193 (2013).

    CAS  PubMed  Google Scholar 

  33. Zhang, R. et al. An obligate cell-intrinsic function for CD28 in Tregs. J. Clin. Invest. 123, 580–593 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008).

    CAS  PubMed  Google Scholar 

  35. Qureshi, O. S. et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332, 600–603 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ovcinnikovs, V. et al. CTLA-4-mediated transendocytosis of costimulatory molecules primarily targets migratory dendritic cells. Sci. Immunol. 4, eaaw0902 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tivol, E. A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3, 541–547 (1995).

    CAS  PubMed  Google Scholar 

  38. Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in CTLA-4. Science 270, 985–988 (1995).

    CAS  PubMed  Google Scholar 

  39. Schubert, D. et al. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat. Med. 20, 1410–1416 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kuehn, H. S. et al. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science 345, 1623–1627 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. van der Heide, V. & Homann, D. CD28 days later: resurrecting costimulation for CD8+ memory T cells. Eur. J. Immunol. 46, 1587–1591 (2016).

    PubMed  PubMed Central  Google Scholar 

  42. Young, J. S. et al. Delayed cytotoxic T lymphocyte-associated protein 4–immunoglobulin treatment reverses ongoing alloantibody responses and rescues allografts from acute rejection. Am. J. Transpl. 16, 2312–2323 (2016).

    CAS  Google Scholar 

  43. Bluestone, J. A., St Clair, E. W. & Turka, L. A. CTLA4Ig: bridging the basic immunology with clinical application. Immunity 24, 233–238 (2006).

    CAS  PubMed  Google Scholar 

  44. Abrams, J. R. et al. CTLA4Ig-mediated blockade of T-cell costimulation in patients with psoriasis vulgaris. J. Clin. Invest. 103, 1243–1252 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Blair, H. A. & Deeks, E. D. Abatacept: a review in rheumatoid arthritis. Drugs 77, 1221–1233 (2017).

    CAS  PubMed  Google Scholar 

  46. Brunner, H. I. et al. Subcutaneous abatacept in patients with polyarticular-course juvenile idiopathic arthritis: results from a phase III open-label study. Arthritis Rheumatol. 70, 1144–1154 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Larsen, C. P. et al. Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4–Ig with potent immunosuppressive properties. Am. J. Transpl. 5, 443–453 (2005).

    CAS  Google Scholar 

  48. Vincenti, F. et al. Belatacept and long-term outcomes in kidney transplantation. N. Engl. J. Med. 374, 333–343 (2016).

    CAS  PubMed  Google Scholar 

  49. Bernett, M. J. et al. Immune suppression in cynomolgus monkeys by XPro9523: an improved CTLA4–Ig fusion with enhanced binding to CD80, CD86 and neonatal Fc receptor FcRn. mAbs 5, 384–396 (2013).

    PubMed  PubMed Central  Google Scholar 

  50. Douthwaite, J. et al. A CD80-biased CTLA4–Ig fusion protein with superior in vivo efficacy by simultaneous engineering of affinity, selectivity, stability, and FcRn binding. J. Immunol. 198, 528–537 (2017).

    CAS  PubMed  Google Scholar 

  51. Patakas, A. et al. Abatacept inhibition of T cell priming in mice by induction of a unique transcriptional profile that reduces their ability to activate antigen-presenting cells. Arthritis Rheumatol. 68, 627–638 (2016).

    CAS  PubMed  Google Scholar 

  52. Wells, A. D. New insights into the molecular basis of T cell anergy: anergy factors, avoidance sensors, and epigenetic imprinting. J. Immunol. 182, 7331–7341 (2009).

    CAS  PubMed  Google Scholar 

  53. Grohmann, U. et al. CTLA-4–Ig regulates tryptophan catabolism in vivo. Nat. Immunol. 3, 1097–1101 (2002).

    CAS  PubMed  Google Scholar 

  54. Davis, P. M., Nadler, S. G., Stetsko, D. K. & Suchard, S. J. Abatacept modulates human dendritic cell-stimulated T-cell proliferation and effector function independent of IDO induction. Clin. Immunol. 126, 38–47 (2008).

    CAS  PubMed  Google Scholar 

  55. Manches, O. et al. HIV-activated human plasmacytoid DCs induce Tregs through an indoleamine 2,3-dioxygenase-dependent mechanism. J. Clin. Invest. 118, 3431–3439 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Carman, J. A. et al. Abatacept does not induce direct gene expression changes in antigen-presenting cells. J. Clin. Immunol. 29, 479–489 (2009).

    CAS  PubMed  Google Scholar 

  57. Sokolove, J. et al. Impact of baseline anti-cyclic citrullinated peptide-2 antibody concentration on efficacy outcomes following treatment with subcutaneous abatacept or adalimumab: 2-year results from the AMPLE trial. Ann. Rheum. Dis. 75, 709–714 (2016).

    CAS  PubMed  Google Scholar 

  58. Gottenberg, J. E. et al. Brief report: association of rheumatoid factor and anti-citrullinated protein antibody positivity with better effectiveness of abatacept: results from the pan-European registry analysis. Arthritis Rheumatol. 68, 1346–1352 (2016).

    CAS  PubMed  Google Scholar 

  59. Mease, P. J. et al. Poor prognostic factors in predicting abatacept response in a phase III randomized controlled trial in psoriatic arthritis. Rheumatol. Int. 40, 1021–1028 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Edner, N. M. et al. Follicular helper T cell profiles predict response to costimulation blockade in type 1 diabetes. Nat. Immunol. https://doi.org/10.1038/s41590-020-0744-z (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Levine, A. G., Arvey, A., Jin, W. & Rudensky, A. Y. Continuous requirement for the TCR in regulatory T cell function. Nat. Immunol. 15, 1070–1078 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Suntharalingam, G. et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med. 355, 1018–1028 (2006).

    CAS  PubMed  Google Scholar 

  63. Rosshart, S. P. et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science 365, eaaw4361 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Eastwood, D. et al. Monoclonal antibody TGN1412 trial failure explained by species differences in CD28 expression on CD4+ effector memory T-cells. Br. J. Pharmacol. 161, 512–526 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Poirier, N. et al. Advantages of Papio anubis for preclinical testing of immunotoxicity of candidate therapeutic antagonist antibodies targeting CD28. mAbs 6, 697–707 (2014).

    PubMed  PubMed Central  Google Scholar 

  66. Tabares, P. et al. Human regulatory T cells are selectively activated by low-dose application of the CD28 superagonist TGN1412/TAB08. Eur. J. Immunol. 44, 1225–1236 (2014).

    CAS  PubMed  Google Scholar 

  67. Tyrsin, D. et al. From TGN1412 to TAB08: the return of CD28 superagonist therapy to clinical development for the treatment of rheumatoid arthritis. Clin. Exp. Rheumatol. 34, 45–48 (2016).

    PubMed  Google Scholar 

  68. Liu, D. et al. 2B4 (CD244) induced by selective CD28 blockade functionally regulates allograft-specific CD8+ T cell responses. J. Exp. Med. 211, 297–311 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Poirier, N. et al. FR104, an antagonist anti-CD28 monovalent Fab′ antibody, prevents alloimmunization and allows calcineurin inhibitor minimization in nonhuman primate renal allograft. Am. J. Transpl. 15, 88–100 (2015).

    CAS  Google Scholar 

  70. Poirier, N. et al. Preclinical efficacy and immunological safety of FR104, an antagonist anti-CD28 monovalent Fab′ antibody. Am. J. Transpl. 12, 2630–2640 (2012).

    CAS  Google Scholar 

  71. Poirier, N. et al. First-in-human study in healthy subjects with FR104, a pegylated monoclonal antibody fragment antagonist of CD28. J. Immunol. 197, 4593–4602 (2016).

    CAS  PubMed  Google Scholar 

  72. Watkins, B. K. et al. CD28 blockade controls T cell activation to prevent graft-versus-host disease in primates. J. Clin. Invest. 128, 3991–4007 (2018).

    PubMed  PubMed Central  Google Scholar 

  73. Vanhove, B. et al. Selective blockade of CD28 and not CTLA-4 with a single-chain Fv-α1-antitrypsin fusion antibody. Blood 102, 564–570 (2003).

    CAS  PubMed  Google Scholar 

  74. Poirier, N. et al. Inducing CTLA-4-dependent immune regulation by selective CD28 blockade promotes regulatory T cells in organ transplantation. Sci. Transl. Med. 2, 17ra10 (2010).

    PubMed  PubMed Central  Google Scholar 

  75. Pieper, J. et al. CTLA4–Ig (abatacept) therapy modulates T cell effector functions in autoantibody-positive rheumatoid arthritis patients. BMC Immunol. 14, 34 (2013).

    PubMed  PubMed Central  Google Scholar 

  76. Orban, T. et al. Reduction in CD4 central memory T-cell subset in costimulation modulator abatacept-treated patients with recent-onset type 1 diabetes is associated with slower C-peptide decline. Diabetes 63, 3449–3457 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Poirier, N. et al. Selective CD28 antagonist blunts memory immune responses and promotes long-term control of skin inflammation in nonhuman primates. J. Immunol. 196, 274–283 (2016).

    CAS  PubMed  Google Scholar 

  78. Badell, I. R. et al. Selective CD28 blockade results in superior inhibition of donor-specific T follicular helper cell and antibody responses relative to CTLA4–Ig. Am. J. Transpl. 18, 89–101 (2018).

    CAS  Google Scholar 

  79. Hutloff, A. et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397, 263–266 (1999).

    CAS  PubMed  Google Scholar 

  80. Yoshinaga, S. K. et al. T-cell co-stimulation through B7RP-1 and ICOS. Nature 402, 827–832 (1999).

    CAS  PubMed  Google Scholar 

  81. Bauquet, A. T. et al. The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nat. Immunol. 10, 167–175 (2009).

    CAS  PubMed  Google Scholar 

  82. Wassink, L. et al. ICOS expression by activated human TH cells is enhanced by IL-12 and IL-23: increased ICOS expression enhances the effector function of both TH1 and TH2 cells. J. Immunol. 173, 1779–1786 (2004).

    CAS  PubMed  Google Scholar 

  83. Chtanova, T. et al. T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-TH1/TH2 effector cells that provide help for B cells. J. Immunol. 173, 68–78 (2004).

    CAS  PubMed  Google Scholar 

  84. Janke, M., Witsch, E. J., Mages, H. W., Hutloff, A. & Kroczek, R. A. Eminent role of ICOS costimulation for T cells interacting with plasmacytoid dendritic cells. Immunology 118, 353–360 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Watanabe, M. et al. Down-regulation of ICOS ligand by interaction with ICOS functions as a regulatory mechanism for immune responses. J. Immunol. 180, 5222–5234 (2008).

    CAS  PubMed  Google Scholar 

  86. Sacquin, A., Gador, M. & Fazilleau, N. The strength of BCR signaling shapes terminal development of follicular helper T cells in mice. Eur. J. Immunol. 47, 1295–1304 (2017).

    CAS  PubMed  Google Scholar 

  87. Aicher, A. et al. Characterization of human inducible costimulator ligand expression and function. J. Immunol. 164, 4689–4696 (2000).

    CAS  PubMed  Google Scholar 

  88. Fos, C. et al. ICOS ligation recruits the p50α PI3K regulatory subunit to the immunological synapse. J. Immunol. 181, 1969–1977 (2008).

    CAS  PubMed  Google Scholar 

  89. Gigoux, M. et al. Inducible costimulator promotes helper T-cell differentiation through phosphoinositide 3-kinase. Proc. Natl Acad. Sci. USA 106, 20371–20376 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Fabre, S. et al. FOXO1 regulates l-selectin and a network of human T cell homing molecules downstream of phosphatidylinositol 3-kinase. J. Immunol. 181, 2980–2989 (2008).

    CAS  PubMed  Google Scholar 

  91. Stone, E. L. et al. ICOS coreceptor signaling inactivates the transcription factor FOXO1 to promote TFH cell differentiation. Immunity 42, 239–251 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Xu, H. et al. Follicular T-helper cell recruitment governed by bystander B cells and ICOS-driven motility. Nature 496, 523–527 (2013).

    CAS  PubMed  Google Scholar 

  93. Weber, J. P. et al. ICOS maintains the T follicular helper cell phenotype by down-regulating Kruppel-like factor 2. J. Exp. Med. 212, 217–233 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Leavenworth, J. W., Verbinnen, B., Yin, J., Huang, H. & Cantor, H. A p85α-osteopontin axis couples the receptor ICOS to sustained Bcl-6 expression by follicular helper and regulatory T cells. Nat. Immunol. 16, 96–106 (2015).

    CAS  PubMed  Google Scholar 

  95. Simpson, N. et al. Expansion of circulating T cells resembling follicular helper T cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosus. Arthritis Rheum. 62, 234–244 (2010).

    CAS  PubMed  Google Scholar 

  96. Szabo, K. et al. Follicular helper T cells may play an important role in the severity of primary Sjogren’s syndrome. Clin. Immunol. 147, 95–104 (2013).

    CAS  PubMed  Google Scholar 

  97. Wang, J. et al. High frequencies of activated B cells and T follicular helper cells are correlated with disease activity in patients with new-onset rheumatoid arthritis. Clin. Exp. Immunol. 174, 212–220 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Kenefeck, R. et al. Follicular helper T cell signature in type 1 diabetes. J. Clin. Invest. 125, 292–303 (2015).

    PubMed  Google Scholar 

  99. Hutloff, A. et al. Involvement of inducible costimulator in the exaggerated memory B cell and plasma cell generation in systemic lupus erythematosus. Arthritis Rheum. 50, 3211–3220 (2004).

    PubMed  Google Scholar 

  100. Taylor, D. K. et al. T follicular helper-like cells contribute to skin fibrosis. Sci. Transl. Med. 10, eaaf5307 (2018).

    PubMed  Google Scholar 

  101. Vinuesa, C. G. et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435, 452–458 (2005).

    CAS  PubMed  Google Scholar 

  102. Odegard, J. M. et al. ICOS-dependent extrafollicular helper T cells elicit IgG production via IL-21 in systemic autoimmunity. J. Exp. Med. 205, 2873–2886 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Huang, X. et al. The expression of Bcl-6 in circulating follicular helper-like T cells positively correlates with the disease activity in systemic lupus erythematosus. Clin. Immunol. 173, 161–170 (2016).

    CAS  PubMed  Google Scholar 

  104. Grimbacher, B. et al. Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nat. Immunol. 4, 261–268 (2003).

    CAS  PubMed  Google Scholar 

  105. Bossaller, L. et al. ICOS deficiency is associated with a severe reduction of CXCR5+CD4 germinal center TH cells. J. Immunol. 177, 4927–4932 (2006).

    CAS  PubMed  Google Scholar 

  106. Iwai, H. et al. Involvement of inducible costimulator-B7 homologous protein costimulatory pathway in murine lupus nephritis. J. Immunol. 171, 2848–2854 (2003).

    CAS  PubMed  Google Scholar 

  107. Katsumata, Y. et al. Attenuation of experimental autoimmune myositis by blocking ICOS–ICOS ligand interaction. J. Immunol. 179, 3772–3779 (2007).

    CAS  PubMed  Google Scholar 

  108. Akbari, O. et al. Antigen-specific regulatory T cells develop via the ICOS–ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. Nat. Med. 8, 1024–1032 (2002).

    CAS  PubMed  Google Scholar 

  109. Ozkaynak, E. et al. Importance of ICOS–B7RP-1 costimulation in acute and chronic allograft rejection. Nat. Immunol. 2, 591–596 (2001).

    CAS  PubMed  Google Scholar 

  110. Gonzalo, J. A. et al. ICOS is critical for T helper cell-mediated lung mucosal inflammatory responses. Nat. Immunol. 2, 597–604 (2001).

    CAS  PubMed  Google Scholar 

  111. Rottman, J. B. et al. The costimulatory molecule ICOS plays an important role in the immunopathogenesis of EAE. Nat. Immunol. 2, 605–611 (2001).

    CAS  PubMed  Google Scholar 

  112. Nurieva, R. I., Mai, X. M., Forbush, K., Bevan, M. J. & Dong, C. B7h is required for T cell activation, differentiation, and effector function. Proc. Natl Acad. Sci. USA 100, 14163–14168 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Iwai, H. et al. Amelioration of collagen-induced arthritis by blockade of inducible costimulator-B7 homologous protein costimulation. J. Immunol. 169, 4332–4339 (2002).

    CAS  PubMed  Google Scholar 

  114. Taylor, P. A. et al. Targeting of inducible costimulator (ICOS) expressed on alloreactive T cells down-regulates graft-versus-host disease (GVHD) and facilitates engraftment of allogeneic bone marrow (BM). Blood 105, 3372–3380 (2005).

    CAS  PubMed  Google Scholar 

  115. Burlion, A., Brunel, S., Petit, N. Y., Olive, D. & Marodon, G. Targeting the human T-cell inducible costimulator molecule with a monoclonal antibody prevents graft-vs-host disease and preserves graft vs leukemia in a xenograft murine model. Front. Immunol. 8, 756 (2017).

    PubMed  PubMed Central  Google Scholar 

  116. Metz, D. P. et al. Defining dose–response relationships in the therapeutic blockade of B7RP-1-dependent immune responses. Eur. J. Pharmacol. 610, 110–118 (2009).

    CAS  PubMed  Google Scholar 

  117. Hu, Y. L., Metz, D. P., Chung, J., Siu, G. & Zhang, M. B7RP-1 blockade ameliorates autoimmunity through regulation of follicular helper T cells. J. Immunol. 182, 1421–1428 (2009).

    CAS  PubMed  Google Scholar 

  118. Sullivan, B. A. et al. Inducible T-cell co-stimulator ligand (ICOSL) blockade leads to selective inhibition of anti-KLH IgG responses in subjects with systemic lupus erythematosus. Lupus Sci. Med. 3, e000146 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Cheng, L. E. et al. Brief report: a randomized, double-blind, parallel-group, placebo-controlled, multiple-dose study to evaluate AMG 557 in patients with systemic lupus erythematosus and active lupus arthritis. Arthritis Rheumatol. 70, 1071–1076 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Mittereder, N. et al. Loss of immune tolerance is controlled by ICOS in Sle1 mice. J. Immunol. 197, 491–503 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Tajima, N. et al. Critical role of activation-inducible lymphocyte immunomediatory molecule/inducible costimulator in the effector function of human T cells: a comparative in vitro study of effects of its blockade and CD28 blockade in human beings and monkeys. Hum. Immunol. 69, 399–408 (2008).

    CAS  PubMed  Google Scholar 

  122. Faggioni, R. et al. Determination of the minimum anticipated biological level (MABEL) for an ADCC-enhanced inducible co-stimulator (ICOS) monoclonal antibody for the treatment of autoimmune diseases. Ann. Rheum. Dis. 69, 175 (2010).

    Google Scholar 

  123. Wikenheiser, D. J. & Stumhofer, J. S. ICOS co-stimulation: friend or foe? Front. Immunol. 7, 304 (2016).

    PubMed  PubMed Central  Google Scholar 

  124. Hui, E. et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 355, 1428–1433 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Kamphorst, A. O. et al. Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science 355, 1423–1427 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Walker, L. S. K. PD-1 and CTLA4: two checkpoints, one pathway? Sci. Immunol. 2, eaan3864 (2017).

    PubMed  PubMed Central  Google Scholar 

  127. Mizuno, R. et al. PD-1 primarily targets TCR signal in the inhibition of functional T cell activation. Front. Immunol. 10, 630 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Raptopoulou, A. P. et al. The programmed death 1/programmed death ligand 1 inhibitory pathway is up-regulated in rheumatoid synovium and regulates peripheral T cell responses in human and murine arthritis. Arthritis Rheum. 62, 1870–1880 (2010).

    CAS  PubMed  Google Scholar 

  129. Wang, G., Hu, P., Yang, J., Shen, G. & Wu, X. The effects of PDL–Ig on collagen-induced arthritis. Rheumatol. Int. 31, 513–519 (2011).

    CAS  PubMed  Google Scholar 

  130. Song, M. Y. et al. Protective effects of Fc-fused PD-L1 on two different animal models of colitis. Gut 64, 260–271 (2015).

    CAS  PubMed  Google Scholar 

  131. Khan, S. & Gerber, D. E. Autoimmunity, checkpoint inhibitor therapy and immune-related adverse events: a review. Semin. Cancer Biol. 64, 93–101 (2020).

    CAS  PubMed  Google Scholar 

  132. Hurchla, M. A. et al. B and T lymphocyte attenuator exhibits structural and expression polymorphisms and is highly induced in anergic CD4+ T cells. J. Immunol. 174, 3377–3385 (2005).

    CAS  PubMed  Google Scholar 

  133. Ritthipichai, K. et al. Multifaceted role of BTLA in the control of CD8+ T-cell fate after antigen encounter. Clin. Cancer Res. 23, 6151–6164 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Watanabe, N. et al. BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat. Immunol. 4, 670–679 (2003).

    CAS  PubMed  Google Scholar 

  135. Nakagomi, D. et al. Therapeutic potential of B and T lymphocyte attenuator expressed on CD8+ T cells for contact hypersensitivity. J. Invest. Dermatol. 133, 702–711 (2013).

    CAS  PubMed  Google Scholar 

  136. Albring, J. C. et al. Targeting of B and T lymphocyte associated (BTLA) prevents graft-versus-host disease without global immunosuppression. J. Exp. Med. 207, 2551–2559 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Gonzalez, L. C. et al. A coreceptor interaction between the CD28 and TNF receptor family members B and T lymphocyte attenuator and herpesvirus entry mediator. Proc. Natl Acad. Sci. USA 102, 1116–1121 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Atwell, S. K., Obungu, V. H. & Vendel, A. C. BTLA agonist antibodies and uses thereof. Patent WO/2018/213113Al (2018).

  139. van Kooten, C. & Banchereau, J. CD40–CD40 ligand. J. Leukoc. Biol. 67, 2–17 (2000).

    PubMed  Google Scholar 

  140. An, H. J. et al. Crystallographic and mutational analysis of the CD40–CD154 complex and its implications for receptor activation. J. Biol. Chem. 286, 11226–11235 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Clark, E. A. & Ledbetter, J. A. Activation of human B cells mediated through two distinct cell surface differentiation antigens, Bp35 and Bp50. Proc. Natl Acad. Sci. USA 83, 4494–4498 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Suttles, J. & Stout, R. D. Macrophage CD40 signaling: a pivotal regulator of disease protection and pathogenesis. Semin. Immunol. 21, 257–264 (2009).

    CAS  PubMed  Google Scholar 

  143. Ma, D. Y. & Clark, E. A. The role of CD40 and CD154/CD40L in dendritic cells. Semin. Immunol. 21, 265–272 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Henn, V., Steinbach, S., Buchner, K., Presek, P. & Kroczek, R. A. The inflammatory action of CD40 ligand (CD154) expressed on activated human platelets is temporally limited by coexpressed CD40. Blood 98, 1047–1054 (2001).

    CAS  PubMed  Google Scholar 

  145. Dugger, K., Lowder, T. W., Tucker, T. A. & Schwiebert, L. M. Epithelial cells as immune effector cells: the role of CD40. Semin. Immunol. 21, 289–292 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Engel, D. et al. The immunobiology of CD154–CD40–TRAF interactions in atherosclerosis. Semin. Immunol. 21, 308–312 (2009).

    CAS  PubMed  Google Scholar 

  147. van Kooten, C. et al. B cells regulate expression of CD40 ligand on activated T cells by lowering the mRNA level and through the release of soluble CD40. Eur. J. Immunol. 24, 787–792 (1994).

    PubMed  Google Scholar 

  148. Roy, M., Waldschmidt, T., Aruffo, A., Ledbetter, J. A. & Noelle, R. J. The regulation of the expression of gp39, the CD40 ligand, on normal and cloned CD4+ T cells. J. Immunol. 151, 2497–2510 (1993).

    CAS  PubMed  Google Scholar 

  149. Henn, V. et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 391, 591–594 (1998).

    CAS  PubMed  Google Scholar 

  150. Mach, F. et al. Functional CD40 ligand is expressed on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for CD40–CD40 ligand signaling in atherosclerosis. Proc. Natl Acad. Sci. USA 94, 1931–1936 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Bodmer, J. L., Schneider, P. & Tschopp, J. The molecular architecture of the TNF superfamily. Trends Biochem. Sci. 27, 19–26 (2002).

    CAS  PubMed  Google Scholar 

  152. Naismith, J. H. & Sprang, S. R. Modularity in the TNF-receptor family. Trends Biochem. Sci. 23, 74–79 (1998).

    CAS  PubMed  Google Scholar 

  153. Bishop, G. A., Moore, C. R., Xie, P., Stunz, L. L. & Kraus, Z. J. TRAF proteins in CD40 signaling. Adv. Exp. Med. Biol. 597, 131–151 (2007).

    PubMed  Google Scholar 

  154. Grammer, A. C. & Lipsky, P. E. CD40-mediated regulation of immune responses by TRAF-dependent and TRAF-independent signaling mechanisms. Adv. Immunol. 76, 61–178 (2000).

    CAS  PubMed  Google Scholar 

  155. Rowland, S. L. et al. A novel mechanism for TNFR-associated factor 6-dependent CD40 signaling. J. Immunol. 179, 4645–4653 (2007).

    CAS  PubMed  Google Scholar 

  156. Foy, T. M. et al. gp39–CD40 interactions are essential for germinal center formation and the development of B cell memory. J. Exp. Med. 180, 157–163 (1994).

    CAS  PubMed  Google Scholar 

  157. Kawabe, T. et al. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1, 167–178 (1994).

    CAS  PubMed  Google Scholar 

  158. Caux, C. et al. Activation of human dendritic cells through CD40 cross-linking. J. Exp. Med. 180, 1263–1272 (1994).

    CAS  PubMed  Google Scholar 

  159. Durandy, A., Revy, P. & Fischer, A. Human models of inherited immunoglobulin class switch recombination and somatic hypermutation defects (hyper-IgM syndromes). Adv. Immunol. 82, 295–330 (2004).

    CAS  PubMed  Google Scholar 

  160. Lougaris, V., Badolato, R., Ferrari, S. & Plebani, A. Hyper immunoglobulin M syndrome due to CD40 deficiency: clinical, molecular, and immunological features. Immunol. Rev. 203, 48–66 (2005).

    CAS  PubMed  Google Scholar 

  161. Xu, J. et al. Mice deficient for the CD40 ligand. Immunity 1, 423–431 (1994).

    CAS  PubMed  Google Scholar 

  162. Boumpas, D. T. et al. A short course of BG9588 (anti-CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis. Arthritis Rheum. 48, 719–727 (2003).

    CAS  PubMed  Google Scholar 

  163. Imai, A. et al. A novel fully human anti-CD40 monoclonal antibody, 4D11, for kidney transplantation in cynomolgus monkeys. Transplantation 84, 1020–1028 (2007).

    CAS  PubMed  Google Scholar 

  164. Kanmaz, T. et al. Monotherapy with the novel human anti-CD154 monoclonal antibody ABI793 in rhesus monkey renal transplantation model. Transplantation 77, 914–920 (2004).

    CAS  PubMed  Google Scholar 

  165. Mauri, C., Mars, L. T. & Londei, M. Therapeutic activity of agonistic monoclonal antibodies against CD40 in a chronic autoimmune inflammatory process. Nat. Med. 6, 673–679 (2000).

    CAS  PubMed  Google Scholar 

  166. Wieczorek, G. et al. Blockade of CD40–CD154 pathway interactions suppresses ectopic lymphoid structures and inhibits pathology in the NOD/ShiLtJ mouse model of Sjogren’s syndrome. Ann. Rheum. Dis. 78, 974–978 (2019).

    CAS  PubMed  Google Scholar 

  167. Vonderheide, R. H. & Glennie, M. J. Agonistic CD40 antibodies and cancer therapy. Clin. Cancer Res. 19, 1035–1043 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Dumont, F. J. IDEC-131. IDEC/Eisai. Curr. Opin. Investig. Drugs 3, 725–734 (2002).

    CAS  PubMed  Google Scholar 

  169. Andre, P. et al. CD40L stabilizes arterial thrombi by a β3 integrin-dependent mechanism. Nat. Med. 8, 247–252 (2002).

    CAS  PubMed  Google Scholar 

  170. Ferrant, J. L. et al. The contribution of Fc effector mechanisms in the efficacy of anti-CD154 immunotherapy depends on the nature of the immune challenge. Int. Immunol. 16, 1583–1594 (2004).

    CAS  PubMed  Google Scholar 

  171. Chamberlain, C. et al. Repeated administration of dapirolizumab pegol in a randomised phase I study is well tolerated and accompanied by improvements in several composite measures of systemic lupus erythematosus disease activity and changes in whole blood transcriptomic profiles. Ann. Rheum. Dis. 76, 1837–1844 (2017).

    CAS  PubMed  Google Scholar 

  172. Karnell, J. L. et al. A CD40L-targeting protein reduces autoantibodies and improves disease activity in patients with autoimmunity. Sci. Transl Med. 11, eaar6584 (2019).

    PubMed  Google Scholar 

  173. Cordoba, F. et al. A novel, blocking, Fc-silent anti-CD40 monoclonal antibody prolongs nonhuman primate renal allograft survival in the absence of B cell depletion. Am. J. Transpl. 15, 2825–2836 (2015).

    CAS  Google Scholar 

  174. Nashan, B. et al. CD40 inhibition with CFZ533 — a new, fully human, non-depleting, Fc silent mAb — improves renal allograft function while demonstrating comparable efficacy vs. tacrolimus in de-novo CNI-free kidney transplant recipients. Transplantation 102, S366 (2018).

    Google Scholar 

  175. Ristov, J. et al. Characterization of the in vitro and in vivo properties of CFZ533, a blocking and non-depleting anti-CD40 monoclonal antibody. Am. J. Transpl. 18, 2895–2904 (2018).

    CAS  Google Scholar 

  176. Fisher, B. A. et al. Assessment of the anti-CD40 antibody iscalimab in patients with primary Sjögren’s syndrome: a multicentre, randomised, double-blind, placebo-controlled, proof-of-concept study. Lancet Rheumatol. 2, E142–E152 (2020).

    Google Scholar 

  177. Nashan, B. et al. CFZ533, a new anti-CD40 mAb demonstrates comparable efficacy and better renal function versus tacrolimus in de-novo CNI-free kidney transplantation [abstract]. Am. J. Transplant. 17 (Suppl. 3), 400 (2017).

    Google Scholar 

  178. Harland, R. C. et al. Efficacy and safety of bleselumab in kidney transplant recipients: a phase 2, randomized, open-label, noninferiority study. Am. J. Transpl. 20, 159–171 (2020).

    CAS  Google Scholar 

  179. Ma, A. et al. Pharmacokinetics and pharmacodynamics of ASKP1240, a fully human anti-CD40 antibody, in normal and renal transplanted cynomolgus monkeys. Transplantation 97, 397–404 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Paterson, D. J. et al. Antigens of activated rat T lymphocytes including a molecule of 50,000 Mr detected only on CD4 positive T blasts. Mol. Immunol. 24, 1281–1290 (1987).

    CAS  PubMed  Google Scholar 

  181. Mallett, S., Fossum, S. & Barclay, A. N. Characterization of the MRC OX40 antigen of activated CD4 positive T lymphocytes—a molecule related to nerve growth factor receptor. The EMBO J. 9, 1063–1068 (1990).

    CAS  PubMed  Google Scholar 

  182. Croft, M., So, T., Duan, W. & Soroosh, P. The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol. Rev. 229, 173–191 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Rogers, P. R., Song, J., Gramaglia, I., Killeen, N. & Croft, M. OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells. Immunity 15, 445–455 (2001).

    CAS  PubMed  Google Scholar 

  184. Endl, J. et al. Coexpression of CD25 and OX40 (CD134) receptors delineates autoreactive T-cells in type 1 diabetes. Diabetes 55, 50–60 (2006).

    CAS  PubMed  Google Scholar 

  185. Godfrey, W. R., Fagnoni, F. F., Harara, M. A., Buck, D. & Engleman, E. G. Identification of a human OX-40 ligand, a costimulator of CD4+ T cells with homology to tumor necrosis factor. J. Exp. Med. 180, 757–762 (1994).

    CAS  PubMed  Google Scholar 

  186. Murata, K. et al. Impairment of antigen-presenting cell function in mice lacking expression of OX40 ligand. J. Exp. Med. 191, 365–374 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Ohshima, Y. et al. Expression and function of OX40 ligand on human dendritic cells. J. Immunol. 159, 3838–3848 (1997).

    CAS  PubMed  Google Scholar 

  188. Ito, T. et al. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J. Exp. Med. 202, 1213–1223 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Maxwell, J. R. et al. IL-18 bridges innate and adaptive immunity through IFN-γ and the CD134 pathway. J. Immunol. 177, 234–245 (2006).

    CAS  PubMed  Google Scholar 

  190. Stuber, E., Neurath, M., Calderhead, D., Fell, H. P. & Strober, W. Cross-linking of OX40 ligand, a member of the TNF/NGF cytokine family, induces proliferation and differentiation in murine splenic B cells. Immunity 2, 507–521 (1995).

    CAS  PubMed  Google Scholar 

  191. Compaan, D. M. & Hymowitz, S. G. The crystal structure of the costimulatory OX40–OX40L complex. Structure 14, 1321–1330 (2006).

    CAS  PubMed  Google Scholar 

  192. Willoughby, J., Griffiths, J., Tews, I. & Cragg, M. S. OX40: structure and function — what questions remain? Mol. Immunol. 83, 13–22 (2017).

    CAS  PubMed  Google Scholar 

  193. Webb, G. J., Hirschfield, G. M. & Lane, P. J. OX40, OX40L and autoimmunity: a comprehensive review. Clin. Rev. Allergy Immunol. 50, 312–332 (2016).

    CAS  PubMed  Google Scholar 

  194. Kopf, M. et al. OX40-deficient mice are defective in TH cell proliferation but are competent in generating B cell and CTL responses after virus infection. Immunity 11, 699–708 (1999).

    CAS  PubMed  Google Scholar 

  195. Gramaglia, I. et al. The OX40 costimulatory receptor determines the development of CD4 memory by regulating primary clonal expansion. J. Immunol. 165, 3043–3050 (2000).

    CAS  PubMed  Google Scholar 

  196. Song, J., So, T., Cheng, M., Tang, X. & Croft, M. Sustained survivin expression from OX40 costimulatory signals drives T cell clonal expansion. Immunity 22, 621–631 (2005).

    CAS  PubMed  Google Scholar 

  197. Ohshima, Y. et al. OX40 costimulation enhances interleukin-4 (IL-4) expression at priming and promotes the differentiation of naive human CD4+ T cells into high IL-4-producing effectors. Blood 92, 3338–3345 (1998).

    CAS  PubMed  Google Scholar 

  198. So, T. & Croft, M. Cutting edge: OX40 inhibits TGF-β- and antigen-driven conversion of naive CD4 T cells into CD25+Foxp3+ T cells. J. Immunol. 179, 1427–1430 (2007).

    CAS  PubMed  Google Scholar 

  199. Valzasina, B. et al. Triggering of OX40 (CD134) on CD4+CD25+ T cells blocks their inhibitory activity: a novel regulatory role for OX40 and its comparison with GITR. Blood 105, 2845–2851 (2005).

    CAS  PubMed  Google Scholar 

  200. Croft, M. & Siegel, R. M. Beyond TNF: TNF superfamily cytokines as targets for the treatment of rheumatic diseases. Nat. Rev. Rheumatol. 13, 217–233 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Song, A., Song, J., Tang, X. & Croft, M. Cooperation between CD4 and CD8 T cells for anti-tumor activity is enhanced by OX40 signals. Eur. J. Immunol. 37, 1224–1232 (2007).

    CAS  PubMed  Google Scholar 

  202. Aspeslagh, S. et al. Rationale for anti-OX40 cancer immunotherapy. Eur. J. Cancer 52, 50–66 (2016).

    CAS  PubMed  Google Scholar 

  203. Wang, R. et al. An integrative approach to inform optimal administration of OX40 agonist antibodies in patients with advanced solid tumors. Clin. Cancer Res. 25, 6709–6720 (2019).

    CAS  PubMed  Google Scholar 

  204. Gauvreau, G. M. et al. OX40L blockade and allergen-induced airway responses in subjects with mild asthma. Clin. Exp. Allergy 44, 29–37 (2014).

    CAS  PubMed  Google Scholar 

  205. Guttman-Yassky, E. et al. GBR 830, an anti-OX40, improves skin gene signatures and clinical scores in patients with atopic dermatitis. J. Allergy Clin. Immunol. 144, 482–493.e7 (2019).

    CAS  PubMed  Google Scholar 

  206. Papp, K. A., Gooderham, M. J., Girard, G., Raman, M. & Strout, V. Phase I randomized study of KHK4083, an anti-OX40 monoclonal antibody, in patients with mild to moderate plaque psoriasis. J. Eur. Acad. Dermatol. Venereol. 31, 1324–1332 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Seshasayee, D. et al. In vivo blockade of OX40 ligand inhibits thymic stromal lymphopoietin driven atopic inflammation. J. Clin. Invest. 117, 3868–3878 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Tkachev, V. et al. Combined OX40L and mTOR blockade controls effector T cell activation while preserving Treg reconstitution after transplant. Sci. Transl. Med. 9, eaan3085 (2017).

    PubMed  PubMed Central  Google Scholar 

  209. St Clair, E. W. et al. Clinical efficacy and safety of baminercept, a lymphotoxin β receptor fusion protein, in primary Sjogren’s syndrome: results from a phase II randomized, double-blind, placebo-controlled trial. Arthritis rheumatol. 70, 1470–1480 (2018).

    Google Scholar 

  210. Francisco, J. A. et al. cAC10–vcMMAE, an anti-CD30–monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood 102, 1458–1465 (2003).

    CAS  PubMed  Google Scholar 

  211. Carswell, E. A. et al. An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl Acad. Sci. USA 72, 3666–3670 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Asher, A., Mule, J. J., Reichert, C. M., Shiloni, E. & Rosenberg, S. A. Studies on the anti-tumor efficacy of systemically administered recombinant tumor necrosis factor against several murine tumors in vivo. J. Immunol. 138, 963–974 (1987).

    CAS  PubMed  Google Scholar 

  213. Creaven, P. J. et al. Phase I clinical trial of recombinant human tumor necrosis factor. Cancer Chemother. Pharmacol. 20, 137–144 (1987).

    CAS  PubMed  Google Scholar 

  214. Feinberg, B. et al. A phase I trial of intravenously-administered recombinant tumor necrosis factor-α in cancer patients. J. Clin. Oncol. 6, 1328–1334 (1988).

    CAS  PubMed  Google Scholar 

  215. Lipsky, P. E. et al. Infliximab and methotrexate in the treatment of rheumatoid arthritis. anti-tumor necrosis factor trial in rheumatoid arthritis with concomitant therapy study group. N. Engl. J. Med. 343, 1594–1602 (2000).

    CAS  PubMed  Google Scholar 

  216. Weinblatt, M. E. et al. A trial of etanercept, a recombinant tumor necrosis factor receptor:Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N. Engl. J. Med. 340, 253–259 (1999).

    CAS  PubMed  Google Scholar 

  217. Furst, D. E. et al. Adalimumab, a fully human anti tumor necrosis factor-α monoclonal antibody, and concomitant standard antirheumatic therapy for the treatment of rheumatoid arthritis: results of STAR (Safety Trial of Adalimumab in Rheumatoid Arthritis). J. Rheumatol. 30, 2563–2571 (2003).

    CAS  PubMed  Google Scholar 

  218. Emery, P. et al. Golimumab, a human anti-tumor necrosis factor monoclonal antibody, injected subcutaneously every 4 weeks in patients with active rheumatoid arthritis who had never taken methotrexate: 1-year and 2-year clinical, radiologic, and physical function findings of a phase III, multicenter, randomized, double-blind, placebo-controlled study. Arthritis Care Res. 65, 1732–1742 (2013).

    CAS  Google Scholar 

  219. Fleischmann, R. et al. Long-term maintenance of certolizumab pegol safety and efficacy, in combination with methotrexate and as monotherapy, in rheumatoid arthritis patients. Rheumatol. Ther. 4, 57–69 (2017).

    PubMed  PubMed Central  Google Scholar 

  220. van Oosten, B. W. et al. Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2. Neurology 47, 1531–1534 (1996).

    PubMed  Google Scholar 

  221. Fischer, R. et al. Exogenous activation of tumor necrosis factor receptor 2 promotes recovery from sensory and motor disease in a model of multiple sclerosis. Brain Behav. Immun. 81, 247–259 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Chopra, M. et al. Exogenous TNFR2 activation protects from acute GvHD via host Treg cell expansion. J. Exp. Med. 213, 1881–1900 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Lubrano di Ricco, M. et al. Tumor necrosis factor receptor family costimulation increases regulatory T-cell activation and function via NF-κB. Eur. J. Immunol. 50, 972–985 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Steeland, S., Libert, C. & Vandenbroucke, R. E. A new venue of TNF targeting. Int. J. Mol. Sci. 19, 1442 (2018).

    PubMed Central  Google Scholar 

  225. Schneider, P. et al. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J. Exp. Med. 189, 1747–1756 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Moore, P. A. et al. BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science 285, 260–263 (1999).

    CAS  PubMed  Google Scholar 

  227. Gross, J. A. et al. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature 404, 995–999 (2000).

    CAS  PubMed  Google Scholar 

  228. Thompson, J. S. et al. BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science 293, 2108–2111 (2001).

    CAS  PubMed  Google Scholar 

  229. Zhang, L. et al. Identification of BLyS (B lymphocyte stimulator), a non-myelin-associated protein, as a functional ligand for Nogo-66 receptor. J. Neurosci. 29, 6348–6352 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Yu, G. et al. APRIL and TALL-I and receptors BCMA and TACI: system for regulating humoral immunity. Nat. Immunol. 1, 252–256 (2000).

    CAS  PubMed  Google Scholar 

  231. Litinskiy, M. B. et al. DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat. Immunol. 3, 822–829 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Nardelli, B. et al. Synthesis and release of B-lymphocyte stimulator from myeloid cells. Blood 97, 198–204 (2001).

    CAS  PubMed  Google Scholar 

  233. Krumbholz, M. et al. BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. J. Exp. Med. 201, 195–200 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Goenka, R. et al. Local BLyS production by T follicular cells mediates retention of high affinity B cells during affinity maturation. J. Exp. Med. 211, 45–56 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Sasaki, Y., Casola, S., Kutok, J. L., Rajewsky, K. & Schmidt-Supprian, M. TNF family member B cell-activating factor (BAFF) receptor-dependent and -independent roles for BAFF in B cell physiology. J. Immunol. 173, 2245–2252 (2004).

    CAS  PubMed  Google Scholar 

  236. Schiemann, B. et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science 293, 2111–2114 (2001).

    CAS  PubMed  Google Scholar 

  237. Warnatz, K. et al. B-cell activating factor receptor deficiency is associated with an adult-onset antibody deficiency syndrome in humans. Proc. Natl Acad. Sci. USA 106, 13945–13950 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. O’Connor, B. P. et al. BCMA is essential for the survival of long-lived bone marrow plasma cells. J. Exp. Med. 199, 91–98 (2004).

    PubMed  PubMed Central  Google Scholar 

  239. Tsuji, S., Cortesao, C., Bram, R. J., Platt, J. L. & Cascalho, M. TACI deficiency impairs sustained Blimp-1 expression in B cells decreasing long-lived plasma cells in the bone marrow. Blood 118, 5832–5839 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Castigli, E. et al. TACI and BAFF-R mediate isotype switching in B cells. J. Exp. Med. 201, 35–39 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Hoffmann, F. S. et al. The immunoregulator soluble TACI is released by ADAM10 and reflects B cell activation in autoimmunity. J. Immunol. 194, 542–552 (2015).

    CAS  PubMed  Google Scholar 

  242. Huard, B., Schneider, P., Mauri, D., Tschopp, J. & French, L. E. T cell costimulation by the TNF ligand BAFF. J. Immunol. 167, 6225–6231 (2001).

    CAS  PubMed  Google Scholar 

  243. Mackay, F. et al. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J. Exp. Med. 190, 1697–1710 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Khare, S. D. et al. Severe B cell hyperplasia and autoimmune disease in TALL-1 transgenic mice. Proc. Natl Acad. Sci. USA 97, 3370–3375 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Cheema, G. S., Roschke, V., Hilbert, D. M. & Stohl, W. Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum. 44, 1313–1319 (2001).

    CAS  PubMed  Google Scholar 

  246. Petri, M. et al. Association of plasma B lymphocyte stimulator levels and disease activity in systemic lupus erythematosus. Arthritis Rheum. 58, 2453–2459 (2008).

    CAS  PubMed  Google Scholar 

  247. Krumbholz, M. et al. BAFF is elevated in serum of patients with Wegener’s granulomatosis. J. Autoimmun. 25, 298–302 (2005).

    CAS  PubMed  Google Scholar 

  248. Navarra, S. V. et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet 377, 721–731 (2011).

    CAS  PubMed  Google Scholar 

  249. Furie, R. et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum. 63, 3918–3930 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Stohl, W. et al. Efficacy and safety of subcutaneous belimumab in systemic lupus erythematosus: a fifty-two-week randomized, double-blind, placebo-controlled study. Arthritis Rheumatol. 69, 1016–1027 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. De Vita, S. et al. Efficacy and safety of belimumab given for 12 months in primary Sjogren’s syndrome: the BELISS open-label phase II study. Rheumatology 54, 2249–2256 (2015).

    PubMed  Google Scholar 

  252. Stohl, W. et al. Efficacy and safety of belimumab in patients with rheumatoid arthritis: a phase II, randomized, double-blind, placebo-controlled, dose-ranging study. J. Rheumatol. 40, 579–589 (2013).

    CAS  PubMed  Google Scholar 

  253. Gordon, J. K. et al. Belimumab for the treatment of early diffuse systemic sclerosis: results of a randomized, double-blind, placebo-controlled, pilot trial. Arthritis Rheumatol. 70, 308–316 (2018).

    CAS  PubMed  Google Scholar 

  254. Barrett, C. et al. Effect of belimumab on proteinuria and anti-phospholipase A2 receptor autoantibody in primary membranous nephropathy. Nephrol. Dial. Transplant. 35, 599–606 (2020).

    CAS  PubMed  Google Scholar 

  255. Hewett, K. et al. Randomized study of adjunctive belimumab in participants with generalized myasthenia gravis. Neurology 90, e1425–e1434 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Jayne, D. et al. Efficacy and safety of belimumab and azathioprine for maintenance of remission in antineutrophil cytoplasmic antibody-associated vasculitis: a randomized controlled study. Arthritis Rheumatol. 71, 952–963 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Nicoletti, A. M. et al. Unexpected potency differences between B-cell-activating factor (BAFF) antagonist antibodies against various forms of BAFF: trimer, 60-Mer, and membrane-bound. J. Pharmacol. Exp. Ther. 359, 37–44 (2016).

    CAS  PubMed  Google Scholar 

  258. Kowalczyk-Quintas, C. et al. Inhibition of membrane-bound BAFF by the anti-BAFF antibody belimumab. Front. Immunol. 9, 2698 (2018).

    PubMed  PubMed Central  Google Scholar 

  259. Manetta, J. et al. Generation and characterization of tabalumab, a human monoclonal antibody that neutralizes both soluble and membrane-bound B-cell activating factor. J. Inflamm. Res. 7, 121–131 (2014).

    PubMed  PubMed Central  Google Scholar 

  260. Stohl, W. et al. Treatment of systemic lupus erythematosus patients with the BAFF antagonist “peptibody” blisibimod (AMG 623/A-623): results from randomized, double-blind phase 1a and phase 1b trials. Arthritis Res. Ther. 17, 215 (2015).

    PubMed  PubMed Central  Google Scholar 

  261. Anthera Pharmaceuticals. Anthera announces FDA orphan drug designation for blisibimod for the treatment of IgA nephropathy. GlobeNewswire, https://www.globenewswire.com/news-release/2017/08/09/1082711/0/en/Anthera-Announces-FDA-Orphan-Drug-Designation-for-Blisibimod-for-the-Treatment-of-IgA-Nephropathy.html (2017).

  262. Merrill, J. T. et al. Efficacy and safety of subcutaneous tabalumab, a monoclonal antibody to B-cell activating factor, in patients with systemic lupus erythematosus: results from ILLUMINATE-2, a 52-week, phase III, multicentre, randomised, double-blind, placebo-controlled study. Ann. Rheum. Dis. 75, 332–340 (2016).

    CAS  PubMed  Google Scholar 

  263. Smolen, J. S. et al. Efficacy and safety of tabalumab, an anti-B-cell-activating factor monoclonal antibody, in patients with rheumatoid arthritis who had an inadequate response to methotrexate therapy: results from a phase III multicentre, randomised, double-blind study. Ann. Rheum. Dis. 74, 1567–1570 (2015).

    CAS  PubMed  Google Scholar 

  264. Tanaka, Y. et al. Efficacy and safety of tabalumab plus standard of care in Japanese patients with active systemic lupus erythematosus: subgroup analyses of the ILLUMINATE-1 study. Mod. Rheumatol. 27, 284–291 (2017).

    CAS  PubMed  Google Scholar 

  265. Dorner, T. et al. Treatment of primary Sjogren’s syndrome with ianalumab (VAY736) targeting B cells by BAFF receptor blockade coupled with enhanced, antibody-dependent cellular cytotoxicity. Ann. Rheum. Dis. 78, 641–647 (2019).

    PubMed  Google Scholar 

  266. Dall’Era, M. et al. Reduced B lymphocyte and immunoglobulin levels after atacicept treatment in patients with systemic lupus erythematosus: results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating trial. Arthritis Rheum. 56, 4142–4150 (2007).

    PubMed  Google Scholar 

  267. Isenberg, D. et al. Efficacy and safety of atacicept for prevention of flares in patients with moderate-to-severe systemic lupus erythematosus (SLE): 52-week data (APRIL-SLE randomised trial). Ann. Rheum. Dis. 74, 2006–2015 (2015).

    CAS  PubMed  Google Scholar 

  268. Kappos, L. et al. Atacicept in multiple sclerosis (ATAMS): a randomised, placebo-controlled, double-blind, phase 2 trial. Lancet Neurol. 13, 353–363 (2014).

    CAS  PubMed  Google Scholar 

  269. Sergott, R. C. et al. ATON: results from a phase II randomized trial of the B-cell-targeting agent atacicept in patients with optic neuritis. J. Neurol. Sci. 351, 174–178 (2015).

    CAS  PubMed  Google Scholar 

  270. van Vollenhoven, R. F., Kinnman, N., Vincent, E., Wax, S. & Bathon, J. Atacicept in patients with rheumatoid arthritis and an inadequate response to methotrexate: results of a phase II, randomized, placebo-controlled trial. Arthritis Rheum. 63, 1782–1792 (2011).

    PubMed  Google Scholar 

  271. Merrill, J. T. et al. Efficacy and safety of atacicept in patients with systemic lupus erythematosus: results of a twenty-four-week, multicenter, randomized, double-blind, placebo-controlled, parallel-arm, phase IIb study. Arthritis Rheumatol. 70, 266–276 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Glasnovic, A. et al. RANKL/RANK/OPG axis is deregulated in the cerebrospinal fluid of multiple sclerosis patients at clinical onset. Neuroimmunomodulation 25, 23–33 (2018).

    CAS  PubMed  Google Scholar 

  273. Takeuchi, T. et al. Effects of the anti-RANKL antibody denosumab on joint structural damage in patients with rheumatoid arthritis treated with conventional synthetic disease-modifying antirheumatic drugs (DESIRABLE study): a randomised, double-blind, placebo-controlled phase 3 trial. Ann. Rheum. Dis. 78, 899–907 (2019).

    CAS  PubMed  Google Scholar 

  274. Genovese, M. C. et al. Combination therapy with etanercept and anakinra in the treatment of patients with rheumatoid arthritis who have been treated unsuccessfully with methotrexate. Arthritis Rheum. 50, 1412–1419 (2004).

    CAS  PubMed  Google Scholar 

  275. Schiff, M. H. et al. Safety of combination therapy with anakinra and etanercept in patients with rheumatoid arthritis. Arthritis Rheum. 44, S79 (2001).

    Google Scholar 

  276. Record, J. L., Beukelman, T. & Cron, R. Q. Combination therapy of abatacept and anakinra in children with refractory systemic juvenile idiopathic arthritis: a retrospective case series. J. Rheumatol. 38, 180–181 (2011).

    PubMed  Google Scholar 

  277. Genovese, M. C. et al. ABT-122, a bispecific dual variable domain immunoglobulin targeting tumor necrosis factor and interleukin-17A, in patients with rheumatoid arthritis with an inadequate response to methotrexate: a randomized, double-blind study. Arthritis Rheumatol. 70, 1710–1720 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  278. Mease, P. J. et al. Phase II study of ABT-122, a tumor necrosis factor- and interleukin-17A-targeted dual variable domain immunoglobulin, in patients with psoriatic arthritis with an inadequate response to methotrexate. Arthritis Rheumatol. 70, 1778–1789 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  279. McGonagle, D. & McDermott, M. F. A proposed classification of the immunological diseases. PLoS Med. 3, e297 (2006).

    PubMed  PubMed Central  Google Scholar 

  280. Caso, F. et al. From autoinflammation to autoimmunity: old and recent findings. Clin. Rheumatol. 37, 2305–2321 (2018).

    PubMed  Google Scholar 

  281. Larsen, C. P. et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 381, 434–438 (1996).

    CAS  PubMed  Google Scholar 

  282. Kirk, A. D. et al. CTLA4–Ig and anti-CD40 ligand prevent renal allograft rejection in primates. Proc. Natl Acad. Sci. USA 94, 8789–8794 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  283. Pearson, T. C. et al. Anti-CD40 therapy extends renal allograft survival in rhesus macaques. Transplantation 74, 933–940 (2002).

    CAS  PubMed  Google Scholar 

  284. Kawai, T., Andrews, D., Colvin, R. B., Sachs, D. H. & Cosimi, A. B. Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand. Nat. Med. 6, 114 (2000).

    CAS  PubMed  Google Scholar 

  285. Gilson, C. R. et al. Anti-CD40 monoclonal antibody synergizes with CTLA4–Ig in promoting long-term graft survival in murine models of transplantation. J. Immunol. 183, 1625–1635 (2009).

    CAS  PubMed  Google Scholar 

  286. Badell, I. R. et al. CTLA4Ig prevents alloantibody formation following nonhuman primate islet transplantation using the CD40-specific antibody 3A8. Am. J. Transpl. 12, 1918–1923 (2012).

    CAS  Google Scholar 

  287. Kirk, A. D. et al. Renal transplantation using belatacept without maintenance steroids or calcineurin inhibitors. Am. J. Transpl. 14, 1142–1151 (2014).

    CAS  Google Scholar 

  288. Jones, J. L. et al. Human autoimmunity after lymphocyte depletion is caused by homeostatic T-cell proliferation. Proc. Natl Acad. Sci. USA 110, 20200–20205 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  289. Hagen, K. A. et al. A role for CD28 in lymphopenia-induced proliferation of CD4 T cells. J. Immunol. 173, 3909–3915 (2004).

    CAS  PubMed  Google Scholar 

  290. Bolton, H. A. et al. Selective Treg reconstitution during lymphopenia normalizes DC costimulation and prevents graft-versus-host disease. J. Clin. Invest. 125, 3627–3641 (2015).

    PubMed  PubMed Central  Google Scholar 

  291. Melet, J. et al. Rituximab-induced T cell depletion in patients with rheumatoid arthritis: association with clinical response. Arthritis Rheum. 65, 2783–2790 (2013).

    CAS  PubMed  Google Scholar 

  292. Speth, F., Hinze, C. H., Schranz, P., Miller-Wiegart, E. & Haefner, R. Combination of rituximab and abatacept as an exit strategy for repetitive B-cell depletion in children with severe autoimmune diseases: a report of three cases. Lupus 27, 1996–1998 (2018).

    CAS  PubMed  Google Scholar 

  293. Farh, K. K. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518, 337–343 (2015).

    CAS  PubMed  Google Scholar 

  294. Breedveld, F. C. et al. The PREMIER study: a multicenter, randomized, double-blind clinical trial of combination therapy with adalimumab plus methotrexate versus methotrexate alone or adalimumab alone in patients with early, aggressive rheumatoid arthritis who had not had previous methotrexate treatment. Arthritis Rheum. 54, 26–37 (2006).

    CAS  PubMed  Google Scholar 

  295. van der Heijde, D. et al. Comparison of etanercept and methotrexate, alone and combined, in the treatment of rheumatoid arthritis: two-year clinical and radiographic results from the TEMPO study, a double-blind, randomized trial. Arthritis Rheum. 54, 1063–1074 (2006).

    PubMed  Google Scholar 

  296. Matsubara, T. et al. Abatacept in combination with methotrexate in Japanese biologic-naive patients with active rheumatoid arthritis: a randomised placebo-controlled phase IV study. RMD Open 4, e000813 (2018).

    PubMed  PubMed Central  Google Scholar 

  297. Alten, R. et al. Abatacept used in combination with non-methotrexate disease-modifying antirheumatic drugs: a descriptive analysis of data from interventional trials and the real-world setting. Arthritis Res. Ther. 20, 1 (2018).

    PubMed  PubMed Central  Google Scholar 

  298. Ferguson, R. et al. Immunosuppression with belatacept-based, corticosteroid-avoiding regimens in de novo kidney transplant recipients. Am. J. Transpl. 11, 66–76 (2011).

    CAS  Google Scholar 

  299. Besancon, A. et al. A selective CD28 antagonist and rapamycin synergise to protect against spontaneous autoimmune diabetes in NOD mice. Diabetologia 61, 1811–1816 (2018).

    CAS  PubMed  Google Scholar 

  300. Gao, W., Demirci, G., Strom, T. B. & Li, X. C. Stimulating PD-1-negative signals concurrent with blocking CD154 co-stimulation induces long-term islet allograft survival. Transplantation 76, 994–999 (2003).

    CAS  PubMed  Google Scholar 

  301. Sedykh, S. E., Prinz, V. V., Buneva, V. N. & Nevinsky, G. A. Bispecific antibodies: design, therapy, perspectives. Drug Des. Devel. Ther. 12, 195–208 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  302. Zhang, M. et al. Development of an ICOSL and BAFF bispecific inhibitor AMG 570 for systemic lupus erythematosus treatment. Clin. Exp. Rheumatol. 37, 960–914 (2019).

    Google Scholar 

  303. Benschop, R. J. et al. Development of tibulizumab, a tetravalent bispecific antibody targeting BAFF and IL-17A for the treatment of autoimmune disease. mAbs 11, 1175–119 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  304. Akpalu, D. E. et al. Pharmacokinetics, pharmacodynamics, immunogenicity, safety, and tolerability of JNJ-61178104, a novel tumor necrosis factor-α and interleukin-17A bispecific antibody, in healthy subjects. J. Clin. Pharmacol. 59, 968–978 (2019).

    CAS  PubMed  Google Scholar 

  305. Teng, Y. K. O. et al. Phase III, multicentre, randomised, double-blind, placebo-controlled, 104-week study of subcutaneous belimumab administered in combination with rituximab in adults with systemic lupus erythematosus (SLE): BLISS-BELIEVE study protocol. BMJ Open 9, e025687 (2019).

    PubMed  PubMed Central  Google Scholar 

  306. Heng, T. S., Painter, M. W. & Immunological Genome Project Consortium. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank A. Pesenacker for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed to all aspects of the article.

Corresponding author

Correspondence to Lucy S. K. Walker.

Ethics declarations

Competing interests

G.C. is a full-time employee and shareholder of AstraZeneca. J.S.R. is an employee and shareholder of Novartis Pharmaceuticals. L.S.K.W. declares research collaborations and consultancy with AstraZeneca and Immunocore. N.M.E. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Phase IIa results for AMG 557: https://acrabstracts.org/abstract/a-phase-2a-study-of-medi5872-amg557-a-fully-human-anti-icos-ligand-monoclonal-antibody-in-patients-with-primary-sjogrens-syndrome/

Phase II interim results for belimumab plus rituximab in lupus nephritis: https://acrabstracts.org/abstract/phase-2-trial-of-induction-therapy-with-anti-cd20-rituximab-followed-by-maintenance-therapy-with-anti-baff-belimumab-in-patients-with-active-lupus-nephritis/

Supplementary information

Glossary

Tolerance

The state of unresponsiveness of the immune system to antigens that have the potential to induce an immune response. Self-tolerance to an individual’s own antigens is achieved through both central tolerance and peripheral tolerance mechanisms.

Pattern recognition receptors

Cell-surface receptors expressed by cells in the body in order to sense molecules that are associated with infection or tissue damage. They play a crucial role in the initiation of innate immune responses.

Anergy

A peripheral mechanism for tolerizing T cells. Anergic T cells are functionally unresponsive and unable to proliferate due to a block at the G1 phase of the cell cycle.

Experimental autoimmune encephalomyelitis

An animal model of the human autoimmune disease multiple sclerosis. Experimental autoimmune encephalomyelitis is induced in experimental animals by immunization with myelin or peptides derived from myelin. The animals develop a paralytic disease with inflammation and demyelination in the brain and spinal cord.

Keyhole limpet haemocyanin (KLH) immunization

KLH is a xenogeneic, T cell-dependent antigen that is frequently used as a carrier protein for vaccines. KLH immunization is also used to assess the efficacy of immunotherapies targeting primary antibody responses.

Superagonist

An agonist that is able to induce a response far greater than an endogenous ligand for its target receptor. CD28 superagonists are capable of activating T cells by binding to CD28 alone without concurrent T cell receptor engagement.

Antibody-dependent cellular cytotoxicity

(ADCC). The process in which targeted cells become coated with antibody, and are then lysed by effector cells that have cytolytic activity and specific immunoglobulin crystallizable fragment (Fc) receptors. Lysis requires direct cell-to-cell contact and does not involve complement.

Peptibody

A peptide fused to the Fc region of an antibody allowing for increased half-life compared with unmodified therapeutic peptides.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edner, N.M., Carlesso, G., Rush, J.S. et al. Targeting co-stimulatory molecules in autoimmune disease. Nat Rev Drug Discov 19, 860–883 (2020). https://doi.org/10.1038/s41573-020-0081-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-020-0081-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing