Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting the epigenetic regulation of antitumour immunity

Abstract

Dysregulation of the epigenome drives aberrant transcriptional programmes that promote cancer onset and progression. Although defective gene regulation often affects oncogenic and tumour-suppressor networks, tumour immunogenicity and immune cells involved in antitumour responses may also be affected by epigenomic alterations. This could have important implications for the development and application of both epigenetic therapies and cancer immunotherapies, and combinations thereof. Here, we review the role of key aberrant epigenetic processes — DNA methylation and post-translational modification of histones — in tumour immunogenicity, as well as the effects of epigenetic modulation on antitumour immune cell function. We emphasize opportunities for small-molecule inhibitors of epigenetic regulators to enhance antitumour immune responses, and discuss the challenges of exploiting the complex interplay between cancer epigenetics and cancer immunology to develop treatment regimens combining epigenetic therapies with immunotherapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Therapeutic strategies to modulate the epigenome.
Fig. 2: DNA methylation in cancer and viral mimicry.
Fig. 3: Histone acetylation and methylation in oncogenesis and immunogenicity.
Fig. 4: Epigenetic regulation of NK cell, CD4+ T cell and Treg cell antitumour activity.
Fig. 5: Epigenetic regulation of effector function in CD8+ T cell differentiation and exhaustion.
Fig. 6: Epigenetic strategies to augment T cell trafficking and CAR T cell production.

Similar content being viewed by others

References

  1. Goldberg, A. D., Allis, C. D. & Bernstein, E. Epigenetics: a landscape takes shape. Cell 128, 635–638 (2007).

    CAS  PubMed  Google Scholar 

  2. Dawson, M. A. & Kouzarides, T. Cancer epigenetics: from mechanism to therapy. Cell 150, 12–27 (2012).

    CAS  PubMed  Google Scholar 

  3. Achinger-Kawecka, J. & Clark, S. J. Disruption of the 3D cancer genome blueprint. Epigenomics 9, 47–55 (2017).

    CAS  PubMed  Google Scholar 

  4. Luco, R. F., Allo, M., Schor, I. E., Kornblihtt, A. R. & Misteli, T. Epigenetics in alternative pre-mRNA splicing. Cell 144, 16–26 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hanly, D. J., Esteller, M. & Berdasco, M. Interplay between long non-coding RNAs and epigenetic machinery: emerging targets in cancer? Philos. Trans. R. Soc. Lond. B. Biol. Sci. https://doi.org/10.1098/rstb.2017.0074 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kobayashi, W. & Kurumizaka, H. Structural transition of the nucleosome during chromatin remodeling and transcription. Curr. Opin. Struct. Biol. 59, 107–114 (2019).

    CAS  PubMed  Google Scholar 

  7. Narayanan, S. P., Singh, S. & Shukla, S. A saga of cancer epigenetics: linking epigenetics to alternative splicing. Biochem. J. 474, 885–896 (2017).

    CAS  PubMed  Google Scholar 

  8. Li, X. & Fu, X. D. Chromatin-associated RNAs as facilitators of functional genomic interactions. Nat. Rev. Genet. 20, 503–519 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Xiao, C.-L. et al. N 6-Methyladenine DNA modification in the human genome. Mol. Cell 71, 306–318 (2018).

    CAS  PubMed  Google Scholar 

  10. Xie, Q. et al. N 6-methyladenine DNA modification in glioblastoma. Cell 175, 1228–1243 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Han, D. et al. Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells. Nature 566, 270–274 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Winkler, R. et al. m6A modification controls the innate immune response to infection by targeting type I interferons. Nat. Immunol. 20, 173 (2019).

    CAS  PubMed  Google Scholar 

  13. Shortt, J., Ott, C. J., Johnstone, R. W. & Bradner, J. E. A chemical probe toolbox for dissecting the cancer epigenome. Nat. Rev. Cancer 17, 160 (2017).

    CAS  PubMed  Google Scholar 

  14. Dawson, M. A. The cancer epigenome: concepts, challenges, and therapeutic opportunities. Science 355, 1147–1152 (2017).

    CAS  PubMed  Google Scholar 

  15. Michalak, E. M., Burr, M. L., Bannister, A. J. & Dawson, M. A. The roles of DNA, RNA and histone methylation in ageing and cancer. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-019-0143-1 (2019).

    Article  PubMed  Google Scholar 

  16. Cowley, G. S. et al. Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies. Sci. Data 1, 140035 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Forbes, S. A. et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 39, D945–D950 (2010).

    PubMed  PubMed Central  Google Scholar 

  19. Huether, R. et al. The landscape of somatic mutations in epigenetic regulators across 1,000 paediatric cancer genomes. Nat. Commun. 5, 3630 (2014).

    PubMed  Google Scholar 

  20. Chiappinelli, K. B., Zahnow, C. A., Ahuja, N. & Baylin, S. B. Combining epigenetic and immunotherapy to combat cancer. Cancer Res. 76, 1683–1689 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Dunn, J. & Rao, S. Epigenetics and immunotherapy: the current state of play. Mol. Immunol. 87, 227–239 (2017).

    CAS  PubMed  Google Scholar 

  22. Gallagher, S. J., Shklovskaya, E. & Hersey, P. Epigenetic modulation in cancer immunotherapy. Curr. Opin. Pharmacol. 35, 48–56 (2017).

    CAS  PubMed  Google Scholar 

  23. Wolchok, J. Putting the immunologic brakes on cancer. Cell 175, 1452–1454 (2018).

    CAS  PubMed  Google Scholar 

  24. Falkenberg, K. J. & Johnstone, R. W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov. 13, 673–691 (2014).

    CAS  PubMed  Google Scholar 

  25. Henning, A. N., Roychoudhuri, R. & Restifo, N. P. Epigenetic control of CD8+ T cell differentiation. Nat. Rev. Immunol. 18, 340–356 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Christman, J. K. 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 21, 5483 (2002).

    CAS  PubMed  Google Scholar 

  27. Jüttermann, R., Li, E. & Jaenisch, R. Toxicity of 5-aza-2′-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc. Natl Acad. Sci. USA 91, 11797–11801 (1994).

    PubMed  PubMed Central  Google Scholar 

  28. Stresemann, C. & Lyko, F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int. J. Cancer 123, 8–13 (2008).

    CAS  PubMed  Google Scholar 

  29. Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    CAS  PubMed  Google Scholar 

  30. Lei, H. et al. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 122, 3195–3205 (1996).

    CAS  PubMed  Google Scholar 

  31. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Baylin, S. B. & Jones, P. A. Epigenetic determinants of cancer. Cold Spring Harb. Perspect Biol. https://doi.org/10.1101/cshperspect.a019505 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cairns, R. A. et al. IDH2 mutations are frequent in angioimmunoblastic T-cell lymphoma. Blood https://doi.org/10.1182/blood-2011-11-391748 (2012).

  34. Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Waitkus, M. S., Diplas, B. H. & Yan, H. Biological role and therapeutic potential of IDH mutations in cancer. Cancer Cell 34, 186–195 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Figueroa, M. E. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18, 553–567 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Berghoff, A. S. et al. Correlation of immune phenotype with IDH mutation in diffuse glioma. Neuro Oncol. 19, 1460–1468 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kohanbash, G. et al. Isocitrate dehydrogenase mutations suppress STAT1 and CD8+ T cell accumulation in gliomas. J. Clin. Invest. 127, 1425–1437 (2017).

    PubMed  PubMed Central  Google Scholar 

  39. Kiziltepe, T. et al. 5-Azacytidine, a DNA methyltransferase inhibitor, induces ATR-mediated DNA double-strand break responses, apoptosis, and synergistic cytotoxicity with doxorubicin and bortezomib against multiple myeloma cells. Mol. Cancer Ther. 6, 1718–1727 (2007).

    CAS  PubMed  Google Scholar 

  40. Roulois, D. et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162, 961–973 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Fenaux, P. et al. Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J. Clin. Oncol. 28, 562–569 (2009).

    PubMed  Google Scholar 

  42. Wrangle, J. et al. Alterations of immune response of non-small cell lung cancer with azacytidine. Oncotarget 4, 2067 (2013).

    PubMed  PubMed Central  Google Scholar 

  43. Manning, J. et al. Induction of MHC class I molecule cell surface expression and epigenetic activation of antigen-processing machinery components in a murine model for human papilloma virus 16-associated tumours. Immunology 123, 218–227 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Dubovsky, J. A. et al. Treatment of chronic lymphocytic leukemia with a hypomethylating agent induces expression of NXF2, an immunogenic cancer testis antigen. Clin. Cancer Res. 15, 3406–3415 (2009).

    CAS  PubMed  Google Scholar 

  45. Krishnadas, D. K., Bao, L., Bai, F., Chencheri, S. C. & Lucas, K. Decitabine facilitates immune recognition of sarcoma cells by upregulating CT antigens, MHC molecules, and ICAM-1. Tumor Biol. 35, 5753–5762 (2014).

    CAS  Google Scholar 

  46. Nie, Y. et al. DNA hypermethylation is a mechanism for loss of expression of the HLA class I genes in human esophageal squamous cell carcinomas. Carcinogenesis 22, 1615–1623 (2001).

    CAS  PubMed  Google Scholar 

  47. Luo, N. et al. DNA methyltransferase inhibition upregulates MHC-I to potentiate cytotoxic T lymphocyte responses in breast cancer. Nat. Commun. 9, 248 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. Serrano, A. et al. Rexpression of HLA class I antigens and restoration of antigen-specific CTL response in melanoma cells following 5-aza-2′-deoxycytidine treatment. Int. J. Cancer 94, 243–251 (2001).

    CAS  PubMed  Google Scholar 

  49. Almstedt, M. et al. The DNA demethylating agent 5-aza-2′-deoxycytidine induces expression of NY-ESO-1 and other cancer/testis antigens in myeloid leukemia cells. Leukemia Res. 34, 899–905 (2010).

    CAS  Google Scholar 

  50. Adair, S. J. & Hogan, K. T. Treatment of ovarian cancer cell lines with 5-aza-2′-deoxycytidine upregulates the expression of cancer–testis antigens and class I major histocompatibility complex-encoded molecules. Cancer Immunol. Immunother. 58, 589–601 (2009).

    CAS  PubMed  Google Scholar 

  51. Atanackovic, D. et al. Cancer–testis antigen expression and its epigenetic modulation in acute myeloid leukemia. Am. J. Hematol. 86, 918–922 (2011).

    CAS  PubMed  Google Scholar 

  52. Coral, S. et al. 5-aza-2′-deoxycytidine-induced expression of functional cancer testis antigens in human renal cell carcinoma: immunotherapeutic implications. Clin. Cancer Res. 8, 2690–2695 (2002).

    CAS  PubMed  Google Scholar 

  53. Cruz, C. R. Y. et al. Improving T cell therapy for relapsed EBV negative Hodgkin lymphoma by targeting upregulated MAGE-A4. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-11-1873 (2011).

  54. Jones, P. A., Ohtani, H., Chakravarthy, A. & De Carvalho, D. D. Epigenetic therapy in immune-oncology. Nat. Rev. Cancer 19, 151–161 (2019).

    CAS  PubMed  Google Scholar 

  55. Chiappinelli, K. B. et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162, 974–986 (2015). Together with Roulois et al. (2015), this paper is one of the first two studies highlighting that inhibition of DNA methyltransferase activity leads to ERV activation and viral mimicry.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Walsh, C. P., Chaillet, J. R. & Bestor, T. H. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat. Genet. 20, 116 (1998).

    CAS  PubMed  Google Scholar 

  57. Covre, A. et al. Antitumor activity of epigenetic immunomodulation combined with CTLA-4 blockade in syngeneic mouse models. Oncoimmunology 4, e1019978 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim, K. et al. Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. J. Immunother. Cancer 2, P267 (2014).

    PubMed Central  Google Scholar 

  59. Brocks, D. et al. DNMT and HDAC inhibitors induce cryptic transcription start sites encoded in long terminal repeats. Nat. Genet. 49, 1052 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang, H. et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia 28, 1280 (2014).

    CAS  PubMed  Google Scholar 

  61. Emran, A. A. et al. Targeting DNA methylation and EZH2 activity to overcome melanoma resistance to immunotherapy. Trends Immunol. https://doi.org/10.1016/j.it.2019.02.004 (2019).

    Article  PubMed  Google Scholar 

  62. Lue, J. K. et al. Precision targeting with EZH2 and HDAC inhibitors in epigenetically dysregulated lymphomas. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-18-3989 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. West, A. C. & Johnstone, R. W. New and emerging HDAC inhibitors for cancer treatment. J. Clin. Invest. 124, 30–39 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Schölz, C. et al. Acetylation site specificities of lysine deacetylase inhibitors in human cells. Nat. Biotechnol. 33, 415 (2015).

    PubMed  Google Scholar 

  65. Narita, T., Weinert, B. T. & Choudhary, C. Functions and mechanisms of non-histone protein acetylation. Nat. Rev. Mol. Cell Biol. 20, 156–174 (2019).

    CAS  PubMed  Google Scholar 

  66. Cappellacci, L., Perinelli, D. R., Maggi, F., Grifantini, M. & Petrelli, R. Recent progress in histone deacetylase inhibitors as anticancer agents. Curr. Med. Chem. https://doi.org/10.2174/0929867325666181016163110 (2018).

    Article  Google Scholar 

  67. Qiu, T. et al. Effects of treatment with histone deacetylase inhibitors in solid tumors: a review based on 30 clinical trials. Future Oncol. 9, 255–269 (2013).

    CAS  PubMed  Google Scholar 

  68. Bishton, M. J. et al. Deciphering the molecular and biologic processes that mediate histone deacetylase inhibitor-induced thrombocytopenia. Blood 117, 3658–3668 (2011).

    CAS  PubMed  Google Scholar 

  69. West, A. C. et al. An intact immune system is required for the anticancer activities of histone deacetylase inhibitors. Cancer Res. 73, 7265–7276 (2013). This study demonstrates that the efficacy of HDAC inhibitors towards lymphoma is dependent upon the host immune system.

    CAS  PubMed  Google Scholar 

  70. Poggi, A. et al. Effective in vivo induction of NKG2D ligands in acute myeloid leukaemias by all-trans-retinoic acid or sodium valproate. Leukemia 23, 641 (2009).

    CAS  PubMed  Google Scholar 

  71. Armeanu, S. et al. Natural killer cell-mediated lysis of hepatoma cells via specific induction of NKG2D ligands by the histone deacetylase inhibitor sodium valproate. Cancer Res. 65, 6321–6329 (2005).

    CAS  PubMed  Google Scholar 

  72. Diermayr, S. et al. NKG2D ligand expression in AML increases in response to HDAC inhibitor valproic acid and contributes to allorecognition by NK-cell lines with single KIR–HLA class I specificities. Blood 111, 1428–1436 (2008).

    CAS  PubMed  Google Scholar 

  73. Murakami, T. et al. Transcriptional modulation using HDACi depsipeptide promotes immune cell-mediated tumor destruction of murine B16 melanoma. J. Investig. Dermatol. 128, 1506–1516 (2008).

    CAS  PubMed  Google Scholar 

  74. Ritter, C. et al. Epigenetic priming restores the HLA class-I antigen processing machinery expression in Merkel cell carcinoma. Sci. Rep. 7, 2290 (2017).

    PubMed  PubMed Central  Google Scholar 

  75. Khan, A. N. H., Gregorie, C. J. & Tomasi, T. B. Histone deacetylase inhibitors induce TAP, LMP, Tapasin genes and MHC class I antigen presentation by melanoma cells. Cancer Immunol., Immunother. 57, 647–654 (2008).

    CAS  Google Scholar 

  76. Kitamura, H. et al. Down-regulation of HLA class I antigens in prostate cancer tissues and up-regulation by histone deacetylase inhibition. J. Urol. 178, 692–696 (2007).

    CAS  PubMed  Google Scholar 

  77. Woods, D. M. et al. HDAC inhibition upregulates PD-1 ligands in melanoma and augments immunotherapy with PD-1 blockade. Cancer Immunol. Res. 3, 1375–1385 (2015). This study reports that HDAC inhibition leads to potent upregulation of PDL1, causing combination activity with immune checkpoint blockade.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Deng, S. et al. HDAC3 inhibition up-regulates PD-L1 expression in B-cell lymphomas and augments the efficacy of anti-PD-L1 therapy. Mol. Cancer Ther. 1068, 2018 (2019).

    Google Scholar 

  79. Buglio, D. et al. HDAC11 plays an essential role in regulating OX40 ligand expression in Hodgkin lymphoma. Blood https://doi.org/10.1182/blood-2010-08-303701 (2011).

  80. Gameiro, S. R., Malamas, A. S., Tsang, K. Y., Ferrone, S. & Hodge, J. W. Inhibitors of histone deacetylase 1 reverse the immune evasion phenotype to enhance T-cell mediated lysis of prostate and breast carcinoma cells. Oncotarget 7, 7390 (2016).

    PubMed  PubMed Central  Google Scholar 

  81. Zheng, H. et al. HDAC inhibitors enhance T-cell chemokine expression and augment response to PD-1 immunotherapy in lung adenocarcinoma. Clin. Cancer Res. 22, 4119–4132 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Lisiero, D. N., Soto, H., Everson, R. G., Liau, L. M. & Prins, R. M. The histone deacetylase inhibitor, LBH589, promotes the systemic cytokine and effector responses of adoptively transferred CD8+ T cells. J. Immunother. Cancer 2, 8 (2014).

    PubMed  PubMed Central  Google Scholar 

  83. Christiansen, A. J. et al. Eradication of solid tumors using histone deacetylase inhibitors combined with immune-stimulating antibodies. Proc. Natl Acad. Sci. USA 108, 4141–4146 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ray, A. et al. Combination of a novel HDAC6 inhibitor ACY-241 and anti-PD-L1 antibody enhances anti-tumor immunity and cytotoxicity in multiple myeloma. Leukemia 32, 843–846 (2017).

    PubMed  PubMed Central  Google Scholar 

  85. Bae, J. et al. Histone deacetylase (HDAC) inhibitor ACY241 enhances anti-tumor activities of antigen-specific central memory cytotoxic T lymphocytes against multiple myeloma and solid tumors. Leukemia 32, 1932 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Booth, L., Roberts, J. L., Poklepovic, A., Kirkwood, J. & Dent, P. HDAC inhibitors enhance the immunotherapy response of melanoma cells. Oncotarget 8, 83155 (2017).

    PubMed  PubMed Central  Google Scholar 

  87. Sullivan, R. J. et al. Efficacy and safety of entinostat (ENT) and pembrolizumab (PEMBRO) in patients with melanoma previously treated with anti-PD1 therapy. Proc Am. Assoc. Cancer Res. 79, CT072 (2019).

    Google Scholar 

  88. Dancy, B. M. & Cole, P. A. Protein lysine acetylation by p300/CBP. Chem. Rev. 115, 2419–2452 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Bowers, E. M. et al. Virtual ligand screening of the p300/CBP histone acetyltransferase: identification of a selective small molecule inhibitor. Chem. Biol. 17, 471–482 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Gajer, J. M. et al. Histone acetyltransferase inhibitors block neuroblastoma cell growth in vivo. Oncogenesis 4, e137 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Lu, W. et al. Discovery and biological evaluation of thiobarbituric derivatives as potent p300/CBP inhibitors. Bioorg Med. Chem. 26, 5397–5407 (2018).

    CAS  PubMed  Google Scholar 

  92. Lasko, L. M. et al. Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours. Nature 550, 128–132 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Yang, Y. et al. Discovery of highly potent, selective, and orally efficacious p300/CBP histone acetyltransferases inhibitors. J. Med. Chem. 63, 1337–1360 (2020).

    CAS  PubMed  Google Scholar 

  94. Huhn, A. J. et al. Early drug-discovery efforts towards the identification of EP300/CBP histone acetyltransferase (HAT) inhibitors. ChemMedChem. (2020).

  95. Jambhekar, A., Dhall, A. & Shi, Y. Roles and regulation of histone methylation in animal development. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-019-0151-1 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Nacev, B. A. et al. The expanding landscape of ‘oncohistone’ mutations in human cancers. Nature 567, 473–478 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Burr, M. L. et al. An evolutionarily conserved function of polycomb silences the MHC class I antigen presentation pathway and enables immune evasion in cancer. Cancer Cell 36, 385–401 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Ennishi, D. et al. Molecular and genetic characterization of MHC deficiency identifies EZH2 as therapeutic target for enhancing immune recognition. Cancer Discov. (2019). This study reports histone methylation by EZH2 as a major determinant of immune evasion in lymphoma via suppression of antigen presentation.

  99. Truax, A. D., Thakkar, M. & Greer, S. F. Dysregulated recruitment of the histone methyltransferase EZH2 to the class II transactivator (CIITA) promoter IV in breast cancer cells. PLoS ONE 7, e36013 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Zingg, D. et al. The histone methyltransferase Ezh2 controls mechanisms of adaptive resistance to tumor immunotherapy. Cell Rep. 20, 854–867 (2017).

    CAS  PubMed  Google Scholar 

  101. Peng, D. et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527, 249–253 (2015). This article describes how key T H1 cytokines, which are epigenetically silenced in cancer to promote immune evasion, can be reactivated with epigenetic therapies.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Li, H. et al. The histone methyltransferase SETDB1 and the DNA methyltransferase DNMT3A interact directly and localize to promoters silenced in cancer cells. J. Biol. Chem. 281, 19489–19500 (2006).

    CAS  PubMed  Google Scholar 

  103. Ceol, C. J. et al. The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature 471, 513 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Wong, C. M. et al. Up-regulation of histone methyltransferase SETDB1 by multiple mechanisms in hepatocellular carcinoma promotes cancer metastasis. Hepatology 63, 474–487 (2016).

    CAS  PubMed  Google Scholar 

  105. Cuellar, T. L. et al. Silencing of retrotransposons by SETDB1 inhibits the interferon response in acute myeloid leukemia. J. Cell Biol. 216, 3535–3549 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Segovia, C. et al. Inhibition of a G9a/DNMT network triggers immune-mediated bladder cancer regression. Nat. Med. 25, 1073–1081 (2019).

    CAS  PubMed  Google Scholar 

  107. Gilan, O. et al. Functional interdependence of BRD4 and DOT1L in MLL leukemia. Nat. Struct. Mol. Biol. 23, 673 (2016).

    CAS  PubMed  Google Scholar 

  108. Daigle, S. R. et al. Potent inhibition of DOT1L as treatment for MLL-fusion leukemia. Blood https://doi.org/10.1182/blood-2013-04-497644 (2013).

  109. Stein, E. M. et al. A phase 1 study of the DOT1L inhibitor, pinometostat (EPZ-5676), in adults with relapsed or refractory leukemia: safety, clinical activity, exposure and target inhibition Blood 126, 2547 (2015).

    Google Scholar 

  110. Shah, S. & Henriksen, M. A. A novel DOT1LL (disrupter of telomere silencing 1 like) interaction is required for STAT1 (signal transducer and activator of transcription 1) activated gene expression. J. Biol. Chem. https://doi.org/10.1074/jbc.M111.284190 (2011).

  111. Chen, X. et al. Methyltransferase Dot1l preferentially promotes innate IL-6 and IFN-β production by mediating H3K79me2/3 methylation in macrophages. Cell Mol. Immunol. https://doi.org/10.1038/s41423-018-0170-4 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Zhao, Z.-K. et al. Overexpression of lysine specific demethylase 1 predicts worse prognosis in primary hepatocellular carcinoma patients. World J. Gastroenterol. 18, 6651 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Cusan, M. et al. LSD1 inhibition exerts its anti-leukemic effect by recommissioning PU.1- and C/EBPα-dependent enhancers in AML. Blood https://doi.org/10.1182/blood-2017-09-807024 (2018).

  114. Maiques-Diaz, A. et al. Enhancer activation by pharmacologic displacement of LSD1 from GFI1 induces differentiation in acute myeloid leukemia. Cell Rep. 22, 3641–3659 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Bell, C. C. et al. Targeting enhancer switching overcomes non-genetic drug resistance in acute myeloid leukaemia. Nat. Commun. 10, 2723 (2019).

    PubMed  PubMed Central  Google Scholar 

  116. Macfarlan, T. S. et al. Endogenous retroviruses and neighboring genes are coordinately repressed by LSD1/KDM1A. Genes Dev. 25, 594–607 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Sheng, W. et al. LSD1 ablation stimulates anti-tumor immunity and enables checkpoint blockade. Cell 174, 549–563 (2018). This study shows that inhibition of LSD1 stimulates expression of ERVs and induces viral mimicry in cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Qin, Y. et al. Inhibition of histone lysine-specific demethylase 1 elicits breast tumor immunity and enhances antitumor efficacy of immune checkpoint blockade. Oncogene 38, 390 (2019).

    CAS  PubMed  Google Scholar 

  119. Ohtani, H., Liu, M., Zhou, W., Liang, G. & Jones, P. A. Switching roles for DNA and histone methylation depend on evolutionary ages of human endogenous retroviruses. Genome Res. 28, 1147–1157 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Hsu, S. C. & Blobel, G. A. The role of bromodomain and extraterminal motif (BET) proteins in chromatin structure. Cold Spring Harb. Symp. Quant. Biol. 82, 37–43 (2017).

    PubMed  Google Scholar 

  121. Cochran, A. G., Conery, A. R. & Sims, R. J. 3rd. Bromodomains: a new target class for drug development. Nat. Rev. Drug Discov. 18, 609–628 (2019).

    CAS  PubMed  Google Scholar 

  122. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Filippakopoulos, P. & Knapp, S. Targeting bromodomains: epigenetic readers of lysine acetylation. Nat. Rev. Drug Discov. 13, 337–356 (2014).

    CAS  PubMed  Google Scholar 

  124. Mertz, J. A. et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc. Natl Acad. Sci. USA 108, 16669–16674 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Zuber, J. et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478, 524–528 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Delmore, J. E. et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146, 904–917 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Dawson, M. A. et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 478, 529–533 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Hogg, S. et al. BET-inhibition induces apoptosis in aggressive B-cell lymphoma via epigenetic regulation of BCL-2 family members. Mol. Cancer Ther. 15, 2030–2041 (2016).

    CAS  PubMed  Google Scholar 

  129. Stathis, A. et al. 5LBA results of a first-in-man phase I trial assessing OTX015, an orally available BET-bromodomain (BRD) inhibitor, in advanced hematologic malignancies. Eur. J. Cancer 50, 196 (2014).

    Google Scholar 

  130. Abramson, J. S. et al. BET inhibitor CPI-0610 is well tolerated and induces responses in diffuse large B-cell lymphoma and follicular lymphoma: preliminary analysis of an ongoing phase 1 study Blood 126, 1491 (2015).

    Google Scholar 

  131. Hogg, S. J. et al. BET-bromodomain inhibitors engage the host immune system and regulate expression of the immune checkpoint ligand PD-L1. Cell Rep. 18, 2162–2174 (2017). This report shows that the anticancer activity of BET bromodomain inhibitors is dependent upon an intact host immune system.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhu, H. et al. BET bromodomain inhibition promotes anti-tumor immunity by suppressing PD-L1 expression. Cell Rep. 16, 2829–2837 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Erkes, D. A. et al. The next generation BET inhibitor, PLX 51107, delays melanoma growth in a CD8-mediated manner. Pigment Cell Melanoma Res. 32, 687–696 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Adeegbe, D. et al. Synergistic immunostimulatory effects and therapeutic benefit of combined histone deacetylase and bromodomain inhibition in non-small cell lung cancer. Cancer Discov. 7, 852–867 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Riganti, C. et al. Bromodomain inhibition exerts its therapeutic potential in malignant pleural mesothelioma by promoting immunogenic cell death and changing the tumor immune-environment. Oncoimmunology 7, e1398874 (2018).

    PubMed  Google Scholar 

  136. Melaiu, O. et al. PD-L1 is a therapeutic target of the bromodomain inhibitor JQ1 and, combined with HLA class I, a promising prognostic biomarker in neuroblastoma. Clin. Cancer Res. 23, 4462–4472 (2017).

    CAS  PubMed  Google Scholar 

  137. Gallagher, S. J. et al. The epigenetic regulator I-BET151 induces BIM-dependent apoptosis and cell cycle arrest of human melanoma cells. J. Investig. Dermatol. 134, 2795–2805 (2014).

    CAS  PubMed  Google Scholar 

  138. Ebine, K. et al. Interplay between interferon regulatory factor 1 and BRD4 in the regulation of PD-L1 in pancreatic stellate cells. Sci. Rep. 8, 13225 (2018).

    PubMed  PubMed Central  Google Scholar 

  139. Taube, J. M. et al. Colocalization of inflammatory response with B7-H1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci. Transl Med. 4, 127ra137 (2012).

    Google Scholar 

  140. Casey, S. C. et al. MYC regulates the antitumor immune response through CD47 and PD-L1. Science 352, 227–231 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Atsaves, V. et al. PD-L1 is commonly expressed and transcriptionally regulated by STAT3 and MYC in ALK-negative anaplastic large-cell lymphoma. Leukemia 31, 1633 (2017).

    CAS  PubMed  Google Scholar 

  142. Kim, E. Y., Kim, A., Kim, S. K. & Chang, Y. S. MYC expression correlates with PD-L1 expression in non-small cell lung cancer. Lung Cancer 110, 63–67 (2017).

    PubMed  Google Scholar 

  143. Abruzzese, M. P. et al. Inhibition of bromodomain and extra-terminal (BET) proteins increases NKG2D ligand MICA expression and sensitivity to NK cell-mediated cytotoxicity in multiple myeloma cells: role of cMYC–IRF4–miR-125b interplay. J. Hematol. Oncol. 9, 134 (2016).

    PubMed  PubMed Central  Google Scholar 

  144. Muhar, M. et al. SLAM–seq defines direct gene-regulatory functions of the BRD4–MYC axis. Science 360, 800–805 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Tyler, D. S. et al. Click chemistry enables preclinical evaluation of targeted epigenetic therapies. Science 356, 1397–1401 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Adeegbe, D. O. et al. BET bromodomain inhibition cooperates with PD-1 blockade to facilitate antitumor response in kras-mutant non-small cell lung cancer. Cancer Immunol. Res. 6, 1234–1245 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Bjorkstrom, N. K. et al. Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education. Blood 116, 3853–3864 (2010).

    PubMed  Google Scholar 

  148. Lopez-Verges, S. et al. CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK-cell subset. Blood 116, 3865–3874 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Sun, J. C. & Lanier, L. L. Natural killer cells remember: an evolutionary bridge between innate and adaptive immunity? Eur. J. Immunol. 39, 2059–2064 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Lau, C. M. et al. Epigenetic control of innate and adaptive immune memory. Nat. Immunol. 19, 963–972 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Luetke-Eversloh, M. et al. NK cells gain higher IFN-γ competence during terminal differentiation. Eur. J. Immunol. 44, 2074–2084 (2014).

    CAS  PubMed  Google Scholar 

  152. Cribbs, A. et al. Inhibition of histone H3K27 demethylases selectively modulates inflammatory phenotypes of natural killer cells. J. Biol. Chem. 293, 2422–2437 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Yin, J. et al. Ezh2 regulates differentiation and function of natural killer cells through histone methyltransferase activity. Proc. Natl Acad. Sci. USA 112, 15988–15993 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Bugide, S., Green, M. R. & Wajapeyee, N. Inhibition of Enhancer of zeste homolog 2 (EZH2) induces natural killer cell-mediated eradication of hepatocellular carcinoma cells. Proc. Natl Acad. Sci. USA 115, E3509–E3518 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Ramakrishnan, S. et al. Inhibition of EZH2 induces NK cell-mediated differentiation and death in muscle-invasive bladder cancer. Cell Death Differ. 26, 2100–2114 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Sohlberg, E. et al. Imprint of 5-azacytidine on the natural killer cell repertoire during systemic treatment for high-risk myelodysplastic syndrome. Oncotarget 6, 34178–34190 (2015).

    PubMed  PubMed Central  Google Scholar 

  157. Medon, M. et al. HDAC inhibitor panobinostat engages host innate immune defenses to promote the tumoricidal effects of trastuzumab in HER2+ tumors. Cancer Res. 77, 2594–2606 (2017).

    CAS  PubMed  Google Scholar 

  158. Böttcher, J. P. et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172, 1022–1037 (2018).

    PubMed  PubMed Central  Google Scholar 

  159. Eyerich, S. et al. TH22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J. Clin. Invest. 119, 3573–3585 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Kaplan, M. H. TH9 cells: differentiation and disease. Immunol. Rev. 252, 104–115 (2013).

    PubMed  PubMed Central  Google Scholar 

  161. Swain, S. L., McKinstry, K. K. & Strutt, T. M. Expanding roles for CD4+ T cells in immunity to viruses. Nat. Rev. Immunol. 12, 136–148 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Szabo, S. J. et al. A novel transcription factor, T-bet, directs TH1 lineage commitment. Cell 100, 655–669 (2000).

    CAS  PubMed  Google Scholar 

  163. Tosolini, M. et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (TH1, TH2, Treg, TH17) in patients with colorectal cancer. Cancer Res. 71, 1263–1271 (2011).

    CAS  PubMed  Google Scholar 

  164. Mlecnik, B. et al. Integrative analyses of colorectal cancer show immunoscore is a stronger predictor of patient survival than microsatellite instability. Immunity 44, 698–711 (2016).

    CAS  PubMed  Google Scholar 

  165. Zhou, L., Chong, M. M. & Littman, D. R. Plasticity of CD4+ T cell lineage differentiation. Immunity 30, 646–655 (2009).

    CAS  PubMed  Google Scholar 

  166. Schmidl, C. et al. Lineage-specific DNA methylation in T cells correlates with histone methylation and enhancer activity. Genome Res. 19, 1165–1174 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Tian, Y. et al. Global mapping of H3K4me1 and H3K4me3 reveals the chromatin state-based cell type-specific gene regulation in human Treg cells. PLoS ONE 6, e27770 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Allan, R. S. et al. An epigenetic silencing pathway controlling T helper 2 cell lineage commitment. Nature 487, 249 (2012).

    CAS  PubMed  Google Scholar 

  169. Mele, D. A. et al. BET bromodomain inhibition suppresses TH17-mediated pathology. J. Exp. Med. 210, 2181–2190 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Tumes, D. J. et al. The polycomb protein Ezh2 regulates differentiation and plasticity of CD4+ T helper type 1 and type 2 cells. Immunity 39, 819–832 (2013).

    CAS  PubMed  Google Scholar 

  171. Adoue, V. et al. The histone methyltransferase SETDB1 controls T helper cell lineage integrity by repressing endogenous retroviruses. Immunity https://doi.org/10.1016/j.immuni.2019.01.003 (2019).

  172. Lee, W. & Lee, G. R. Transcriptional regulation and development of regulatory T cells. Exp. Mol. Med. 50, e456 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Klages, K. et al. Selective depletion of Foxp3+ regulatory T cells improves effective therapeutic vaccination against established melanoma. Cancer Res. 70, 7788–7799 (2010).

    CAS  PubMed  Google Scholar 

  174. Beavis, P. A. et al. Dual PD-1 and CTLA-4 checkpoint blockade promotes antitumor immune responses through CD4+Foxp3 cell-mediated modulation of CD103+ dendritic cells. Cancer Immunol. Res. 6, 1069–1081 (2018).

    CAS  PubMed  Google Scholar 

  175. Delacher, M. et al. Genome-wide DNA-methylation landscape defines specialization of regulatory T cells in tissues. Nat. Immunol. 18, 1160 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Kanamori, M., Nakatsukasa, H., Okada, M., Lu, Q. & Yoshimura, A. Induced regulatory T cells: their development, stability, and applications. Trends Immunol. 37, 803–811 (2016).

    CAS  PubMed  Google Scholar 

  177. Kitagawa, Y., Ohkura, N. & Sakaguchi, S. Epigenetic control of thymic Treg-cell development. Eur. J. Immunol. 45, 11–16 (2015).

    CAS  PubMed  Google Scholar 

  178. Ohkura, N. et al. T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity 37, 785–799 (2012).

    CAS  PubMed  Google Scholar 

  179. Kim, H. P. & Leonard, W. J. CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J. Exp. Med. 204, 1543–1551 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Polansky, J. K. et al. DNA methylation controls Foxp3 gene expression. Eur. J. Immunol. 38, 1654–1663 (2008).

    CAS  PubMed  Google Scholar 

  181. Stubig, T. et al. 5-Azacytidine promotes an inhibitory T-cell phenotype and impairs immune mediated antileukemic activity. Mediators Inflamm. 2014, 418292 (2014).

    PubMed  PubMed Central  Google Scholar 

  182. Yang, R. et al. Hydrogen sulfide promotes Tet1- and Tet2-mediated Foxp3 demethylation to drive regulatory T cell differentiation and maintain immune homeostasis. Immunity 43, 251–263 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Yue, X. et al. Control of Foxp3 stability through modulation of TET activity. J. Exp. Med. 213, 377–397 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Waight, J. D. et al. Cutting edge: epigenetic regulation of Foxp3 defines a stable population of CD4+ regulatory T cells in tumors from mice and humans. J. Immunol. 194, 878–882 (2015).

    CAS  PubMed  Google Scholar 

  185. Akimova, T. et al. Human lung tumor FOXP3+ Tregs upregulate four “Treg-locking” transcription factors. JCI Insight https://doi.org/10.1172/jci.insight.94075 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  186. de Gramont, A., Faivre, S. & Raymond, E. Novel TGF-β inhibitors ready for prime time in onco-immunology. Oncoimmunology 6, e1257453 (2017).

    PubMed  Google Scholar 

  187. Chen, W. et al. Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Holmgaard, R. B. et al. Targeting the TGFβ pathway with galunisertib, a TGFβRI small molecule inhibitor, promotes anti-tumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint blockade. J. Immunother. Cancer 6, 47 (2018).

    PubMed  PubMed Central  Google Scholar 

  189. Pu, N. et al. CD25 and TGF-β blockade based on predictive integrated immune ratio inhibits tumor growth in pancreatic cancer. J. Transl Med. 16, 294 (2018).

    PubMed  PubMed Central  Google Scholar 

  190. Ke, X. et al. Non-small-cell lung cancer-induced immunosuppression by increased human regulatory T cells via Foxp3 promoter demethylation. Cancer Immunol. Immunother. 65, 587–599 (2016).

    CAS  PubMed  Google Scholar 

  191. Freudenberg, K. et al. Critical role of TGF-β and IL-2 receptor signaling in Foxp3 induction by an inhibitor of DNA methylation. Front. Immunol. 9, 125 (2018).

    PubMed  PubMed Central  Google Scholar 

  192. Costantini, B. et al. The effects of 5-azacytidine on the function and number of regulatory T cells and T-effectors in myelodysplastic syndrome. Haematologica 98, 1196–1205 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Tao, R. et al. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat. Med. 13, 1299 (2007).

    CAS  PubMed  Google Scholar 

  194. De Zoeten, E. F., Wang, L., Sai, H., Dillmann, W. H. & Hancock, W. W. Inhibition of HDAC9 increases T regulatory cell function and prevents colitis in mice. Gastroenterology 138, 583–594 (2010).

    PubMed  Google Scholar 

  195. Huang, J. et al. Histone/protein deacetylase 11 targeting promotes Foxp3+ Treg function. Sci. Rep. 7, 8626 (2017).

    PubMed  PubMed Central  Google Scholar 

  196. Xiao, H. et al. HDAC5 controls the functions of Foxp3+ T-regulatory and CD8+ T cells. Int. J. Cancer 138, 2477–2486 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Shen, L. et al. Class I histone deacetylase inhibitor entinostat suppresses regulatory T cells and enhances immunotherapies in renal and prostate cancer models. PLoS ONE 7, e30815 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Xiao, Y. et al. Histone acetyltransferase mediated regulation of FOXP3 acetylation and Treg function. Curr. Opin. Immunol. 22, 583–591 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Li, B. et al. FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc. Natl Acad. Sci.USA 104, 4571–4576 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Ghosh, S. et al. Regulatory T cell modulation by CBP/EP300 bromodomain inhibition. J. Biol. Chem. 291, 13014–13027 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Castillo, J. et al. CBP/p300 drives the differentiation of regulatory T cells through transcriptional and non-transcriptional mechanisms. Cancer Res. 79, 3916–3927 (2019).

    CAS  PubMed  Google Scholar 

  202. Bin Dhuban, K. et al. Suppression by human FOXP3+ regulatory T cells requires FOXP3–TIP60 interactions. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aai9297 (2017).

    Article  Google Scholar 

  203. Wang, L. et al. Ubiquitin-specific protease-7 inhibition impairs Tip60-dependent Foxp3+ T-regulatory cell function and promotes antitumor immunity. EBioMedicine 13, 99–112 (2016).

    PubMed  PubMed Central  Google Scholar 

  204. de Almeida Nagata, D. E. et al. Regulation of tumor-associated myeloid cell activity by CBP/EP300 bromodomain modulation of H3K27 acetylation. Cell Rep. 27, 269–281 (2019).

    PubMed  Google Scholar 

  205. DuPage, M. et al. The chromatin-modifying enzyme Ezh2 is critical for the maintenance of regulatory T cell identity after activation. Immunity 42, 227–238 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Wang, D. et al. Targeting EZH2 reprograms intratumoral tegulatory T cells to enhance cancer immunity. Cell Rep. 23, 3262–3274 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Goswami, S. et al. Modulation of EZH2 expression in T cells improves efficacy of anti-CTLA-4 therapy. J. Clin. Invest. 128, 3813–3818 (2018).

    PubMed  PubMed Central  Google Scholar 

  208. Xu, K. et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science 338, 1465–1469 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Blackburn, S. D., Shin, H., Freeman, G. J. & Wherry, E. J. Selective expansion of a subset of exhausted CD8 T cells by αPD-L1 blockade. Proc. Natl Acad. Sci. USA 105, 15016–15021 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Paley, M. A. et al. Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. Science 338, 1220–1225 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Philip, M. et al. Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature 545, 452–456 (2017). This study identifies irreversibly dysfunctional T cells that are marked by an epigenetic landscape distinct from plastic dysfunctional T cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Wu, T. et al. The TCF1–Bcl6 axis counteracts type I interferon to repress exhaustion and maintain T cell stemness. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aai8593 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Sade-Feldman, M. et al. Clinical significance of circulating CD33+CD11b+HLA-DR myeloid cells in patients with stage IV melanoma treated with ipilimumab. Clin. Cancer Res. 22, 5661–5672 (2016).

    CAS  PubMed  Google Scholar 

  215. Siddiqui, I. et al. Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211 (2019).

    CAS  PubMed  Google Scholar 

  216. Scott-Browne, J. P. et al. Dynamic changes in chromatin accessibility occur in CD8+ T cells responding to viral infection. Immunity 45, 1327–1340 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Scharer, C. D., Barwick, B. G., Youngblood, B. A., Ahmed, R. & Boss, J. M. Global DNA methylation remodeling accompanies CD8 T cell effector function. J. Immunol. 191, 3419–3429 (2013).

    CAS  PubMed  Google Scholar 

  218. Abdelsamed, H. A. et al. Human memory CD8 T cell effector potential is epigenetically preserved during in vivo homeostasis. J. Exp. Med. 214, 1593–1606 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Rodriguez, R. M. et al. Epigenetic networks regulate the transcriptional program in memory and terminally differentiated CD8+ T cells. J. Immunol. 198, 937–949 (2017).

    CAS  PubMed  Google Scholar 

  220. Youngblood, B. et al. Effector CD8 T cells dedifferentiate into long-lived memory cells. Nature 552, 404–409 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Lee, P. P. et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15, 763–774 (2001).

    CAS  PubMed  Google Scholar 

  222. Carty, S. A. et al. The loss of TET2 promotes CD8+ T cell memory differentiation. J. Immunol. 200, 82–91 (2018).

    CAS  PubMed  Google Scholar 

  223. Schietinger, A. et al. Tumor-specific T cell dysfunction is a dynamic antigen-driven differentiation program initiated early during tumorigenesis. Immunity 45, 389–401 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Ahn, E. et al. Demethylation of the PD-1 promoter is imprinted during the effector phase of CD8 T cell exhaustion. J. Virol. 90, 8934–8946 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Ghoneim, H. E. et al. De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell 170, 142–157 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Pauken, K. E. et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science https://doi.org/10.1126/science.aaf2807 (2016).

  227. Wang, L. et al. Decitabine enhances lymphocyte migration and function and synergizes with CTLA-4 blockade in a murine ovarian cancer model. Cancer Immunol. Res. 3, 1030–1041 (2015).

    CAS  PubMed  Google Scholar 

  228. Yu, G. et al. Low-dose decitabine enhances the effect of PD-1 blockade in colorectal cancer with microsatellite stability by re-modulating the tumor microenvironment. Cell Mol. Immunol. https://doi.org/10.1038/s41423-018-0026-y (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Stone, M. L. et al. Epigenetic therapy activates type I interferon signaling in murine ovarian cancer to reduce immunosuppression and tumor burden. Proc. Natl Acad. Sci. USA 114, E10981–E10990 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Araki, Y. et al. Genome-wide analysis of histone methylation reveals chromatin state-based regulation of gene transcription and function of memory CD8+ T cells. Immunity 30, 912–925 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Russ, B. E. et al. Distinct epigenetic signatures delineate transcriptional programs during virus-specific CD8+ T cell differentiation. Immunity 41, 853–865 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Kuroda, S. et al. Basic leucine zipper transcription factor, ATF-like (BATF) regulates epigenetically and energetically effector CD8 T-cell differentiation via Sirt1 expression. Proc. Natl Acad. Sci. USA 108, 14885–14889 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Shin, H. M. et al. Epigenetic modifications induced by Blimp-1 regulate CD8+ T cell memory progression during acute virus infection. Immunity 39, 661–675 (2013).

    CAS  PubMed  Google Scholar 

  234. Xing, S. et al. Tcf1 and Lef1 transcription factors establish CD8+ T cell identity through intrinsic HDAC activity. Nat. Immunol. 17, 695 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Yu, B. et al. Epigenetic landscapes reveal transcription factors that regulate CD8+ T cell differentiation. Nat. Immunol. 18, 573 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Gray, S. M., Amezquita, R. A., Guan, T., Kleinstein, S. H. & Kaech, S. M. Polycomb repressive complex 2-mediated chromatin repression guides effector CD8+ T cell terminal differentiation and loss of multipotency. Immunity 46, 596–608 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Heffner, M. & Fearon, D. T. Loss of T cell receptor-induced Bmi-1 in the KLRG1+ senescent CD8+ T lymphocyte. Proc. Natl Acad. Sci. USA 104, 13414–13419 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Kakaradov, B. et al. Early transcriptional and epigenetic regulation of CD8+ T cell differentiation revealed by single-cell RNA sequencing. Nat. Immunol. 18, 422 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Zhao, E. et al. Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nat. Immunol. 17, 95–103 (2016).

    CAS  PubMed  Google Scholar 

  240. Martinez, G. J. et al. The transcription factor NFAT promotes exhaustion of activated CD8+ T cells. Immunity 42, 265–278 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Mognol, G. P. et al. Exhaustion-associated regulatory regions in CD8+ tumor-infiltrating T cells. Proc. Natl Acad. Sci.USA 114, E2776–E2785 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013 (2018). This report identifies a T cell subset expressing the transcription factor TCF7 that is responsive to immune checkpoint blockade.

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Terracina, K. P. et al. DNA methyltransferase inhibition increases efficacy of adoptive cellular immunotherapy of murine breast cancer. Cancer Immunol. Immunother. 65, 1061–1073 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Zhou, J. et al. Demethylating agent decitabine disrupts tumor-induced immune tolerance by depleting myeloid-derived suppressor cells. J. Cancer Res. Clin. Oncol. 143, 1371–1380 (2017).

    CAS  PubMed  Google Scholar 

  245. Zhang, H. et al. Targeting CDK9 reactivates epigenetically silenced genes in cancer. Cell 175, 1244–1258 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Jones, R. B. et al. Histone deacetylase inhibitors impair the elimination of HIV-infected cells by cytotoxic T-lymphocytes. PLoS Pathog. 10, e1004287 (2014).

    PubMed  PubMed Central  Google Scholar 

  247. Tay, R. E. et al. Hdac3 is an epigenetic inhibitor of the cytotoxicity program in CD8 T cells. J. Exp. Med. https://doi.org/10.1084/jem.20191453 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Mardiana, S., Solomon, B. J., Darcy, P. K. & Beavis, P. A. Supercharging adoptive T cell therapy to overcome solid tumor-induced immunosuppression. Sci. Transl Med. https://doi.org/10.1126/scitranslmed.aaw2293 (2019).

  249. Vo, D. D. et al. Enhanced antitumor activity induced by adoptive T-cell transfer and adjunctive use of the histone deacetylase inhibitor LAQ824. Cancer Res. 69, 8693–8699 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Kailayangiri, S. et al. EZH2 inhibition in Ewing sarcoma upregulates GD2 expression for targeting with gene-modified T cells. Mol. Ther. 27, 933–946 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Gattinoni, L. et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J. Clin. Invest. 115, 1616–1626 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Rosenberg, S. A. et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res. 17, 4550–4557 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Sommermeyer, D. et al. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia 30, 492–500 (2016).

    CAS  PubMed  Google Scholar 

  254. Powell, D. J. Jr, Dudley, M. E., Robbins, P. F. & Rosenberg, S. A. Transition of late-stage effector T cells to CD27+CD28+ tumor-reactive effector memory T cells in humans after adoptive cell transfer therapy. Blood 105, 241–250 (2005).

    CAS  PubMed  Google Scholar 

  255. Fraietta, J. A. et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 24, 563 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. He, S. et al. Ezh2 phosphorylation state determines its capacity to maintain CD8+ T memory precursors for antitumor immunity. Nat. Commun. 8, 2125 (2017).

    PubMed  PubMed Central  Google Scholar 

  257. Kagoya, Y. et al. BET bromodomain inhibition enhances T cell persistence and function in adoptive immunotherapy models. J. Clin. Invest. 126, 3479–3494 (2016).

    PubMed  PubMed Central  Google Scholar 

  258. Tyrakis, P. A. et al. S-2-Hydroxyglutarate regulates CD8+ T-lymphocyte fate. Nature 540, 236 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Fraietta, J. A. et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature https://doi.org/10.1038/s41586-018-0178-z (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Pace, L. et al. The epigenetic control of stemness in CD8+ T cell fate commitment. Science 359, 177–186 (2018).

    CAS  PubMed  Google Scholar 

  261. Motz, G. et al. Immune effector cell therapies with enhanced efficacy. WO/2017/114497 (2017).

  262. Motz, G. et al. Immune effector cell therapies with enhanced efficacy. WO/2018/059549 (2018).

  263. Treanor,. L. et al. Methods of making chimeric antigen receptor-expressing cells. WO/2020/047452 (2020).

  264. John, L. B. et al. Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin. Cancer Res. 19, 5636–5646 (2013).

    CAS  PubMed  Google Scholar 

  265. Prosser, M. E., Brown, C. E., Shami, A. F., Forman, S. J. & Jensen, M. C. Tumor PD-L1 co-stimulates primary human CD8+ cytotoxic T cells modified to express a PD1:CD28 chimeric receptor. Mol. Immunol. 51, 263–272 (2012).

    CAS  PubMed  Google Scholar 

  266. Cherkassky, L. et al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J. Clin. Invest. 126, 3130–3144 (2016).

    PubMed  PubMed Central  Google Scholar 

  267. Rupp, L. J. et al. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci. Rep. 7, 737 (2017).

    PubMed  PubMed Central  Google Scholar 

  268. Odorizzi, P. M., Pauken, K. E., Paley, M. A., Sharpe, A. & Wherry, E. J. Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells. J. Exp. Med. 212, 1125–1137 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  269. Chen, Z. et al. TCF-1-centered transcriptional network drives an effector versus exhausted CD8 T cell-fate decision. Immunity 51, 840–855 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Stadtmauer, E. A. et al. CRISPR-engineered T cells in patients with refractory cancer. Science https://doi.org/10.1126/science.aba7365 (2020).

    Article  PubMed  Google Scholar 

  271. Nussing, S. et al. Efficient CRISPR/Cas9 gene editing in uncultured naive mouse T cells for in vivo studies. J. Immunol. https://doi.org/10.4049/jimmunol.1901396 (2020).

    Article  PubMed  Google Scholar 

  272. Eyquem, J. et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113–117 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Roth, T. L. et al. Pooled knockin targeting for genome engineering of cellular immunotherapies. Cell 181, 728–744 (2020). This paper is the first report of a loss-of-function CRISPR–Cas9 screening approach to identify genes that allow tumours to overcome T cell killing.

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Manguso, R. T. et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547, 413–418 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  275. Patel, S. J. et al. Identification of essential genes for cancer immunotherapy. Nature 548, 537–542 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Kearney, C. J. et al. Tumor immune evasion arises through loss of TNF sensitivity. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aar3451 (2018).

    Article  PubMed  Google Scholar 

  277. Frankiw, L., Baltimore, D. & Li, G. Alternative mRNA splicing in cancer immunotherapy. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-019-0195-7 (2019).

    Article  PubMed  Google Scholar 

  278. Smith, C. C. et al. Alternative tumour-specific antigens. Nat. Rev. Cancer 19, 465–478 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  279. Kahles, A. et al. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell 34, 211–224.16 (2018).

    CAS  PubMed  Google Scholar 

  280. Radzisheuskaya, A. et al. PRMT5 methylome profiling uncovers a direct link to splicing regulation in acute myeloid leukemia. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-019-0313-z (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  281. Fong, J. Y. et al. Therapeutic targeting of RNA splicing catalysis through inhibition of protein arginine methylation. Cancer Cell 36, 194–209 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  282. Dubbury, S. J., Boutz, P. L. & Sharp, P. A. CDK12 regulates DNA repair genes by suppressing intronic polyadenylation. Nature 564, 141–145 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  283. Fan, Z. et al. CDK13 cooperates with CDK12 to control global RNA polymerase II processivity. Sci. Adv. https://doi.org/10.1126/sciadv.aaz5041 (2020).

  284. Wu, Y. M. et al. Inactivation of CDK12 delineates a distinct immunogenic class of advanced prostate cancer. Cell 173, 1770–1782 (2018).

    CAS  PubMed  Google Scholar 

  285. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    CAS  PubMed  Google Scholar 

  286. Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006).

    CAS  PubMed  Google Scholar 

  287. Loi, S. et al. Tumor-infiltrating lymphocytes and prognosis: a pooled individual patient analysis of early-stage triple-negative breast cancers. J. Clin. Oncol. 37, 559–569 (2019).

    PubMed  PubMed Central  Google Scholar 

  288. Cursons, J. et al. A gene signature predicting natural killer cell infiltration and improved survival in melanoma patients. Cancer Immunol. Res. 7, 1162–1174 (2019).

    CAS  PubMed  Google Scholar 

  289. Zilionis, R. et al. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity 50, 1317–1334 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  290. Ruffell, B. & Coussens, L. M. Macrophages and therapeutic resistance in cancer. Cancer Cell 27, 462–472 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  291. Satoh, T. et al. The Jmjd3–Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat. Immunol. 11, 936–944 (2010).

    CAS  PubMed  Google Scholar 

  292. Kruidenier, L. et al. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature 488, 404 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  293. Link, V. M. et al. Analysis of genetically diverse macrophages reveals local and domain-wide mechanisms that control transcription factor binding and function. Cell 173, 1796–1809 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  294. Wang, X. et al. Epigenetic regulation of macrophage polarization and inflammation by DNA methylation in obesity. JCI Insight https://doi.org/10.1172/jci.insight.87748 (2016).

  295. Zhang, X. et al. Macrophage/microglial Ezh2 facilitates autoimmune inflammation through inhibition of Socs3. J. Exp. Med. 215, 1365–1382 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  296. Condamine, T. & Gabrilovich, D. I. Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol. 32, 19–25 (2011).

    CAS  PubMed  Google Scholar 

  297. Rodriguez-Ubreva, J. et al. Prostaglandin E2 leads to the acquisition of DNMT3A-dependent tolerogenic functions in human myeloid-derived suppressor cells. Cell Rep. 21, 154–167 (2017).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to researching data for the article, the discussion of content, writing of the manuscript and editing it before final submission.

Corresponding author

Correspondence to Ricky W. Johnstone.

Ethics declarations

Competing interests

The authors declare the following competing interests: the Johnstone laboratory receives funding from Roche, BMS and MecRx. R.W.J is a paid consultant and shareholder of MecRx. M.A.D. has been a member of advisory boards for CTX CRC, Storm Therapeutics, Celgene and Cambridge Epigenetix. S.J.H. and R.W.J. are inventors on a patent (WO2017059319A3) related to combining bromodomain inhibitors and immune-modulating therapies.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Enhancer

A distal cis-regulatory element that activates gene expression via long-range interactions with gene promoters. Active enhancers are identified by specific histone modifications (such as histone H3 acetylated at K27 (H3K27ac), histone H3 methylated at K4 (H3K4me1) and H3K4me2) and are occupied by transcriptional co-activators, including the Mediator complex, Bromodomain containing 4 (BRD4) and P300.

Tumour microenvironment

(TME). The interacting local environment in which proliferating tumour masses grow, comprising non-tumour cells (such as stromal fibroblasts, immune cells and blood/lymphatic vascular networks), secreted factors and extracellular matrix proteins.

Major histocompatibility complex

(MHC). A protein complex subdivided into class I and class II that functions to present antigenic peptides on the cell surface to CD8+ T cells and CD4+ T cells, respectively.

Endogenous retroviruses

(ERVs). Retroviral sequences that have integrated into the genome of all vertebrates throughout the course of evolution, to now constitute approximately 8% of the modern human genome. Multiple epigenetic mechanisms are utilized to prevent active transcription of ERVs, including DNA and histone methylation.

Viral mimicry

Transcription of human endogenous retroviruses, which are repressed under homeostatic conditions, can be interpreted by the cell as an active viral infection, triggering an innate immune response (termed viral mimicry), including the production of type I interferons.

Transcription factors

Proteins that recognize and bind specific genomic DNA sequences (termed ‘motifs’) and regulate transcription. Although many are ubiquitously expressed, certain ‘lineage-specifying’ transcription factors are only expressed in a cell type-specific manner where they orchestrate transcriptional programmes that control cell state/differentiation/fate phenotypes.

Interferons

A pleotropic family of cytokines comprising type I (IFNα/IFNβ), type II (IFNγ) and type III (IFNλ) interferons, secreted by various immune cell subsets, that evoke antiviral, antiproliferative and/or immunomodulatory effects, including promoting antigen presentation.

Immune checkpoint

T cell activation is a finely controlled process that can be enhanced or repressed by receptor activation. Immune checkpoints, such as PD1, act to inhibit effector T cell functions through negative regulation of intracellular signalling pathways, which leads to T cell activation.

Type 1 T helper

(TH1). CD4+T helper cells are subset into distinct lineages defined by distinct expression of master transcription factors and cytokines with each lineage. TH1 cells are defined by their expression of the transcription factor TBET and production of IFNγ and tumour necrosis factor (TNF). In the context of cancer immunity, TH1 cells are associated with antitumour immune responses.

Positive transcription elongation factor b

(P-TEFb). A transcriptional co-activation complex comprising cyclin-dependent kinase 9 (CDK9) and cyclin T1, which phosphorylates RNA polymerase II to release it from the pause-release checkpoint and stimulate transcriptional elongation.

Super-enhancers

Large cis-regulatory elements comprising clusters of individual enhancers that are thought to cooperatively regulate the expression of single genes. Genes regulated by super-enhancers are frequently master lineage-specifying transcription factors and other proteins integral for cell type specification.

Exhaustion

A state of dysfunction that in T cells arises from chronic stimulation through antigen persistence, such as in chronic viral infection or cancer. It is associated with increased expression of inhibitory cell surface receptors and an inability to express key effector genes required for T cell activation.

Chimeric antigen receptor T cell

(CAR T cell). A form of adoptive cellular therapy where a patient’s own T cells are transduced to express a synthetic CAR in which the extracellular region binds to a defined tumour antigen and the intracellular domain contains the signalling moieties of CD3ζ and CD28 or 4-1BB. Activation of the CAR T cell therefore leads to potent T cell activation and cytotoxic activity directed towards the tumour cell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hogg, S.J., Beavis, P.A., Dawson, M.A. et al. Targeting the epigenetic regulation of antitumour immunity. Nat Rev Drug Discov 19, 776–800 (2020). https://doi.org/10.1038/s41573-020-0077-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-020-0077-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing