Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Leveraging preclinical models for the development of Alzheimer disease therapeutics

Abstract

A large number of mouse models have been engineered, characterized and used to advance biomedical research in Alzheimer disease (AD). Early models simply damaged the rodent brain through toxins or lesions. Later, the spread of genetic engineering technology enabled investigators to develop models of familial AD by overexpressing human genes such as those encoding amyloid precursor protein (APP) or presenilins (PSEN1 or PSEN2) carrying mutations linked to early-onset AD. Recently, more complex models have sought to explore the impact of multiple genetic risk factors in the context of different biological challenges. Although none of these models has proven to be a fully faithful reproduction of the human disease, models remain essential as tools to improve our understanding of AD biology, conduct thorough pharmacokinetic and pharmacodynamic analyses, discover translatable biomarkers and evaluate specific therapeutic approaches. To realize the full potential of animal models as new technologies and knowledge become available, it is critical to define an optimal strategy for their use. Here, we review progress and challenges in the use of AD mouse models, highlight emerging scientific innovations in model development, and introduce a conceptual framework for use of preclinical models for therapeutic development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of pathogenesis in Alzheimer disease.
Fig. 2: Timeline outlining the discovery of Alzheimer disease genetic risk factors.
Fig. 3: Proposed framework to increase translational predictability of animal models for AD.
Fig. 4: Strategy to discover and develop translatable biomarkers using animal models.

Similar content being viewed by others

References

  1. van der Worp, H. B. et al. Can animal models of disease reliably inform human studies? PLoS Med. 7, e1000245 (2010).

    PubMed  PubMed Central  Google Scholar 

  2. DeVita, V. T. Jr & Chu, E. A history of cancer chemotherapy. Cancer Res. 68, 8643–8653 (2008).

    CAS  PubMed  Google Scholar 

  3. Alzheimer’s Disease International. World Alzheimer Report 2018 (Alzheimer’s Disease International, 2018).

  4. Hippius, H. & Neundorfer, G. The discovery of Alzheimer’s disease. Dialogues Clin. Neurosci. 5, 101–108 (2003).

    PubMed  PubMed Central  Google Scholar 

  5. Selkoe, D. J. & Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 8, 595–608 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Karran, E. & De Strooper, B. The amyloid cascade hypothesis: are we poised for success or failure? J. Neurochem. 139, 237–252 (2016).

    CAS  PubMed  Google Scholar 

  7. Van Cauwenberghe, C., Van Broeckhoven, C. & Sleegers, K. The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet. Med. 18, 421–430 (2016).

    PubMed  Google Scholar 

  8. Bertram, L., McQueen, M. B., Mullin, K., Blacker, D. & Tanzi, R. E. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat. Genet. 39, 17–23 (2007).

    CAS  PubMed  Google Scholar 

  9. Hansen, D. V., Hanson, J. E. & Sheng, M. Microglia in Alzheimer’s disease. J. Cell Biol. 217, 459–472 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sims, R. et al. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat. Genet. 49, 1373–1384 (2017). This article describes the identification of coding variants in two additional microglial genes that contribute to AD risk.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Mullane, K. & Williams, M. Preclinical models of Alzheimer’s disease: relevance and translational validity. Curr. Protoc. Pharmacol. 84, e57 (2019).

    PubMed  Google Scholar 

  12. Van Dam, D. & De Deyn, P. P. Animal models in the drug discovery pipeline for Alzheimer’s disease. Br. J. Pharmacol. 164, 1285–1300 (2011).

    PubMed  PubMed Central  Google Scholar 

  13. Sturchler-Pierrat, C. et al. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc. Natl Acad. Sci. USA 94, 13287–13292 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lamb, B. T. et al. Altered metabolism of familial Alzheimer’s disease-linked amyloid precursor protein variants in yeast artificial chromosome transgenic mice. Hum. Mol. Genet. 6, 1535–1541 (1997).

    CAS  PubMed  Google Scholar 

  15. Borchelt, D. R. et al. Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron 19, 939–945 (1997).

    CAS  PubMed  Google Scholar 

  16. Moechars, D. et al. Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. J. Biol. Chem. 274, 6483–6492 (1999).

    CAS  PubMed  Google Scholar 

  17. Games, D. et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 373, 523–527 (1995). This is the first study to demonstrate that overexpression of human APP with FAD mutations is sufficient to cause amyloid plaque accumulation in mice.

    CAS  PubMed  Google Scholar 

  18. Reaume, A. G. et al. Enhanced amyloidogenic processing of the beta-amyloid precursor protein in gene-targeted mice bearing the Swedish familial Alzheimer’s disease mutations and a “humanized” Abeta sequence. J. Biol. Chem. 271, 23380–23388 (1996).

    CAS  PubMed  Google Scholar 

  19. Mucke, L. et al. High-level neuronal expression of abeta 1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J. Neurosci. 20, 4050–4058 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gotz, J. et al. A decade of tau transgenic animal models and beyond. Brain Pathol. 17, 91–103 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ashe, K. H. & Zahs, K. R. Probing the biology of Alzheimer’s disease in mice. Neuron 66, 631–645 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Luo, Y. et al. Mice deficient in BACE1, the Alzheimer’s beta-secretase, have normal phenotype and abolished beta-amyloid generation. Nat. Neurosci. 4, 231–232 (2001). This study demonstrates that BACE1 is required for amyloid plaque generation, supporting the rationale to target this protease for treatment of AD.

    CAS  PubMed  Google Scholar 

  23. McConlogue, L. et al. Partial reduction of BACE1 has dramatic effects on Alzheimer plaque and synaptic pathology in APP transgenic mice. J. Biol. Chem. 282, 26326–26334 (2007).

    CAS  PubMed  Google Scholar 

  24. Palop, J. J. & Mucke, L. Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 17, 777–792 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sarlus, H. & Heneka, M. T. Microglia in Alzheimer’s disease. J. Clin. Invest. 127, 3240–3249 (2017).

    PubMed  PubMed Central  Google Scholar 

  26. Shoshan-Barmatz, V., Nahon-Crystal, E., Shteinfer-Kuzmine, A. & Gupta, R. VDAC1, mitochondrial dysfunction, and Alzheimer’s disease. Pharmacol. Res. 131, 87–101 (2018).

    CAS  PubMed  Google Scholar 

  27. Shi, Y. & Holtzman, D. M. Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat. Rev. Immunol. 18, 759–772 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lauren, J., Gimbel, D. A., Nygaard, H. B., Gilbert, J. W. & Strittmatter, S. M. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457, 1128–1132 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Cisse, M. et al. Reversing EphB2 depletion rescues cognitive functions in Alzheimer model. Nature 469, 47–52 (2011).

    CAS  PubMed  Google Scholar 

  30. Le Pichon, C. E. et al. Loss of dual leucine zipper kinase signaling is protective in animal models of neurodegenerative disease. Sci. Transl. Med. 9, https://doi.org/10.1126/scitranslmed.aag0394 (2017).

  31. Kamenetz, F. et al. APP processing and synaptic function. Neuron 37, 925–937 (2003).

    CAS  PubMed  Google Scholar 

  32. Ittner, A. A., Gladbach, A., Bertz, J., Suh, L. S. & Ittner, L. M. p38 MAP kinase-mediated NMDA receptor-dependent suppression of hippocampal hypersynchronicity in a mouse model of Alzheimer’s disease. Acta Neuropathol. Commun. 2, 149 (2014).

    PubMed  PubMed Central  Google Scholar 

  33. Temido-Ferreira, M. et al. Age-related shift in LTD is dependent on neuronal adenosine A2A receptors interplay with mGluR5 and NMDA receptors. Mol. Psychiatry https://doi.org/10.1038/s41380-018-0110-9 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jarosz-Griffiths, H. H., Noble, E., Rushworth, J. V. & Hooper, N. M. Amyloid-beta receptors: the good, the bad, and the prion protein. J. Biol. Chem. 291, 3174–3183 (2016).

    CAS  PubMed  Google Scholar 

  35. De Strooper, B. & Karran, E. The cellular phase of Alzheimer’s disease. Cell 164, 603–615 (2016).

    PubMed  Google Scholar 

  36. Sevigny, J. et al. The antibody aducanumab reduces Abeta plaques in Alzheimer’s disease. Nature 537, 50–56 (2016). This article shows that aducanumab treatment was able to reduce plaque load in a small study of patients with AD and supported the progression of the drug to a phase III clinical trial.

    CAS  PubMed  Google Scholar 

  37. Bohrmann, B. et al. Gantenerumab: a novel human anti-Abeta antibody demonstrates sustained cerebral amyloid-beta binding and elicits cell-mediated removal of human amyloid-beta. J. Alzheimers Dis. 28, 49–69 (2012).

    CAS  PubMed  Google Scholar 

  38. Frost, J. L. et al. Passive immunization against pyroglutamate-3 amyloid-beta reduces plaque burden in Alzheimer-like transgenic mice: a pilot study. Neurodegener. Dis. 10, 265–270 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Tucker, S. et al. The murine version of BAN2401 (mAb158) selectively reduces amyloid-beta protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice. J. Alzheimers Dis. 43, 575–588 (2015).

    CAS  PubMed  Google Scholar 

  40. Vellas, B., Aisen, P., Weiner, M. & Touchon, J. What we learn from the CTAD 2018 (Clinical Trials in Alzheimer’s Disease). J. Prev. Alz. Dis. 5, 214–215 (2018).

    CAS  Google Scholar 

  41. Karran, E. & Hardy, J. A critique of the drug discovery and phase 3 clinical programs targeting the amyloid hypothesis for Alzheimer disease. Ann. Neurol. 76, 185–205 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Garber, K. Genentech’s Alzheimer’s antibody trial to study disease prevention. Nat. Biotechnol. 30, 731–732 (2012).

    CAS  PubMed  Google Scholar 

  43. Golde, T. E., Schneider, L. S. & Koo, E. H. Anti-abeta therapeutics in Alzheimer’s disease: the need for a paradigm shift. Neuron 69, 203–213 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kennedy, M. E. et al. The BACE1 inhibitor verubecestat (MK-8931) reduces CNS beta-amyloid in animal models and in Alzheimer’s disease patients. Sci. Transl. Med. 8, 363ra150 (2016). This study is an example of the use of a robust preclinical study design in animal models to inform clinical development with BACE1 inhibitors.

    PubMed  Google Scholar 

  45. Egan, M. F. et al. Randomized trial of verubecestat for mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 378, 1691–1703 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. May, P. C. et al. The potent BACE1 inhibitor LY2886721 elicits robust central Abeta pharmacodynamic responses in mice, dogs, and humans. J. Neurosci. 35, 1199–1210 (2015).

    PubMed  PubMed Central  Google Scholar 

  47. Jacobsen, H. et al. Combined treatment with a BACE inhibitor and anti-Abeta antibody gantenerumab enhances amyloid reduction in APPLondon mice. J. Neurosci. 34, 11621–11630 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Moussa-Pacha, N. M., Abdin, S. M., Omar, H. A., Alniss, H. & Al-Tel, T. H. BACE1 inhibitors: current status and future directions in treating Alzheimer’s disease. Med. Res. Rev. 40, 339–384 (2020).

    PubMed  Google Scholar 

  49. De Strooper, B., Iwatsubo, T. & Wolfe, M. S. Presenilins and gamma-secretase: structure, function, and role in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2, a006304 (2012).

    PubMed  PubMed Central  Google Scholar 

  50. Kopan, R. & Ilagan, M. X. Gamma-secretase: proteasome of the membrane? Nat. Rev. Mol. Cell Biol. 5, 499–504 (2004).

    CAS  PubMed  Google Scholar 

  51. Dovey, H. F. et al. Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. J. Neurochem. 76, 173–181 (2001).

    CAS  PubMed  Google Scholar 

  52. Haapasalo, A. & Kovacs, D. M. The many substrates of presenilin/gamma-secretase. J. Alzheimers Dis. 25, 3–28 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ou-Yang, M. H. et al. Axonal organization defects in the hippocampus of adult conditional BACE1 knockout mice. Sci. Transl. Med. 10, https://doi.org/10.1126/scitranslmed.aao5620 (2018).

  54. Lewis, J. et al. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293, 1487–1491 (2001). This study demonstrates that overexpression of MAPT containing mutations found in patients with FTD can cause pathology reminiscent of neurofibrillary tangles in patients with AD.

    CAS  PubMed  Google Scholar 

  55. Bayer, T. A. & Wirths, O. Review on the APP/PS1KI mouse model: intraneuronal Abeta accumulation triggers axonopathy, neuron loss and working memory impairment. Genes. Brain Behav. 7, 6–11 (2008).

    CAS  PubMed  Google Scholar 

  56. Lemmens, M. A. et al. Age-related changes of neuron numbers in the frontal cortex of a transgenic mouse model of Alzheimer’s disease. Brain Struct. Funct. 216, 227–237 (2011).

    PubMed  PubMed Central  Google Scholar 

  57. Wright, A. L. et al. Neuroinflammation and neuronal loss precede Abeta plaque deposition in the hAPP-J20 mouse model of Alzheimer’s disease. PLoS One 8, e59586 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Brier, M. R. et al. Tau and Abeta imaging, CSF measures, and cognition in Alzheimer’s disease. Sci. Transl. Med. 8, 338ra366 (2016).

    Google Scholar 

  59. Giannakopoulos, P. et al. Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology 60, 1495–1500 (2003).

    CAS  PubMed  Google Scholar 

  60. Boyle, P. A. et al. Much of late life cognitive decline is not due to common neurodegenerative pathologies. Ann. Neurol. 74, 478–489 (2013).

    PubMed  Google Scholar 

  61. Boyle, P. A. et al. Attributable risk of Alzheimer’s dementia attributed to age-related neuropathologies. Ann. Neurol. 85, 114–124 (2019).

    CAS  PubMed  Google Scholar 

  62. Sasaguri, H. et al. APP mouse models for Alzheimer’s disease preclinical studies. EMBO J. 36, 2473–2487 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Saito, T. et al. Single App knock-in mouse models of Alzheimer’s disease. Nat. Neurosci. 17, 661–663 (2014). This study is the first to describe a ‘knock-in’ APP mouse model of AD that avoids artefacts associated with APP overexpression from a transgene.

    CAS  PubMed  Google Scholar 

  64. Chen, L., Saito, T., Saido, T. C. & Mody, I. Novel quantitative analyses of spontaneous synaptic events in cortical pyramidal cells reveal subtle parvalbumin-expressing interneuron dysfunction in a knock-in mouse model of Alzheimer’s disease. eNeuro https://doi.org/10.1523/ENEURO.0059-18.2018 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sakakibara, Y., Sekiya, M., Saito, T., Saido, T. C. & Iijima, K. M. Cognitive and emotional alterations in App knock-in mouse models of Abeta amyloidosis. BMC Neurosci. 19, 46 (2018).

    PubMed  PubMed Central  Google Scholar 

  66. Orr, A. G. et al. Istradefylline reduces memory deficits in aging mice with amyloid pathology. Neurobiol. Dis. 110, 29–36 (2018).

    CAS  PubMed  Google Scholar 

  67. Izumi, H. et al. The disease-modifying drug candidate, SAK3 improves cognitive impairment and inhibits amyloid beta deposition in app knock-in mice. Neuroscience 377, 87–97 (2018).

    CAS  PubMed  Google Scholar 

  68. Sala Frigerio, C. et al. The major risk factors for Alzheimer’s disease: age, sex, and genes modulate the microglia response to Abeta plaques. Cell Rep. 27, 1293–1306 e1296 (2019).

    CAS  PubMed  Google Scholar 

  69. Corder, E. H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261, 921–923 (1993).

    CAS  PubMed  Google Scholar 

  70. Strittmatter, W. J. et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl Acad. Sci. USA 90, 1977–1981 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Farrer, L. A. et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer disease meta analysis consortium. JAMA 278, 1349–1356 (1997).

    CAS  PubMed  Google Scholar 

  72. Corder, E. H. et al. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat. Genet. 7, 180–184 (1994).

    CAS  PubMed  Google Scholar 

  73. Bien-Ly, N., Gillespie, A. K., Walker, D., Yoon, S. Y. & Huang, Y. Reducing human apolipoprotein E levels attenuates age-dependent Abeta accumulation in mutant human amyloid precursor protein transgenic mice. J. Neurosci. 32, 4803–4811 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kim, J. et al. Haploinsufficiency of human APOE reduces amyloid deposition in a mouse model of amyloid-beta amyloidosis. J. Neurosci. 31, 18007–18012 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Holtzman, D. M., Herz, J. & Bu, G. Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2, a006312 (2012).

    PubMed  PubMed Central  Google Scholar 

  76. Parhizkar, S. et al. Loss of TREM2 function increases amyloid seeding but reduces plaque-associated ApoE. Nat. Neurosci. 22, 191–204 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290 e1217 (2017). This study is the first to use single-cell RNA sequencing of microglia in an AD mouse model to identify a Trem2-dependent population of disease-associated microglia.

    CAS  PubMed  Google Scholar 

  78. Krasemann, S. et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47, 566–581 e569 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Shi, Y. et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 549, 523–527 (2017).

    PubMed  PubMed Central  Google Scholar 

  80. Kim, J. et al. Anti-apoE immunotherapy inhibits amyloid accumulation in a transgenic mouse model of Abeta amyloidosis. J. Exp. Med. 209, 2149–2156 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Liao, F. et al. Anti-ApoE antibody given after plaque onset decreases Abeta accumulation and improves brain function in a mouse model of Abeta amyloidosis. J. Neurosci. 34, 7281–7292 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Liao, F. et al. Targeting of nonlipidated, aggregated apoE with antibodies inhibits amyloid accumulation. J. Clin. Invest. 128, 2144–2155 (2018).

    PubMed  PubMed Central  Google Scholar 

  83. Arboleda-Velasquez, J. F. et al. Resistance to autosomal dominant Alzheimer’s disease in an APOE3 Christchurch homozygote: a case report. Nat. Med. 25, 1680–1683 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Jonsson, T. et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N. Engl. J. Med. 368, 107–116 (2013).

    CAS  PubMed  Google Scholar 

  85. Sayed, F. A. et al. Differential effects of partial and complete loss of TREM2 on microglial injury response and tauopathy. Proc. Natl Acad. Sci. USA 115, 10172–10177 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Yuan, P. et al. TREM2 haplodeficiency in mice and humans impairs the microglia barrier function leading to decreased amyloid compaction and severe axonal dystrophy. Neuron 92, 252–264 (2016).

    CAS  PubMed  Google Scholar 

  87. Zhao, Y. et al. TREM2 is a receptor for beta-amyloid that mediates microglial function. Neuron 97, 1023–1031 e1027 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Leyns, C. E. G. et al. TREM2 deficiency attenuates neuroinflammation and protects against neurodegeneration in a mouse model of tauopathy. Proc. Natl Acad. Sci. USA 114, 11524–11529 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Ulrich, J. D. et al. Altered microglial response to Abeta plaques in APPPS1-21 mice heterozygous for TREM2. Mol. Neurodegener. 9, 20 (2014).

    PubMed  PubMed Central  Google Scholar 

  90. Wang, Y. et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160, 1061–1071 (2015). This study shows that TREM2 could respond to lipid ligands and is required for microglial activation in animal models.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Ulland, T. K. & Colonna, M. TREM2 - a key player in microglial biology and Alzheimer disease. Nat. Rev. Neurol. 14, 667–675 (2018).

    CAS  PubMed  Google Scholar 

  92. Jay, T. R. et al. TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer’s disease mouse models. J. Exp. Med. 212, 287–295 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Jay, T. R. et al. Disease progression-dependent effects of TREM2 deficiency in a mouse model of Alzheimer’s disease. J. Neurosci. 37, 637–647 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Leyns, C. E. G. et al. TREM2 function impedes tau seeding in neuritic plaques. Nat. Neurosci. 22, 1217–1222 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Cheng-Hathaway, P. J. et al. The Trem2 R47H variant confers loss-of-function-like phenotypes in Alzheimer’s disease. Mol. Neurodegener. 13, 29 (2018).

    PubMed  PubMed Central  Google Scholar 

  96. Cheng, Q. et al. TREM2-activating antibodies abrogate the negative pleiotropic effects of the Alzheimer’s disease variant Trem2(R47H) on murine myeloid cell function. J. Biol. Chem. 293, 12620–12633 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Xiang, X. et al. The Trem2 R47H Alzheimer’s risk variant impairs splicing and reduces Trem2 mRNA and protein in mice but not in humans. Mol. Neurodegener. 13, 49 (2018).

    PubMed  PubMed Central  Google Scholar 

  98. Lee, C. Y. D. et al. Elevated TREM2 gene dosage reprograms microglia responsivity and ameliorates pathological phenotypes in Alzheimer’s disease models. Neuron 97, 1032–1048 e1035 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Song, W. M. et al. Humanized TREM2 mice reveal microglia-intrinsic and -extrinsic effects of R47H polymorphism. J. Exp. Med. 215, 745–760 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Bemiller, S. M. et al. TREM2 deficiency exacerbates tau pathology through dysregulated kinase signaling in a mouse model of tauopathy. Mol. Neurodegener. 12, 74 (2017).

    PubMed  PubMed Central  Google Scholar 

  101. Schlepckow, K. et al. Enhancing protective microglial activities with a dual function TREM2 antibody to the stalk region. EMBO Mol. Med. https://doi.org/10.15252/emmm.201911227 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Jankowsky, J. L. & Zheng, H. Practical considerations for choosing a mouse model of Alzheimer’s disease. Mol. Neurodegener. 12, 89 (2017).

    PubMed  PubMed Central  Google Scholar 

  103. Iba, M. et al. Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer’s-like tauopathy. J. Neurosci. 33, 1024–1037 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Lasagna-Reeves, C. A. et al. Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Sci. Rep. 2, 700 (2012).

    PubMed  PubMed Central  Google Scholar 

  105. He, Z. et al. Amyloid-beta plaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation. Nat. Med. 24, 29–38 (2018).

    CAS  PubMed  Google Scholar 

  106. Vasconcelos, B. et al. Heterotypic seeding of tau fibrillization by pre-aggregated Abeta provides potent seeds for prion-like seeding and propagation of tau-pathology in vivo. Acta Neuropathol. 131, 549–569 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Onos, K. D., Sukoff Rizzo, S. J., Howell, G. R. & Sasner, M. Toward more predictive genetic mouse models of Alzheimer’s disease. Brain Res. Bull. 122, 1–11 (2016).

    CAS  PubMed  Google Scholar 

  108. Mangialasche, F., Solomon, A., Winblad, B., Mecocci, P. & Kivipelto, M. Alzheimer’s disease: clinical trials and drug development. Lancet Neurol. 9, 702–716 (2010).

    CAS  PubMed  Google Scholar 

  109. Guttinger, S. & Love, A. C. Characterizing scientific failure: putting the replication crisis in context. EMBO Rep, e48765, https://doi.org/10.15252/embr.201948765 (2019).

  110. Prinz, F., Schlange, T. & Asadullah, K. Believe it or not: how much can we rely on published data on potential drug targets? Nat. Rev. Drug Discov. 10, 712 (2011).

    CAS  PubMed  Google Scholar 

  111. Shineman, D. W. et al. Accelerating drug discovery for Alzheimer’s disease: best practices for preclinical animal studies. Alzheimers Res. Ther. 3, 28 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Steward, O. & Balice-Gordon, R. Rigor or mortis: best practices for preclinical research in neuroscience. Neuron 84, 572–581 (2014).

    CAS  PubMed  Google Scholar 

  113. Landis, S. C. et al. A call for transparent reporting to optimize the predictive value of preclinical research. Nature 490, 187–191 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Perrin, S. Preclinical research: Make mouse studies work. Nature 507, 423–425 (2014).

    PubMed  Google Scholar 

  115. Pankevich, D. E., Altevogt, B. M., Dunlop, J., Gage, F. H. & Hyman, S. E. Improving and accelerating drug development for nervous system disorders. Neuron 84, 546–553 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Begley, C. G. Six red flags for suspect work. Nature 497, 433–434 (2013).

    CAS  PubMed  Google Scholar 

  117. Button, K. S. et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14, 365–376 (2013). This article highlights how studies that are not properly powered can lead to misleading results and encourage investment in unproven therapeutic strategies.

    CAS  PubMed  Google Scholar 

  118. Ioannidis, J. P. Why most published research findings are false: author’s reply to Goodman and Greenland. PLoS Med. 4, e215 (2007).

    PubMed  PubMed Central  Google Scholar 

  119. Kleiman, R. J. & Ehlers, M. D. Data gaps limit the translational potential of preclinical research. Sci. Transl. Med. 8, 320ps321 (2016).

    Google Scholar 

  120. Sperling, R., Mormino, E. & Johnson, K. The evolution of preclinical Alzheimer’s disease: implications for prevention trials. Neuron 84, 608–622 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Sankaranarayanan, S. et al. Passive immunization with phospho-tau antibodies reduces tau pathology and functional deficits in two distinct mouse tauopathy models. PLoS One 10, e0125614 (2015).

    PubMed  PubMed Central  Google Scholar 

  122. Dai, C. L. et al. Tau passive immunization blocks seeding and spread of Alzheimer hyperphosphorylated Tau-induced pathology in 3 x Tg-AD mice. Alzheimers Res. Ther. 10, 13 (2018).

    PubMed  PubMed Central  Google Scholar 

  123. Albert, M. et al. Prevention of tau seeding and propagation by immunotherapy with a central tau epitope antibody. Brain 142, 1736–1750 (2019).

    PubMed  PubMed Central  Google Scholar 

  124. Rosenqvist, N. et al. Highly specific and selective anti-pS396-tau antibody C10.2 targets seeding-competent tau. Alzheimers Dement. 4, 521–534 (2018).

    Google Scholar 

  125. Richter, S. H. et al. Effect of population heterogenization on the reproducibility of mouse behavior: a multi-laboratory study. PLoS One 6, e16461 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Richter, S. H., Garner, J. P. & Wurbel, H. Environmental standardization: cure or cause of poor reproducibility in animal experiments? Nat. Methods 6, 257–261 (2009).

    CAS  PubMed  Google Scholar 

  127. Voelkl, B., Vogt, L., Sena, E. S. & Wurbel, H. Reproducibility of preclinical animal research improves with heterogeneity of study samples. PLoS Biol. 16, e2003693 (2018).

    PubMed  PubMed Central  Google Scholar 

  128. Mutant mice and neuroscience: recommendations concerning genetic background. Banbury Conference on genetic background in mice. Neuron 19, 755–759 (1997). This study highlights the challenges of using inbred mouse strains for preclinical research.

    Google Scholar 

  129. Crawley, J. N. Unusual behavioral phenotypes of inbred mouse strains. Trends Neurosci. 19, 181–182 (1996).

    CAS  PubMed  Google Scholar 

  130. Onos, K. D. et al. Enhancing face validity of mouse models of Alzheimer’s disease with natural genetic variation. PLoS Genet. 15, e1008155 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Gamache, J. et al. Factors other than hTau overexpression that contribute to tauopathy-like phenotype in rTg4510 mice. Nat. Commun. 10, 2479 (2019).

    PubMed  PubMed Central  Google Scholar 

  132. Nikodemova, M. & Watters, J. J. Outbred ICR/CD1 mice display more severe neuroinflammation mediated by microglial TLR4/CD14 activation than inbred C57Bl/6 mice. Neuroscience 190, 67–74 (2011).

    CAS  PubMed  Google Scholar 

  133. Bogue, M. A., Churchill, G. A. & Chesler, E. J. Collaborative cross and diversity outbred data resources in the mouse phenome database. Mamm. Genome 26, 511–520 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Srivastava, A. et al. Genomes of the mouse collaborative cross. Genetics 206, 537–556 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Liu, E. T. et al. Of mice and CRISPR: the post-CRISPR future of the mouse as a model system for the human condition. EMBO Rep. 18, 187–193 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Oakley, H. et al. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J. Neurosci. 26, 10129–10140 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Deczkowska, A., Amit, I. & Schwartz, M. Microglial immune checkpoint mechanisms. Nat. Neurosci. 21, 779–786 (2018).

    CAS  PubMed  Google Scholar 

  138. Streit, W. J. Microglial senescence: does the brain’s immune system have an expiration date? Trends Neurosci. 29, 506–510 (2006).

    CAS  PubMed  Google Scholar 

  139. Mathys, H. et al. Temporal tracking of microglia activation in neurodegeneration at single-cell resolution. Cell Rep. 21, 366–380 (2017). This study is the first to use single-cell RNA sequencing in brains of patients with AD to better understand how disease alters cellular state.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Srinivasan, K. et al. Untangling the brain’s neuroinflammatory and neurodegenerative transcriptional responses. Nat. Commun. 7, 11295 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Friedman, B. A. et al. Diverse brain myeloid expression profiles reveal distinct microglial activation states and aspects of Alzheimer’s disease not evident in mouse models. Cell Rep. 22, 832–847 (2018).

    CAS  PubMed  Google Scholar 

  142. Nugent, A. A. et al. TREM2 regulates microglial cholesterol metabolism upon chronic phagocytic challenge. Neuron https://doi.org/10.1016/j.neuron.2019.12.007 (2020).

    Article  PubMed  Google Scholar 

  143. Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 332–337 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Israel, M. A. et al. Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 482, 216–220 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Arber, C., Lovejoy, C. & Wray, S. Stem cell models of Alzheimer’s disease: progress and challenges. Alzheimers Res. Ther. 9, 42 (2017).

    PubMed  PubMed Central  Google Scholar 

  146. Kwart, D. et al. A large panel of isogenic APP and PSEN1 mutant human iPSC neurons reveals shared endosomal abnormalities mediated by APP beta-CTFs, not Abeta. Neuron https://doi.org/10.1016/j.neuron.2019.07.010 (2019).

    Article  PubMed  Google Scholar 

  147. Choi, S. H. et al. A three-dimensional human neural cell culture model of Alzheimer’s disease. Nature 515, 274–278 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Park, J. et al. A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease. Nat. Neurosci. 21, 941–951 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Muffat, J. et al. Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat. Med. 22, 1358–1367 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Abud, E. M. et al. iPSC-derived human microglia-like cells to study neurological diseases. Neuron 94, 278–293 e279 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Haenseler, W. et al. A highly efficient human pluripotent stem cell microglia model displays a neuronal-co-culture-specific expression profile and inflammatory response. Stem Cell Rep. 8, 1727–1742 (2017).

    CAS  Google Scholar 

  153. Pandya, H. et al. Differentiation of human and murine induced pluripotent stem cells to microglia-like cells. Nat. Neurosci. 20, 753–759 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Seok, J. et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl Acad. Sci. USA 110, 3507–3512 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Geirsdottir, L. et al. Cross-species single-cell analysis reveals divergence of the primate microglia program. Cell 179, 1609–1622 e1616 (2019).

    CAS  PubMed  Google Scholar 

  156. Gosselin, D. et al. An environment-dependent transcriptional network specifies human microglia identity. Science 356, https://doi.org/10.1126/science.aal3222 (2017). This study highlights the challenge of using cultured microglia to predict in vivo phenotypes, as the culturing process alone led to significant gene expression changes.

  157. Bohlen, C. J. et al. Diverse requirements for microglial survival, specification, and function revealed by defined-medium cultures. Neuron 94, 759–773 e758 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Hasselmann, J. et al. Development of a chimeric model to study and manipulate human microglia in vivo. Neuron https://doi.org/10.1016/j.neuron.2019.07.002 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Scott, T. J., O’Connor, A. C., Link, A. N. & Beaulieu, T. J. Economic analysis of opportunities to accelerate Alzheimer’s disease research and development. Ann. N. Y. Acad. Sci. 1313, 17–34 (2014).

    PubMed  PubMed Central  Google Scholar 

  160. Cramer, P. E. et al. ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models. Science 335, 1503–1506 (2012). This study reports impressive efficacy of bexarotene treatment in AD mouse models although not all of the effects observed were reproducible in other laboratories.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Veeraraghavalu, K. et al. Comment on “ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models”. Science 340, 924-f (2013).

    PubMed  Google Scholar 

  162. Price, A. R. et al. Comment on “ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models”. Science 340, 924-d (2013).

    PubMed  Google Scholar 

  163. Tesseur, I. et al. Comment on “ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models”. Science 340, 924-e (2013).

    PubMed  Google Scholar 

  164. Fitz, N. F., Cronican, A. A., Lefterov, I. & Koldamova, R. Comment on “ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models”. Science 340, 924-c (2013).

    PubMed  Google Scholar 

  165. LaClair, K. D. et al. Treatment with bexarotene, a compound that increases apolipoprotein-E, provides no cognitive benefit in mutant APP/PS1 mice. Mol. Neurodegener. 8, 18 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Landreth, G. E. et al. Response to comments on “ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models”. Science 340, 924-g (2013).

    PubMed  Google Scholar 

  167. Bomben, V. et al. Bexarotene reduces network excitability in models of Alzheimer’s disease and epilepsy. Neurobiol. Aging 35, 2091–2095 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Boehm-Cagan, A. & Michaelson, D. M. Reversal of apoE4-driven brain pathology and behavioral deficits by bexarotene. J. Neurosci. 34, 7293–7301 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Tai, L. M. et al. Amyloid-beta pathology and APOE genotype modulate retinoid X receptor agonist activity in vivo. J. Biol. Chem. 289, 30538–30555 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. O’Hare, E. et al. Lack of support for bexarotene as a treatment for Alzheimer’s disease. Neuropharmacology 100, 124–130 (2016).

    PubMed  Google Scholar 

  171. Ghosal, K. et al. A randomized controlled study to evaluate the effect of bexarotene on amyloid-beta and apolipoprotein E metabolism in healthy subjects. Alzheimers Dement. 2, 110–120 (2016).

    Google Scholar 

  172. Cummings, J. L. et al. Double-blind, placebo-controlled, proof-of-concept trial of bexarotene Xin moderate Alzheimer’s disease. Alzheimers Res. Ther. 8, 4 (2016).

    PubMed  PubMed Central  Google Scholar 

  173. Pierrot, N. et al. Targretin improves cognitive and biological markers in a patient with Alzheimer’s disease. J. Alzheimers Dis. 49, 271–276 (2016).

    CAS  PubMed  Google Scholar 

  174. Shalem, O., Sanjana, N. E. & Zhang, F. High-throughput functional genomics using CRISPR-Cas9. Nat. Rev. Genet. 16, 299–311 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Li, D. et al. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat. Biotechnol. 31, 681–683 (2013).

    CAS  PubMed  Google Scholar 

  177. Hai, T., Teng, F., Guo, R., Li, W. & Zhou, Q. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res. 24, 372–375 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Zou, Q. et al. Generation of gene-target dogs using CRISPR/Cas9 system. J. Mol. Cell Biol. 7, 580–583 (2015).

    PubMed  Google Scholar 

  179. Gaiottino, J. et al. Increased neurofilament light chain blood levels in neurodegenerative neurological diseases. PLoS One 8, e75091 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Bacioglu, M. et al. Neurofilament light chain in blood and CSF as marker of disease progression in mouse models and in neurodegenerative diseases. Neuron 91, 56–66 (2016). This article highlights the utility of neurofilament light chain as a biomarker in AD and other neurodegenerative diseases.

    CAS  PubMed  Google Scholar 

  181. Scherling, C. S. et al. Cerebrospinal fluid neurofilament concentration reflects disease severity in frontotemporal degeneration. Ann. Neurol. 75, 116–126 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Zetterberg, H. et al. Association of cerebrospinal fluid neurofilament light concentration with Alzheimer disease progression. JAMA Neurol. 73, 60–67 (2016).

    PubMed  PubMed Central  Google Scholar 

  183. Mattsson, N., Andreasson, U., Zetterberg, H., Blennow, K. & Alzheimer’s Disease Neuroimaging, I. Association of plasma neurofilament light with neurodegeneration in patients with Alzheimer disease. JAMA Neurol. 74, 557–566 (2017).

    PubMed  PubMed Central  Google Scholar 

  184. Kuhle, J. et al. Fingolimod and CSF neurofilament light chain levels in relapsing-remitting multiple sclerosis. Neurology 84, 1639–1643 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Kuhle, J. et al. Blood neurofilament light chain as a biomarker of MS disease activity and treatment response. Neurology 92, e1007–e1015 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Olsson, B. et al. NFL is a marker of treatment response in children with SMA treated with nusinersen. J. Neurol. 266, 2129–2136 (2019).

    PubMed  PubMed Central  Google Scholar 

  187. Clement, A., Mitchelmore, C., Andersson, D. R. & Asuni, A. A. Cerebrospinal fluid neurofilament light chain as a biomarker of neurodegeneration in the Tg4510 and MitoPark mouse models. Neuroscience 354, 101–109 (2017).

    CAS  PubMed  Google Scholar 

  188. Ferrero, J. et al. First-in-human, double-blind, placebo-controlled, single-dose escalation study of aducanumab (BIIB037) in mild-to-moderate Alzheimer’s disease. Alzheimers Dement. 2, 169–176 (2016).

    Google Scholar 

  189. Fleisher, A. S. et al. Phase 2 safety trial targeting amyloid beta production with a gamma-secretase inhibitor in Alzheimer disease. Arch. Neurol. 65, 1031–1038 (2008).

    PubMed  PubMed Central  Google Scholar 

  190. Doody, R. S. et al. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N. Engl. J. Med. 369, 341–350 (2013).

    CAS  PubMed  Google Scholar 

  191. Martinez-Coria, H. et al. Memantine improves cognition and reduces Alzheimer’s-like neuropathology in transgenic mice. Am. J. Pathol. 176, 870–880 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Minkeviciene, R., Banerjee, P. & Tanila, H. Memantine improves spatial learning in a transgenic mouse model of Alzheimer’s disease. J. Pharmacol. Exp. Ther. 311, 677–682 (2004).

    CAS  PubMed  Google Scholar 

  193. Nagakura, A., Shitaka, Y., Yarimizu, J. & Matsuoka, N. Characterization of cognitive deficits in a transgenic mouse model of Alzheimer’s disease and effects of donepezil and memantine. Eur. J. Pharmacol. 703, 53–61 (2013).

    CAS  PubMed  Google Scholar 

  194. Winblad, B. & Poritis, N. Memantine in severe dementia: results of the 9M-best study (benefit and efficacy in severely demented patients during treatment with memantine). Int. J. Geriatr. Psychiatry 14, 135–146 (1999).

    CAS  PubMed  Google Scholar 

  195. Reisberg, B. et al. Memantine in moderate-to-severe Alzheimer’s disease. N. Engl. J. Med. 348, 1333–1341 (2003).

    CAS  PubMed  Google Scholar 

  196. Gauthier, S., Loft, H. & Cummings, J. Improvement in behavioural symptoms in patients with moderate to severe Alzheimer’s disease by memantine: a pooled data analysis. Int. J. Geriatr. Psychiatry 23, 537–545 (2008).

    CAS  PubMed  Google Scholar 

  197. Yanamandra, K. et al. Anti-tau antibody administration increases plasma tau in transgenic mice and patients with tauopathy. Sci Transl Med 9, eaal2029 (2017).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank R. J. Watts and G. Di Paolo for critical discussion and input, N. Effenberger for administrative assistance in preparing the manuscript and M. Larhammar for graphic design.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Kimberly Scearce-Levie, Pascal E. Sanchez or Joseph W. Lewcock.

Ethics declarations

Competing interests

All authors are employees and shareholders of Denali Therapeutics.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Alzforum: https://www.alzforum.org/

MODEL-AD: https://www.model-ad.org/

Glossary

Gliosis

Proliferation, migration and morphological changes of glial cells in response to injuries to the central nervous system.

Neurofibrillary tangles

Pathological aggregates containing tau, most commonly observed in Alzheimer disease and frontotemporal dementia.

Lewy bodies

Pathological aggregates containing α-synuclein, most commonly observed in Parkinson’s disease and Lewy body dementia.

Water maze test of cognition

Behavioural test to evaluate spatial learning and memory; using visual cues, mice learn to locate and swim to a submerged and hidden platform in a pool.

Cellular potency

Level of bioactivity of a compound on specific cellular function.

Hybrid strains

Strains generated by crossing mice from a distinct genetic background.

Inbred strains

Strains generated by crossing mice from an identical genetic background.

MODEL-AD initiative

Consortium funded by the US National Institute on Aging to develop and evaluate mouse models for late-onset Alzheimer disease.

Floxed alleles

DNA construct in which a gene is flanked by loxP sites, enabling deletion, translocation, insertion or inversion of this gene.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scearce-Levie, K., Sanchez, P.E. & Lewcock, J.W. Leveraging preclinical models for the development of Alzheimer disease therapeutics. Nat Rev Drug Discov 19, 447–462 (2020). https://doi.org/10.1038/s41573-020-0065-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-020-0065-9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research