Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting mRNA processing as an anticancer strategy

Abstract

Discoveries in the past decade have highlighted the potential of mRNA as a therapeutic target for cancer. Specifically, RNA sequencing revealed that, in addition to gene mutations, alterations in mRNA can contribute to the initiation and progression of cancer. Indeed, precursor mRNA processing, which includes the removal of introns by splicing and the formation of 3′ ends by cleavage and polyadenylation, is frequently altered in tumours. These alterations result in numerous cancer-specific mRNAs that generate altered levels of normal proteins or proteins with new functions, leading to the activation of oncogenes or the inactivation of tumour-suppressor genes. Abnormally spliced and polyadenylated mRNAs are also associated with resistance to cancer treatment and, unexpectedly, certain cancers are highly sensitive to the pharmacological inhibition of splicing. This Review summarizes recent progress in our understanding of how splicing and polyadenylation are altered in cancer and highlights how this knowledge has been translated for drug discovery, resulting in the production of small molecules and oligonucleotides that modulate the spliceosome and are in clinical trials for the treatment of cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Co-transcriptional precursor mRNA processing.
Fig. 2: Mechanisms of precursor mRNA splicing.
Fig. 3: Cleavage and polyadenylation of precursor mRNA.
Fig. 4: Mechanism of action of therapeutic antisense oligonucleotides on precursor mRNA processing.

Similar content being viewed by others

References

  1. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Berget, S. M., Moore, C. & Sharp, P. A. Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. Proc. Natl Acad. Sci. USA 74, 3171–3175 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chow, L. T., Gelinas, R. E., Broker, T. R. & Roberts, R. J. An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell 12, 1–8 (1977).

    Article  CAS  PubMed  Google Scholar 

  4. Moore, M. J. & Proudfoot, N. J. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136, 688–700 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Custódio, N. & Carmo-Fonseca, M. Co-transcriptional splicing and the CTD code. Crit. Rev. Biochem. Mol. Biol. 51, 395–411 (2016).

    Article  PubMed  CAS  Google Scholar 

  6. Wahl, M. C., Will, C. L. & Lührmann, R. The spliceosome: design principles of a dynamic RNP machine. Cell 136, 701–718 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Fica, S. M. & Nagai, K. Cryo-electron microscopy snapshots of the spliceosome: structural insights into a dynamic ribonucleoprotein machine. Nat. Struct. Mol. Biol. 24, 791–799 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yan, C., Wan, R. & Shi, Y. Molecular mechanisms of pre-mRNA splicing through structural biology of the spliceosome. Cold Spring Harb. Perspect. Biol. 11, a032409 (2019). This work shows that cryo-electron microscopy analysis carried out in the past 3 years elucidated the structures of yeast spliceosomal complexes, revealing major insights into the assembly, activation, catalysis and disassembly of the spliceosome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kastner, B., Will, C. L., Stark, H. & Lührmann, R. Structural insights into nuclear pre-mRNA splicing in higher eukaryotes. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a032417 (2019). This review shows that the human spliceosome is considerably more dynamic and unstable than the yeast spliceosome, making it challenging to determine its cryo-electron microscopy structure at high resolution. The review summarizes recent advances in our understanding of the molecular architecture of the human spliceosome, highlighting differences between the human and yeast splicing machineries.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Blencowe, B. J. Exonic splicing enhancers: mechanism of action, diversity and role in human genetic diseases. Trends Biochem. Sci. 25, 106–110 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Ibrahim, E. C., Schaal, T. D., Hertel, K. J., Reed, R. & Maniatis, T. Serine/arginine-rich protein-dependent suppression of exon skipping by exonic splicing enhancers. Proc. Natl Acad. Sci. USA 102, 5002–5007 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, Z., Xiao, X., Van Nostrand, E. & Burge, C. B. General and specific functions of exonic splicing silencers in splicing control. Mol. Cell 23, 61–70 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, E., Mueller, W. F., Hertel, K. J. & Cambi, F. G run-mediated recognition of proteolipid protein and dm20 5′ splice sites by U1 small nuclear RNA is regulated by context and proximity to the splice site. J. Biol. Chem. 286, 4059–4071 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Erkelenz, S. et al. Position-dependent splicing activation and repression by SR and hnRNP proteins rely on common mechanisms. RNA 19, 96–102 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Warf, M. B. & Berglund, J. A. Role of RNA structure in regulating pre-mRNA splicing. Trends Biochem. Sci. 35, 169–178 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Warf, M. B., Diegel, J. V., von Hippel, P. H. & Berglund, J. A. The protein factors MBNL1 and U2AF65 bind alternative RNA structures to regulate splicing. Proc. Natl Acad. Sci. USA 106, 9203–9208 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Oberstrass, F. C. et al. Structure of PTB bound to RNA: specific binding and implications for splicing regulation. Science 309, 2054–2057 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Nilsen, T. W. & Graveley, B. R. Expansion of the eukaryotic proteome by alternative splicing. Nature 463, 457–463 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pan, Q., Shai, O., Lee, L. J., Frey, B. J. & Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413–1415 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Irimia, M. & Blencowe, B. J. Alternative splicing: decoding an expansive regulatory layer. Curr. Opin. Cell Biol. 24, 323–332 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Baralle, F. E. & Giudice, J. Alternative splicing as a regulator of development and tissue identity. Nat. Rev. Mol. Cell Biol. 18, 437–451 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Luco, R. F. et al. Regulation of alternative splicing by histone modifications. Science 327, 996–1000 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Han, H. et al. Multilayered control of alternative splicing regulatory networks by transcription factors. Mol. Cell 65, 539–553 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Grosso, A. R. et al. Tissue-specific splicing factor gene expression signatures. Nucleic Acids Res. 36, 4823–4832 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Buckanovich, R. J., Posner, J. B. & Darnell, R. B. Nova, the paraneoplastic Ri antigen, is homologous to an RNA-binding protein and is specifically expressed in the developing motor system. Neuron 11, 657–672 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Polydorides, A. D., Okano, H. J., Yang, Y. Y., Stefani, G. & Darnell, R. B. A brain-enriched polypyrimidine tract-binding protein antagonizes the ability of Nova to regulate neuron-specific alternative splicing. Proc. Natl Acad. Sci. USA 97, 6350–6355 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Markovtsov, V. et al. Cooperative assembly of an hnrnp complex induced by a tissue-specific homolog of polypyrimidine tract binding protein. Mol. Cell. Biol. 20, 7463–7479 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Underwood, J. G., Boutz, P. L., Dougherty, J. D., Stoilov, P. & Black, D. L. Homologues of the Caenorhabditis elegans Fox-1 protein are neuronal splicing regulators in mammals. Mol. Cell. Biol. 25, 10005–10016 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jin, Y. et al. A vertebrate RNA-binding protein Fox-1 regulates tissue-specific splicing via the pentanucleotide GCAUG. EMBO J. 22, 905–912 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Warzecha, C. C., Sato, T. K., Nabet, B., Hogenesch, J. B. & Carstens, R. P. ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing. Mol. Cell 33, 591–601 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Calarco, J. A. et al. Regulation of vertebrate nervous system alternative splicing and development by an SR-related protein. Cell 138, 898–910 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Proudfoot, N. J. Transcriptional termination in mammals: stopping the RNA polymerase II juggernaut. Science 352, aad9926 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Clerici, M., Faini, M., Aebersold, R. & Jinek, M. Structural insights into the assembly and polyA signal recognition mechanism of the human CPSF complex. eLife 6, e33111 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Clerici, M., Faini, M., Muckenfuss, L. M., Aebersold, R. & Jinek, M. Structural basis of AAUAAA polyadenylation signal recognition by the human CPSF complex. Nat. Struct. Mol. Biol. 25, 135–138 (2018). This study describes the cryo-electron microscopy structure of a core CPSF module bound to the PAS hexamer motif.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sun, Y. et al. Molecular basis for the recognition of the human AAUAAA polyadenylation signal. Proc. Natl Acad. Sci. USA 115, E1419–E1428 (2018).

    CAS  PubMed  Google Scholar 

  37. Hirose, Y. & Manley, J. L. RNA polymerase II is an essential mRNA polyadenylation factor. Nature 395, 93–96 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Fusby, B. et al. Coordination of RNA polymerase II pausing and 3′ end processing factor recruitment with alternative polyadenylation. Mol. Cell. Biol. 36, 295–303 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tian, B. & Manley, J. L. Alternative polyadenylation of mRNA precursors. Nat. Rev. Mol. Cell Biol. 18, 18–30 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Elkon, R., Ugalde, A. P. & Agami, R. Alternative cleavage and polyadenylation: extent, regulation and function. Nat. Rev. Genet. 14, 496–506 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Neve, J., Patel, R., Wang, Z., Louey, A. & Furger, A. M. Cleavage and polyadenylation: ending the message expands gene regulation. RNA Biol. 14, 865–890 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Derti, A. et al. A quantitative atlas of polyadenylation in five mammals. Genome Res. 22, 1173–1183 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Spies, N., Burge, C. B. & Bartel, D. P. 3′ UTR-isoform choice has limited influence on the stability and translational efficiency of most mRNAs in mouse fibroblasts. Genome Res. 23, 2078–2090 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gruber, A. R. et al. Global 3′ UTR shortening has a limited effect on protein abundance in proliferating T cells. Nat. Commun. 5, 5465 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Xu, C. & Zhang, J. Alternative polyadenylation of mammalian transcripts is generally deleterious, not adaptive. Cell Syst. 7, 734–742 (2018).

    Article  CAS  Google Scholar 

  46. Yang, Q., Gilmartin, G. M. & Doublié, S. Structural basis of UGUA recognition by the Nudix protein CFI(m)25 and implications for a regulatory role in mRNA 3′ processing. Proc. Natl Acad. Sci. USA 107, 10062–10067 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhu, Y. et al. Molecular mechanisms for CFIm-mediated regulation of mRNA alternative polyadenylation. Mol. Cell 69, 62–74 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Rüegsegger, U., Blank, D. & Keller, W. Human pre-mRNA cleavage factor Im is related to spliceosomal SR proteins and can be reconstituted in vitro from recombinant subunits. Mol. Cell 1, 243–253 (1998).

    Article  PubMed  Google Scholar 

  49. Brumbaugh, J. et al. Nudt21 controls cell fate by connecting alternative polyadenylation to chromatin signaling. Cell 172, 106–109 (2018). This study demonstrates that regulated APA plays a critical role in chromatin remodelling for cell fate transitions.

    Article  CAS  PubMed  Google Scholar 

  50. Ji, Z., Lee, J. Y., Pan, Z., Jiang, B. & Tian, B. Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc. Natl Acad. Sci. USA 106, 7028–7033 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lackford, B. et al. Fip1 regulates mRNA alternative polyadenylation to promote stem cell self-renewal. EMBO J. 33, 878–889 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jenal, M. et al. The poly(A)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites. Cell 149, 538–553 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Li, W. et al. Distinct regulation of alternative polyadenylation and gene expression by nuclear poly(A) polymerases. Nucleic Acids Res. 45, 8930–8942 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fusby, B. et al. Coordination of RNA polymerase ii pausing and 3′ end processing factor recruitment with alternative polyadenylation. Mol. Cell. Biol. 36, 295–303 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Oktaba, K. et al. ELAV links paused Pol II to alternative polyadenylation in the Drosophila nervous system. Mol. Cell 57, 341–348 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Liu, X. et al. Transcription elongation rate has a tissue-specific impact on alternative cleavage and polyadenylation in Drosophila melanogaster. RNA 23, 1807–1816 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ji, Z. et al. Transcriptional activity regulates alternative cleavage and polyadenylation. Mol. Syst. Biol. 7, 534 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Wu, X. & Bartel, D. P. Widespread influence of 3′-end structures on mammalian mRNA processing and stability. Cell 169, 905–917 (2017). This study demonstrates that the 3ends of mRNAs are folded more than other mRNA regions and that these structures contribute to RNA processing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tian, B., Pan, Z. & Lee, J. Y. Widespread mRNA polyadenylation events in introns indicate dynamic interplay between polyadenylation and splicing. Genome Res. 17, 156–165 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kaida, D. et al. U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation. Nature 468, 664–668 (2010). This work describes the first evidence for a splicing-independent function for U1 snRNP in protecting pre-mRNAs from cleavage and polyadenylation at cryptic intronic polyadenylation sites.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Berg, M. G. et al. U1 snRNP determines mRNA length and regulates isoform expression. Cell 150, 53–64 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Alt, F. W. et al. Synthesis of secreted and membrane-bound immunoglobulin mu heavy chains is directed by mRNAs that differ at their 3′ ends. Cell 20, 293–301 (1980).

    Article  CAS  PubMed  Google Scholar 

  63. Early, P. et al. Two mRNAs can be produced from a single immunoglobulin μ gene by alternative RNA processing pathways. Cell 20, 313–319 (1980).

    Article  CAS  PubMed  Google Scholar 

  64. Rogers, J. et al. Two mRNAs with different 3′ ends encode membrane-bound and secreted forms of immunoglobulin μ chain. Cell 20, 303–312 (1980).

    Article  CAS  PubMed  Google Scholar 

  65. Takagaki, Y., Seipelt, R. L., Peterson, M. L. & Manley, J. L. The polyadenylation factor CstF-64 regulates alternative processing of IgM heavy chain pre-mRNA during B cell differentiation. Cell 87, 941–952 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Takagaki, Y. & Manley, J. L. Levels of polyadenylation factor CstF-64 control IgM heavy chain mRNA accumulation and other events associated with B cell differentiation. Mol. Cell 2, 761–771 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Vorlová, S. et al. Induction of antagonistic soluble decoy receptor tyrosine kinases by intronic polyA activation. Mol. Cell 43, 927–939 (2011). This work describes the development of a therapeutic approach based on the modulation of intronic PAS with ASOs.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Lianoglou, S., Garg, V., Yang, J. L., Leslie, C. S. & Mayr, C. Ubiquitously transcribed genes use alternative polyadenylation to achieve tissue-specific expression. Genes Dev. 27, 2380–2396 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Singh, I. et al. Widespread intronic polyadenylation diversifies immune cell transcriptomes. Nat. Commun. 9, 1716 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Wang, R., Zheng, D., Wei, L., Ding, Q. & Tian, B. Regulation of intronic polyadenylation by PCF11 impacts mRNA expression of long genes. Cell Rep. 26, 2766–2778 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kamieniarz-Gdula, K. et al. Selective roles of vertebrate PCF11 in premature and full-length transcript termination. Mol. Cell 74, 158–172 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chabot, B. & Shkreta, L. Defective control of pre–messenger RNA splicing in human disease. J. Cell Biol. 212, 13–27 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dvinge, H., Kim, E., Abdel-Wahab, O. & Bradley, R. K. RNA splicing factors as oncoproteins and tumour suppressors. Nat. Rev. Cancer 16, 413–430 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Urbanski, L. M., Leclair, N. & Anczuków, O. Alternative-splicing defects in cancer: splicing regulators and their downstream targets, guiding the way to novel cancer therapeutics. Wiley Interdiscip. Rev. RNA 9, e1476 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kahles, A. et al. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell 34, 211–224 (2018). This systematic analysis of alternative splicing reveals numerous cancer-specific splicing isoforms that represent potential neoantigens.

    Article  CAS  PubMed  Google Scholar 

  76. Climente-González, H., Porta-Pardo, E., Godzik, A. & Eyras, E. The functional impact of alternative splicing in cancer. Cell Rep. 20, 2215–2226 (2017).

    Article  PubMed  CAS  Google Scholar 

  77. Li, Y. et al. Revealing the determinants of widespread alternative splicing perturbation in cancer. Cell Rep. 21, 798–812 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li, J. et al. An alternative splicing switch in FLNB promotes the mesenchymal cell state in human breast cancer. eLife 7, e37184 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Tripathi, V., Shin, J.-H., Stuelten, C. H. & Zhang, Y. E. TGF-β-induced alternative splicing of TAK1 promotes EMT and drug resistance. Oncogene 38, 3185–3200 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bechara, E. G., Sebestyén, E., Bernardis, I., Eyras, E. & Valcárcel, J. RBM5, 6, and 10 differentially regulate NUMB alternative splicing to control cancer cell proliferation. Mol. Cell 52, 720–733 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Wang, Y. et al. The splicing factor RBM4 controls apoptosis, proliferation, and migration to suppress tumor progression. Cancer Cell 26, 374–389 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Abou Faycal, C., Gazzeri, S. & Eymin, B. A VEGF-A/SOX2/SRSF2 network controls VEGFR1 pre-mRNA alternative splicing in lung carcinoma cells. Sci. Rep. 9, 336 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Gökmen-Polar, Y. et al. Splicing factor ESRP1 controls ER-positive breast cancer by altering metabolic pathways. EMBO Rep. 20, e46078 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Biamonti, G., Maita, L. & Montecucco, A. The Krebs cycle connection: reciprocal influence between alternative splicing programs and cell metabolism. Front. Oncol. 8, 408 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Narla, G. et al. A germline DNA polymorphism enhances alternative splicing of the KLF6 tumor suppressor gene and is associated with increased prostate cancer risk. Cancer Res. 65, 1213–1222 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Li, Y. et al. Prognostic alternative mRNA splicing signature in non-small cell lung cancer. Cancer Lett. 393, 40–51 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Zhu, J., Chen, Z. & Yong, L. Systematic profiling of alternative splicing signature reveals prognostic predictor for ovarian cancer. Gynecol. Oncol. 148, 368–374 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Bjørklund, S. S. et al. Widespread alternative exon usage in clinically distinct subtypes of invasive ductal carcinoma. Sci. Rep. 7, 5568 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Robertson, A. G. et al. Integrative analysis identifies four molecular and clinical subsets in uveal melanoma. Cancer Cell 32, 204–220 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Marcelino Meliso, F., Hubert, C. G., Favoretto Galante, P. A. & Penalva, L. O. RNA processing as an alternative route to attack glioblastoma. Hum. Genet. 136, 1129–1141 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Siegfried, Z. & Karni, R. The role of alternative splicing in cancer drug resistance. Curr. Opin. Genet. Dev. 48, 16–21 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Stark, M., Wichman, C., Avivi, I. & Assaraf, Y. G. Aberrant splicing of folylpolyglutamate synthetase as a novel mechanism of antifolate resistance in leukemia. Blood 113, 4362–4369 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Ng, K. P. et al. A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer. Nat. Med. 18, 521–528 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Adesso, L. et al. Gemcitabine triggers a pro-survival response in pancreatic cancer cells through activation of the MNK2/eIF4E pathway. Oncogene 32, 2848–2857 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Calabretta, S. et al. Modulation of PKM alternative splicing by PTBP1 promotes gemcitabine resistance in pancreatic cancer cells. Oncogene 35, 2031–2039 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Poulikakos, P. I. et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480, 387–390 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Salton, M. et al. Inhibition of vemurafenib-resistant melanoma by interference with pre-mRNA splicing. Nat. Commun. 6, 7103 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Sotillo, E. et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 5, 1282–1295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang, Y. et al. The BRCA1-11q alternative splice isoform bypasses germline mutations and promotes therapeutic resistance to PARP inhibition and cisplatin. Cancer Res. 76, 2778–2790 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Paschalis, A. et al. Alternative splicing in prostate cancer. Nat. Rev. Clin. Oncol. 15, 663–675 (2018).

    Article  CAS  PubMed  Google Scholar 

  101. Antonarakis, E. S. et al. AR-V7 and eesistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 371, 1028–1038 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Rhine, C. L. et al. Hereditary cancer genes are highly susceptible to splicing mutations. PLOS Genet. 14, e1007231 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Jayasinghe, R. G. et al. Systematic analysis of splice-site-creating mutations in cancer. Cell Rep. 23, 270–281 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jung, H. et al. Intron retention is a widespread mechanism of tumor-suppressor inactivation. Nat. Genet. 47, 1242–1248 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Maquat, L. E. Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat. Rev. Mol. Cell Biol. 5, 89–99 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Lareau, L. F. et al. The coupling of alternative splicing and nonsense-mediated mRNA decay. Adv. Exp. Med. Biol. 623, 190–211 (2007).

    Article  PubMed  Google Scholar 

  107. Yoshida, K. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478, 64–69 (2011). This work demonstrates that core components of the splicing machinery are frequently mutated in myelodysplastic syndromes.

    Article  CAS  PubMed  Google Scholar 

  108. Papaemmanuil, E. et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N. Engl. J. Med. 365, 1384–1395 (2011). This work demonstrates that the gene encoding SF3B1, a protein component of the spliceosome U2 snRNP subcomplex SF3B, is frequently mutated in myelodysplastic syndromes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Armenia, J. et al. The long tail of oncogenic drivers in prostate cancer. Nat. Genet. 50, 645–651 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kielkopf, C. L. Insights from structures of cancer-relevant pre-mRNA splicing factors. Curr. Opin. Genet. Dev. 48, 57–66 (2018).

    Article  CAS  PubMed  Google Scholar 

  111. Lee, S. C.-W. et al. Synthetic lethal and convergent biological effects of cancer-associated spliceosomal gene mutations. Cancer Cell 34, 225–241 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Seiler, M. et al. Somatic mutational landscape of splicing factor genes and their functional consequences across 33 cancer types. Cell Rep. 23, 282–296 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Pellagatti, A. et al. Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations. Blood 132, 1225–1240 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chen, L. et al. The augmented R-loop is a unifying mechanism for myelodysplastic syndromes induced by high-risk splicing factor mutations. Mol. Cell 69, 412–425 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Nguyen, H. D. et al. Spliceosome mutations induce R loop-associated sensitivity to atr inhibition in myelodysplastic syndromes. Cancer Res. 78, 5363–5374 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bonnet, A. et al. Introns protect eukaryotic genomes from transcription-associated genetic instability. Mol. Cell 67, 608–621 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. Karni, R. et al. The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat. Struct. Mol. Biol. 14, 185–193 (2007). This work demonstrates that splicing factors can act as oncoproteins and are potential targets for cancer therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Anczuków, O. & Krainer, A. R. Splicing-factor alterations in cancers. RNA 22, 1285–1301 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Jiang, L. et al. Genomic landscape survey identifies SRSF1 as a key oncodriver in small cell lung cancer. PLOS Genet. 12, e1005895 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Hollerer, I., Grund, K., Hentze, M. W. & Kulozik, A. E. mRNA 3′ end processing: a tale of the tail reaches the clinic. EMBO Mol. Med. 6, 16–26 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Curinha, A., Oliveira Braz, S., Pereira-Castro, I., Cruz, A. & Moreira, A. Implications of polyadenylation in health and disease. Nucleus 5, 508–519 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Ogorodnikov, A., Kargapolova, Y. & Danckwardt, S. Processing and transcriptome expansion at the mRNA 3′ end in health and disease: finding the right end. Pflug. Arch. 468, 993–1012 (2016).

    Article  CAS  Google Scholar 

  123. Masamha, C. P. & Wagner, E. J. The contribution of alternative polyadenylation to the cancer phenotype. Carcinogenesis 39, 2–10 (2018).

    Article  CAS  PubMed  Google Scholar 

  124. Xiang, Y. et al. Comprehensive characterization of alternative polyadenylation in human cancer. J. Natl Cancer Inst. 110, 379–389 (2018).

    Article  CAS  PubMed  Google Scholar 

  125. Sandberg, R., Neilson, J. R., Sarma, A., Sharp, P. A. & Burge, C. B. Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320, 1643–1647 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Mayr, C. & Bartel, D. P. Widespread shortening of 3′ UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138, 673–684 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Park, H. J. et al. 3′ UTR shortening represses tumor-suppressor genes in trans by disrupting ceRNA crosstalk. Nat. Genet. 50, 783–789 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Masamha, C. P. et al. CFIm25 links alternative polyadenylation to glioblastoma tumour suppression. Nature 510, 412–416 (2014). This work presents the first evidence implicating the cleavage and polyadenylation machinery in tumorigenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chu, Y. et al. Nudt21 regulates the alternative polyadenylation of Pak1 and is predictive in the prognosis of glioblastoma patients. Oncogene 38, 4154–4168 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ogorodnikov, A. et al. Transcriptome 3′ end organization by PCF11 links alternative polyadenylation to formation and neuronal differentiation of neuroblastoma. Nat. Commun. 9, 5331 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Bava, F.-A. et al. CPEB1 coordinates alternative 3′-UTR formation with translational regulation. Nature 495, 121–125 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Park, S. M. et al. U2AF35(S34F) promotes transformation by directing aberrant ATG7 pre-mRNA 3′ end formation. Mol. Cell 62, 479–490 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lee, S.-H. et al. Widespread intronic polyadenylation inactivates tumour suppressor genes in leukaemia. Nature 561, 127–131 (2018). This study describes the identification of widespread activation of intronic polyadenylation that blocks tumour-suppressive functions in malignant B cells from patients with CLL.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ni, T. K. & Kuperwasser, C. Premature polyadenylation of MAGI3 produces a dominantly-acting oncogene in human breast cancer. eLife 5, e14730 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Ni, T. K., Elman, J. S., Jin, D. X., Gupta, P. B. & Kuperwasser, C. Premature polyadenylation of MAGI3 is associated with diminished N6-methyladenosine in its large internal exon. Sci. Rep. 8, 1415 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Matsui, Y., Zhang, Y., Paulson, R. F. & Lai, Z.-C. Dual role of a C-terminally truncated isoform of large tumor suppressor kinase 1 in the regulation of Hippo signaling and tissue growth. DNA Cell Biol. 38, 91–106 (2019).

    Article  CAS  PubMed  Google Scholar 

  137. ElShamy, W. M. & Livingston, D. M. Identification of BRCA1-IRIS, a BRCA1 locus product. Nat. Cell Biol. 6, 954–967 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Shimizu, Y. et al. BRCA1-IRIS overexpression promotes formation of aggressive breast cancers. PLOS ONE 7, e34102 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sinha, A. et al. BRCA1-IRIS overexpression promotes and maintains the tumor initiating phenotype: implications for triple negative breast cancer early lesions. Oncotarget 8, 10114–10135 (2017).

    Article  PubMed  Google Scholar 

  140. Paul, B. T., Blanchard, Z., Ridgway, M. & ElShamy, W. M. BRCA1-IRIS inactivation sensitizes ovarian tumors to cisplatin. Oncogene 34, 3036–3052 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Li, A. G. et al. BRCA1-IRIS promotes human tumor progression through PTEN blockade and HIF-1α activation. Proc. Natl Acad. Sci. USA 115, E9600–E9609 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Dubbury, S. J., Boutz, P. L. & Sharp, P. A. CDK12 regulates DNA repair genes by suppressing intronic polyadenylation. Nature 564, 141–145 (2018). This article describes the identification of CDK12 as a potential chemotherapeutic target to suppress intronic polyadenylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Krajewska, M. et al. CDK12 loss in cancer cells affects DNA damage response genes through premature cleavage and polyadenylation. Nat. Commun. 10, 1757 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Lord, C. J. & Ashworth, A. BRCAness revisited. Nat. Rev. Cancer 16, 110–120 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Bonnal, S., Vigevani, L. & Valcárcel, J. The spliceosome as a target of novel antitumour drugs. Nat. Rev. Drug Discov. 11, 847–859 (2012).

    Article  CAS  PubMed  Google Scholar 

  146. Webb, T. R., Joyner, A. S. & Potter, P. M. The development and application of small molecule modulators of SF3b as therapeutic agents for cancer. Drug Discov. Today 18, 43–49 (2013).

    Article  CAS  PubMed  Google Scholar 

  147. Eskens, F. A. L. M. et al. Phase I, pharmacokinetic and pharmacodynamic study of the first-in-class spliceosome inhibitor E7107 in patients with advanced solid tumors. Clin. Cancer Res. 19, 6296–6304 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Hong, D. S. et al. A phase I, open-label, single-arm, dose-escalation study of E7107, a precursor messenger ribonucleic acid (pre-mRNA) splicesome inhibitor administered intravenously on days 1 and 8 every 21 days to patients with solid tumors. Invest. New Drugs 32, 436–444 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. Lee, S. C.-W. et al. Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins. Nat. Med. 22, 672–678 (2016). This paper outlines the first evidence that leukaemia with spliceosomal gene mutations is preferentially susceptible to pharmacological modulation of spliceosome function as compared with leukaemia without such mutations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Effenberger, K. A., Urabe, V. K. & Jurica, M. S. Modulating splicing with small molecular inhibitors of the spliceosome. Wiley Interdiscip. Rev. RNA 8, e1381 (2017).

    Article  CAS  Google Scholar 

  151. Corrionero, A., Miñana, B. & Valcárcel, J. Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A. Genes Dev. 25, 445–459 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Aird, D. et al. Sensitivity to splicing modulation of BCL2 family genes defines cancer therapeutic strategies for splicing modulators. Nat. Commun. 10, 137 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Munding, E. M., Shiue, L., Katzman, S., Donohue, J. P. & Ares, M. Competition between pre-mRNAs for the splicing machinery drives global regulation of splicing. Mol. Cell 51, 338–348 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Walz, S. et al. Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature 511, 483–487 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hsu, T. Y.-T. et al. The spliceosome is a therapeutic vulnerability in MYC-driven cancer. Nature 525, 384–388 (2015). This work demonstrates that cancers with overexpressed or hyperactivated MYC are susceptible to pharmacological inhibition of the spliceosome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Seiler, M. et al. H3B-8800, an orally available small-molecule splicing modulator, induces lethality in spliceosome-mutant cancers. Nat. Med. 24, 497–504 (2018). This study describes the development of an orally available modulator of the SF3B complex that potently and preferentially kills cancer cells with mutations in genes encoding spliceosome proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ten Hacken, E. et al. Splicing modulation sensitizes chronic lymphocytic leukemia cells to venetoclax by remodeling mitochondrial apoptotic dependencies. JCI Insight 3, e121438 (2018). This study presents preclinical evidence supporting the combination of splicing modulators with the BCL-2 inhibitor venetoclax.

    Article  PubMed Central  Google Scholar 

  158. Johnston, H. E. et al. Proteomics profiling of CLL versus healthy B-cells identifies putative therapeutic targets and a subtype-independent signature of spliceosome dysregulation. Mol. Cell. Proteom. 17, 776–791 (2018).

    Article  CAS  Google Scholar 

  159. Nijhawan, D. et al. Cancer vulnerabilities unveiled by genomic loss. Cell 150, 842–854 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Paolella, B. R. et al. Copy-number and gene dependency analysis reveals partial copy loss of wild-type SF3B1 as a novel cancer vulnerability. eLife 6, 23268 (2017).

    Article  Google Scholar 

  161. Raja, V. J., Lim, K.-H., Leong, C.-O., Kam, T.-S. & Bradshaw, T. D. Novel antitumour indole alkaloid, Jerantinine A, evokes potent G2/M cell cycle arrest targeting microtubules. Invest. New Drugs 32, 838–850 (2014).

    Article  CAS  PubMed  Google Scholar 

  162. Chung, F. F.-L. et al. Jerantinine A induces tumor-specific cell death through modulation of splicing factor 3b subunit 1 (SF3B1). Sci. Rep. 7, 42504 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Smedley, C. J. et al. Sustainable syntheses of (−)-jerantinines A & E and structural characterisation of the jerantinine–tubulin complex at the colchicine binding site. Sci. Rep. 8, 10617 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Han, T. et al. Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15. Science 356, 6336 (2017). This study shows that the sulfonamide drug indisulam targets RBM39, a protein related to U2AF65, and causes aberrant pre-mRNA splicing.

    Article  CAS  Google Scholar 

  165. Uehara, T. et al. Selective degradation of splicing factor CAPERα by anticancer sulfonamides. Nat. Chem. Biol. 13, 675–680 (2017).

    Article  CAS  PubMed  Google Scholar 

  166. Supuran, C. T. Indisulam: an anticancer sulfonamide in clinical development. Expert Opin. Investig. Drugs 12, 283–287 (2003).

    Article  CAS  PubMed  Google Scholar 

  167. Assi, R. et al. Final results of a phase 2, open-label study of indisulam, idarubicin, and cytarabine in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome. Cancer 124, 2758–2765 (2018).

    Article  CAS  PubMed  Google Scholar 

  168. Wang, E. et al. Targeting an RNA-binding protein network in acute myeloid leukemia. Cancer Cell 35, 369–384 (2019). This article describes how a network of RNA-binding proteins are crucial for the survival of acute myeloid leukaemia cells. Pharmacological inhibition of a member of this network, RBM39, resulted in preferential lethality of leukaemia cells with mutations in spliceosome components.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  169. Zhou, Z. & Fu, X.-D. Regulation of splicing by SR proteins and SR protein-specific kinases. Chromosoma 122, 191–207 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Amin, E. M. et al. WT1 mutants reveal SRPK1 to be a downstream angiogenesis target by altering VEGF splicing. Cancer Cell 20, 768–780 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Hatcher, J. M. et al. SRPKIN-1: a covalent SRPK1/2 inhibitor that potently converts VEGF from pro-angiogenic to anti-angiogenic isoform. Cell Chem. Biol. 25, 460–470 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Batson, J. et al. Development of potent, selective SRPK1 inhibitors as potential topical therapeutics for neovascular eye disease. ACS Chem. Biol. 12, 825–832 (2017).

    Article  CAS  PubMed  Google Scholar 

  173. Araki, S. et al. Inhibitors of CLK protein kinases suppress cell growth and induce apoptosis by modulating pre-mRNA splicing. PLOS ONE 10, e0116929 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Walter, A. et al. Molecular structures of cdc2-like kinases in complex with a new inhibitor chemotype. PLOS ONE 13, e0196761 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Iwai, K. et al. Anti-tumor efficacy of a novel CLK inhibitor via targeting RNA splicing and MYC-dependent vulnerability. EMBO Mol. Med. 10, e8289 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Iwatani-Yoshihara, M. et al. Discovery of allosteric inhibitors targeting the spliceosomal RNA helicase Brr2. J. Med. Chem. 60, 5759–5771 (2017).

    Article  CAS  PubMed  Google Scholar 

  177. Ito, M. et al. Discovery of spiro[indole-3,2′-pyrrolidin]-2(1H)-one based inhibitors targeting Brr2, a core component of the U5 snRNP. Bioorg. Med. Chem. 25, 4753–4767 (2017).

    Article  CAS  PubMed  Google Scholar 

  178. Absmeier, E., Santos, K. F. & Wahl, M. C. Functions and regulation of the Brr2 RNA helicase during splicing. Cell Cycle 15, 3362–3377 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Jagtap, P. K. A. et al. Rational design of cyclic peptide inhibitors of U2AF homology motif (UHM) domains to modulate pre-mRNA splicing. J. Med. Chem. 59, 10190–10197 (2016).

    Article  CAS  PubMed  Google Scholar 

  180. Perry, W. L. et al. Human splicing factor SPF45 (RBM17) confers broad multidrug resistance to anticancer drugs when overexpressed—a phenotype partially reversed by selective estrogen receptor modulators. Cancer Res. 62, 6172–6177 (2005).

    Google Scholar 

  181. Sidarovich, A. et al. Identification of a small molecule inhibitor that stalls splicing at an early step of spliceosome activation. eLife 6, e23533 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Effenberger, K. A. et al. The natural product N-palmitoyl-l-leucine selectively inhibits late assembly of human spliceosomes. J. Biol. Chem. 290, 27524–27531 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Meister, G. et al. Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln. Curr. Biol. 11, 1990–1994 (2001).

    Article  CAS  PubMed  Google Scholar 

  184. Gonsalvez, G. B. et al. Two distinct arginine methyltransferases are required for biogenesis of Sm-class ribonucleoproteins. J. Cell Biol. 178, 733–740 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Meister, G. & Fischer, U. Assisted RNP assembly: SMN and PRMT5 complexes cooperate in the formation of spliceosomal UsnRNPs. EMBO J. 21, 5853–5863 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Bezzi, M. et al. Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery. Genes Dev. 27, 1903–1916 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Richters, A. Targeting protein arginine methyltransferase 5 in disease. Future Med. Chem. 9, 2081–2098 (2017).

    Article  CAS  PubMed  Google Scholar 

  188. Wang, Y., Hu, W. & Yuan, Y. Protein arginine methyltransferase 5 (PRMT5) as an anticancer target and its inhibitor discovery. J. Med. Chem. 61, 9429–9441 (2018).

    Article  CAS  PubMed  Google Scholar 

  189. Chan-Penebre, E. et al. A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models. Nat. Chem. Biol. 11, 432–437 (2015).

    Article  CAS  PubMed  Google Scholar 

  190. Braun, C. J. et al. Coordinated splicing of regulatory detained introns within oncogenic transcripts creates an exploitable vulnerability in malignant glioma. Cancer Cell 32, 411–426 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Wu, T. et al. Abstract 4859: JNJ-64619178, a selective and pseudo-irreversible PRMT5 inhibitor with potent in vitro and in vivo activity, demonstrated in several lung cancer models. Cancer Res. 78, 4859–4859 (2018).

    Google Scholar 

  192. Yang, Y. & Bedford, M. T. Protein arginine methyltransferases and cancer. Nat. Rev. Cancer 13, 37–50 (2013).

    Article  CAS  PubMed  Google Scholar 

  193. Zhang, L. et al. Cross-talk between PRMT1-mediated methylation and ubiquitylation on RBM15 controls RNA splicing. eLife 4, e07938 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Su, H. et al. Targeting PRMT1 as a novel curative therapy for acute myeloid leukemia. Blood 130, 2650 (2017).

    Google Scholar 

  195. Gao, G. et al. PRMT1 loss sensitizes cells to PRMT5 inhibition. Nucleic Acids Res. 47, 5038–5048 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Xu, Y. & Vakoc, C. R. Targeting cancer cells with BET bromodomain inhibitors. Cold Spring Harb. Perspect. Med. 7, a026674 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Welti, J. et al. Targeting bromodomain and extra-terminal (BET) family proteins in castration-resistant prostate cancer (CRPC). Clin. Cancer Res. 24, 3149–3162 (2018).

    Article  CAS  PubMed  Google Scholar 

  198. Kornblihtt, A. R. Coupling transcription and alternative splicing. Adv. Exp. Med. Biol. 623, 175–189 (2007).

    Article  PubMed  Google Scholar 

  199. Bentley, D. L. Coupling mRNA processing with transcription in time and space. Nat. Rev. Genet. 15, 163–175 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Stephenson, M. L. & Zamecnik, P. C. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc. Natl Acad. Sci. USA 75, 285–288 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Zamecnik, P. C. & Stephenson, M. L. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc. Natl Acad. Sci. USA 75, 280–284 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Levin, A. A. Treating disease at the RNA level with oligonucleotides. N. Engl. J. Med. 380, 57–70 (2019).

    Article  PubMed  Google Scholar 

  203. Bennett, C. F. Therapeutic antisense oligonucleotides are coming of age. Annu. Rev. Med. 70, 307–321 (2019).

    Article  CAS  PubMed  Google Scholar 

  204. Charleston, J. S. et al. Eteplirsen treatment for Duchenne muscular dystrophy: exon skipping and dystrophin production. Neurology 90, e2146–e2154 (2018).

    Article  CAS  PubMed  Google Scholar 

  205. Michelson, D. et al. Evidence in focus: Nusinersen use in spinal muscular atrophy: report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 91, 923–933 (2018).

    Article  PubMed  Google Scholar 

  206. Mercatante, D. R., Mohler, J. L. & Kole, R. Cellular response to an antisense-mediated shift of Bcl-x Pre-mRNA splicing and antineoplastic agents. J. Biol. Chem. 277, 49374–49382 (2002).

    Article  CAS  PubMed  Google Scholar 

  207. Bauman, J. A., Li, S.-D., Yang, A., Huang, L. & Kole, R. Anti-tumor activity of splice-switching oligonucleotides. Nucleic Acids Res. 38, 8348–8356 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. LI, Z. et al. Pro-apoptotic effects of splice-switching oligonucleotides targeting Bcl-x pre-mRNA in human glioma cell lines. Oncol. Rep. 35, 1013–1019 (2016).

    Article  CAS  PubMed  Google Scholar 

  209. Zammarchi, F. et al. Antitumorigenic potential of STAT3 alternative splicing modulation. Proc. Natl Acad. Sci. USA 108, 17779–17784 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Wang, Z., Jeon, H. Y., Rigo, F., Bennett, C. F. & Krainer, A. R. Manipulation of PK-M mutually exclusive alternative splicing by antisense oligonucleotides. Open Biol. 2, 120133–120133 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Mogilevsky, M. et al. Modulation of MKNK2 alternative splicing by splice-switching oligonucleotides as a novel approach for glioblastoma treatment. Nucleic Acids Res. 46, 11396–11404 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Nielsen, T. O., Sorensen, S., Dagnæs-Hansen, F., Kjems, J. & Sorensen, B. S. Directing HER4 mRNA expression towards the CYT2 isoform by antisense oligonucleotide decreases growth of breast cancer cells in vitro and in vivo. Br. J. Cancer 108, 2291–2298 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Khurshid, S. et al. Abstract 4132: ASO screen uncovers splicing as a therapeutic vulnerability in theinsulin-like growth factor (IGF) signaling pathway. Cancer Res. 78, 4132–4132 (2018).

    Google Scholar 

  214. Dewaele, M. et al. Antisense oligonucleotide-mediated MDM4 exon 6 skipping impairs tumor growth. J. Clin. Invest. 126, 68–84 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Smith, L. D. et al. Novel splice-switching oligonucleotide promotes BRCA1 aberrant splicing and susceptibility to PARP inhibitor action. Int. J. Cancer 140, 1564–1570 (2017).

    Article  CAS  PubMed  Google Scholar 

  216. Wan, J., Sazani, P. & Kole, R. Modification of HER2 pre-mRNA alternative splicing and its effects on breast cancer cells. Int. J. Cancer 124, 772–777 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Liu, J. et al. Overcoming imatinib resistance conferred by the BIM deletion polymorphism in chronic myeloid leukemia with splice-switching antisense oligonucleotides. Oncotarget 8, 77567–77585 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Christofk, H. R. et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230–233 (2008).

    Article  CAS  PubMed  Google Scholar 

  219. Denichenko, P. et al. Specific inhibition of splicing factor activity by decoy RNA oligonucleotides. Nat. Commun. 10, 1590 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Marsollier, A.-C. et al. Antisense targeting of 3′ end elements involved in DUX4 mRNA processing is an efficient therapeutic strategy for facioscapulohumeral dystrophy: a new gene-silencing approach. Hum. Mol. Genet. 25, 1468–1478 (2016).

    Article  CAS  PubMed  Google Scholar 

  221. Chen, J. C. et al. Morpholino-mediated knockdown of DUX4 toward facioscapulohumeral muscular dystrophy therapeutics. Mol. Ther. 24, 1405–1411 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Van Etten, J. L. et al. Targeting a single alternative polyadenylation site coordinately blocks expression of androgen receptor mRNA splice variants in prostate cancer. Cancer Res. 77, 5228–5235 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Han, L. et al. The genomic landscape and clinical relevance of A-to-I RNA editing in human cancers. Cancer Cell 28, 515–528 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Eisenberg, E. & Levanon, E. Y. A-to-I RNA editing—immune protector and transcriptome diversifier. Nat. Rev. Genet. 19, 473–490 (2018).

    Article  CAS  PubMed  Google Scholar 

  225. Xu, X., Wang, Y. & Liang, H. The role of A-to-I RNA editing in cancer development. Curr. Opin. Genet. Dev. 48, 51–56 (2018).

    Article  CAS  PubMed  Google Scholar 

  226. Thapar, R. et al. RNA modifications: reversal mechanisms and cancer. Biochemistry 58, 312–329 (2019).

    Article  CAS  PubMed  Google Scholar 

  227. Araki, S. et al. Decoding transcriptome dynamics of genome-encoded polyadenylation and autoregulation with small-molecule modulators of alternative polyadenylation. Cell Chem. Biol. 25, 1470–1484 (2018).

    Article  CAS  PubMed  Google Scholar 

  228. Hilimire, T. A. et al. HIV-1 frameshift RNA-targeted triazoles inhibit propagation of replication-competent and multi-drug-resistant HIV in human cells. ACS Chem. Biol. 12, 1674–1682 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Palacino, J. et al. SMN2 splice modulators enhance U1–pre-mRNA association and rescue SMA mice. Nat. Chem. Biol. 11, 511–517 (2015).

    Article  CAS  PubMed  Google Scholar 

  230. Hilimire, T. A. et al. N-Methylation as a strategy for enhancing the affinity and selectivity of RNA-binding peptides: application to the HIV-1 frameshift-stimulating RNA. ACS Chem. Biol. 11, 88–94 (2016).

    Article  CAS  PubMed  Google Scholar 

  231. Cheah, M. T., Wachter, A., Sudarsan, N. & Breaker, R. R. Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature 447, 497–500 (2007).

    Article  CAS  PubMed  Google Scholar 

  232. Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines—a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261–279 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Diken, M., Kranz, L. M., Kreiter, S. & Sahin, U. mRNA: a versatile molecule for cancer vaccines. Curr. Issues Mol. Biol. 22, 113–128 (2017).

    Article  PubMed  Google Scholar 

  234. Pastor, F. et al. An RNA toolbox for cancer immunotherapy. Nat. Rev. Drug Discov. 17, 751–767 (2018).

    Article  CAS  PubMed  Google Scholar 

  235. Mullard, A. The cancer vaccine resurgence. Nat. Rev. Drug Discov. 15, 663–665 (2016).

    Article  CAS  PubMed  Google Scholar 

  236. Castle, J. C. et al. Exploiting the mutanome for tumor vaccination. Cancer Res. 72, 1081–1091 (2012).

    Article  CAS  PubMed  Google Scholar 

  237. Kreiter, S. et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520, 692–696 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017). This article demonstrates that a personalized peptide-based neoantigen vaccine is safe, feasible and capable of eliciting strong T cell responses in patients with melanoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017). This study shows that individualized RNA-based vaccines succeed in mobilizing immunity against a spectrum of cancer mutations in melanoma patients, resulting in sustained progression-free survival.

    Article  CAS  Google Scholar 

  240. Smart, A. C. et al. Intron retention is a source of neoepitopes in cancer. Nat. Biotechnol. 36, 1056–1058 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Zhang, M. et al. RNA editing derived epitopes function as cancer antigens to elicit immune responses. Nat. Commun. 9, 3919 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from Fundação para a Ciência e Tecnologia and FEDER/POR Lisboa 2020 — Programa Operacional Regional de Lisboa, PORTUGAL 2020 (LISBOA-01–0145-FEDER-016394; 007391).

Author information

Authors and Affiliations

Authors

Contributions

J.D. and M.C.-F. contributed equally to all aspects of the article. P.B.-G. researched data for the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Maria Carmo-Fonseca.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Global Cancer Observatory: http://gco.iarc.fr/today/fact-sheets-cancers

MiSplice: https://github.com/ding-lab/misplice

Glossary

7-Methylguanosine cap

A methylated guanosine residue added to the 5′ end of newly synthesized precursor mRNAs. This 5′ cap is necessary for mRNA translation and may also contribute to splicing and the nuclear export of mRNA.

Intron lariat

During the first step of splicing, the 5′ end of the intron is cleaved and the cut end forms a 2′,5′-phosphodiester bond with the branch-point adenosine, resulting in a looped structure known as a lariat.

Heterogeneous nuclear ribonucleoprotein (hnRNP) family

The hnRNP family is composed of numerous proteins that bind to nascent transcripts; they participate in precursor mRNA splicing, help stabilize mRNAs during transport from the nucleus to the cytoplasm and control mRNA translation.

Replication-dependent histones

mRNAs encoding the cell cycle-regulated, replication-dependent histone mRNAs are the only known eukaryotic mRNAs without a poly(A) tail at the 3′ end. Metazoan cells additionally contain replication-independent histone genes that are transcribed into polyadenylated mRNAs.

Nonsense-mediated decay

A mechanism that eliminates mRNAs containing premature translation-termination codons (PTCs). It is intimately linked with splicing, with PTCs often generated by either alternative or aberrant (cryptic) splicing.

Myelodysplastic syndrome

A heterogeneous group of clonal, acquired haematological disorders characterized by ineffective haematopoiesis resulting in peripherical blood cytopenias. Patients with myelodysplastic syndrome carry a variable risk of progression to acute myeloid leukaemia.

Driver mutations

Some spontaneous mutations confer a selective advantage to a cell, leading to cancer. Driver mutations are under positive selection within a population of cancer cells; mutations that are not selectively advantageous to the cell are called ‘passenger mutations’.

The Warburg effect

This effect refers to the observation that cancer cells metabolize glucose preferentially via aerobic glycolysis, rather than by oxidative phosphorylation. Aerobic glycolysis is promoted by PKM2, which is produced by alternative splicing.

Immune tolerance

A state of unresponsiveness to an antigen or a group of antigens that has the potential to induce an immune response. Although genetic alterations in cancers generate neoantigens that could be used by the immune system to distinguish tumour cells from their normal counterparts, tumours acquire immune resistance by co-pting certain immune-checkpoint pathways.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desterro, J., Bak-Gordon, P. & Carmo-Fonseca, M. Targeting mRNA processing as an anticancer strategy. Nat Rev Drug Discov 19, 112–129 (2020). https://doi.org/10.1038/s41573-019-0042-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-019-0042-3

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research